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Abstract: Although many algorithms have been proposed to mitigate air turbulence in optical videos,
there do not seem to be consistent blind video quality assessment metrics that can reliably assess
different approaches. Blind video quality assessment metrics are necessary because many videos
containing air turbulence do not have ground truth. In this paper, a simple and intuitive blind
video quality assessment metric is proposed. This metric can reliably and consistently assess various
turbulent mitigation algorithms for optical videos. Experimental results using more than 10 videos
in the literature show that the proposed metrics correlate well with human subjective evaluations.
Compared with an existing blind video metric and two other blind image quality metrics, the
proposed metrics performed consistently better.

Keywords: turbulence mitigation; blind video quality assessment; video super-resolution

1. Introduction

Air turbulence can seriously distort image contents and consequently can negatively
affect target detection and classification performance in video surveillance [1–4]. Figure 1
shows the impact of air turbulence on video quality. All the fine features of the tower
are smeared. In the past, researchers have developed numerous algorithms to mitigate
turbulence effects [5–13] among which there are simultaneous turbulence mitigation and
super-resolution (SR) algorithms [8,9]. In recent years, there are also new SR algorithms
using deep learning approaches [14,15]. Combining SR with some turbulence mitigation
only algorithm is of interest to the community as well.
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1. Introduction 
Air turbulence can seriously distort image contents and consequently can negatively af-

fect target detection and classification performance in video surveillance [1–4]. Figure 1 shows 
the impact of air turbulence on video quality. All the fine features of the tower are smeared. 
In the past, researchers have developed numerous algorithms to mitigate turbulence effects 
[5–13] among which there are simultaneous turbulence mitigation and super-resolution (SR) 
algorithms [8,9]. In recent years, there are also new SR algorithms using deep learning ap-
proaches [14,15]. Combining SR with some turbulence mitigation only algorithm is of interest 
to the community as well. 

In the aforementioned turbulence mitigation studies, researchers used simulated and 
real turbulence videos for demonstrations. For real videos, it is difficult to assess which algo-
rithm is performing better because of lack of ground truth. Hence, most of the time, subjective 
evaluations are used, which may not be consistent in the sense that some methods with close 
performance may be difficult to differentiate by humans. For simulated turbulence videos, 
objective metrics can be generated to compare different algorithms. 
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Figure 1. Video frames with and without air turbulence effects. (a) A frame with turbulence; (b) A
frame without turbulence.

In the aforementioned turbulence mitigation studies, researchers used simulated
and real turbulence videos for demonstrations. For real videos, it is difficult to assess
which algorithm is performing better because of lack of ground truth. Hence, most of the
time, subjective evaluations are used, which may not be consistent in the sense that some
methods with close performance may be difficult to differentiate by humans. For simulated
turbulence videos, objective metrics can be generated to compare different algorithms.
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In [16], a blind video quality assessment metric known as the Video Intrinsic Integrity
and Distortion Evaluation Oracle (VIIDEO) was developed. However, it was tailored
towards assessing compressed video quality. At this time, there does not seem to exist a
consistent blind video quality assessment tool for evaluating different turbulence mitigation
algorithms. In [11], a blind video quality assessment tool was mentioned. However, the
code is not available to the public. In [17,18], blind video quality assessment methods were
proposed for videos containing natural scenes without air turbulence. In [19], the authors
compared three air turbulence mitigation algorithms. One idea uses a reference marker
in the scene and this may not be practical because many videos with air turbulence are
recorded in the wild.

In this paper, a new blind video quality metric for assessing different turbulence
mitigation algorithms is proposed. First, given a video containing turbulence or a video
that is already turbulence mitigated, one can apply existing blind still image quality
assessment metrics such as Perception-based Image Quality Evaluator (PIQE) [20] and
Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [21] to assess the intra-
frame spatial quality. PIQE and BRISQUE are well-known tools that can meet this intra-
frame spatial quality assessment need. In this paper, the proposed metric will be utilizing
BRISQUE as it was found to behave more consistently with visual inspection. Second, in
order to capture the inter-frame fluctuations due to turbulence, an inter-frame root mean
square error (IFRMSE) metric is proposed, which simply computes the RMSE between two
neighboring frames and then take the average of all the RMSE of the frame pairs in the
video. The intuition behind IFRMSE is that there are random fluctuations due to turbulence
between the same pixels of different frames. If the IFRMSE is small, then turbulence effect
should be small as well. Third, a hybrid metric that computes the geometric mean of the
intra-frame scores and the inter-frame scores is proposed. As a result, both the intra- and
inter-frame qualities have been taken into account. The proposed blind metric is in sharp
contrast to the BRISQUE metric, which does not explicitly consider inter-frame fluctuations.

Here, several research questions are addressed. First, is the proposed hybrid blind
video quality metric consistent with subjective evaluation results? Several turbulence
mitigation algorithms in the literature were investigated, as well as the combination of
those algorithms with a deep learning-based SR algorithm known as Zooming Slow Motion
(ZSM) [22]. This question is important for assessing some algorithms that have very close
turbulence mitigation performance. Second, can the use of additional alignment and regis-
tration techniques alongside the well-known method CLEAR [11] improve air turbulence
mitigation? Third, is the existing blind video quality metric known as VIIDEO [16] suitable
for assessing turbulence mitigation algorithms? Answering this will motivate new research
in blind video quality assessment specifically for turbulence mitigation.

The contributions of this paper are as follows:

� A new blind video quality assessment metric specifically for assessing turbulence
mitigation algorithms is proposed. The new metric combines both intra-frame and
inter-frame qualities in videos. This metric is consistent with subjective evaluations,
meaning that the new metric can help differentiate algorithms that are too close in
visual inspection. Hence, the first question raised earlier is answered.

� The use of additional alignment and registration techniques are demonstrated to
visually improve videos with air turbulence. This answers the second question
raised earlier.

� This metric is compared with an existing metric and observed that the previous metric
in [16] is not suitable for assessing turbulent mitigation algorithms. This answers the
third question above.

The remainder of this paper is organized as follows. In Section 2, a few representative
and recent turbulence mitigation methods are summarized. Relevant works in the field of
blind quality assessment, air turbulence mitigation, and super resolution are described. In
Section 3, the proposed blind video quality assessment metric and a workflow for perform-
ing air turbulence mitigation are explained in detail. Section 4 showcases the experimental
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results of this workflow and metric on 12 videos. In Section 5, a few concluding remarks
and future directions are mentioned.

2. Related Works
2.1. Turbulence Mitigation Approaches

This section gives a glimpse of some representative papers in turbulent mitigation. It
is not meant for an exhaustive literature survey. Moreover, since the focus is on assessing
different turbulence mitigation algorithms and not on the advancement of those algorithms,
some algorithms may not be included in the experiments.

2.1.1. Complex Wavelet Fusion for Atmospheric Turbulence

As shown in Figure 2, Complex waveLEt fusion for Atmospheric tuRbulence (CLEAR)
consists of four key modules [11]: frame selection, image registration, image fusion, and
image deblurring. There are some key parameters to be aware of in CLEAR. Frame
selection is an essential parameter to turn on in order to stabilize frames where there might
be significant motion. Once this is active, the results drastically improve as can be seen
in Figure 3. The number of frames used is also an integral parameter to fine-tune. The
number of frames used can improve the quality of the air turbulence removal. However, if
there are too many frames with motion, there can be significant motion blurring. For the
case in Figure 3, 10 frames are used. Another key aspect of CLEAR is the region of interest
(ROI) selector. This allows users to specify a particular bounding box location of their
subjective ROI. When used, this ROI selector significantly improves the registration portion
of CLEAR, as can be seen below. This is especially useful when there is a particular object
in the frame that is of interest to the user, as is the case with the vehicles in the SENSIAC
dataset [23].
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Figure 2. CLEAR architecture [11]. Frame selection generates lucky regions which are referring to
image patches that are least affected by air turbulence. Details can be found in [11].
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Figure 3. Comparison of no frame selection vs. frame selection for CLEAR algorithm. (a) No frame selection; (b) with
frame selection.
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2.1.2. A Recent Turbulence Mitigation Approach Using Image Reconstruction

The approach proposed by Mao et al. [13] makes some decent improvements to
previous air turbulence mitigation methods. First, they improve on previous methods
by implementing a new way to generate reference frames, which is discussed in detail
in Section 3.1. Second, they implement a geometric and sharpness metric to create the
lucky frame, which is a frame with least distortion. Finally, they implement a novel blind
deconvolution algorithm.

2.2. Video Super-Resolution (VSR)

In recent research [24], two video super-resolution algorithms were compared. The
Zoom Slow-Motion (ZSM) Algorithm [22] for video super-resolution performed better than
the Dynamic Upsampling Filter (DUF) approach [17]. As such, only ZSM is used within
the experiments in this paper. The objective is to investigate whether or not VSR can help
mitigate air turbulence due to the fact that VSR normally uses multiple frames together for
resolution improvement. The use of multiple frames has some inherent deblurring effects
to reduce air turbulence.

ZSM can be broken down into three key components: feature temporal interpolation
network, a deformable convolutional long short-term memory (ConvLSTM) network, and
a deep construction network [22]. The feature temporal interpolation network is used
to interpolate missing temporal information between the input low resolution frames.
Next, the deformable ConvLSTM is used to align and aggregate the temporal information
together. Lastly, the deep construction network predicts and generates the super resolution
upsampled video frames. This overall architecture is outlined in Figure 4.
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2.3. Blind Metrics to Assess Turbulence Mitigation Algorithms
2.3.1. PIQE

PIQE is a blind spatial quality assessment metric [20]. The input image is first normal-
ized and split into blocks. Each block is then fed into a distortion estimator. These block
scores are then pooled together and a final quality score is outputted. The lower the score,
the better quality the image is. MATLAB has a built-in function for computing PIQE [25].

2.3.2. BRISQUE

BRISQUE is a no-reference image quality assessment metric [21]. It first extracts
natural scene statistics and then calculates several feature vectors. Using those features
and statistics in a Support Vector Machine (SVM), it then predicts an image quality score.
The lower the score the better quality the image is. No custom fitting was done for this
model. There is a MATLAB function for computing BRISQUE [26].

3. Methods
3.1. Using Reference Frame Only for Turbulence Mitigation

One way to potentially mitigate air turbulence is by using a new approach to generate
a reference frame, which is important for image alignment. The authors of [13] outline this
approach in the equation below. For each given patch in a frame, a search is performed
on a set number of subsequent frames and previous frames for that same patch in a
search window slightly larger than the patch size. There is an assumption that there is no
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significant motion of objects between consecutive frames. Based on the Euclidian distance
of the patch in the subsequent and previous frames, the best possible match for the patch
at the current frame is found. Afterwards, a weighted average of the patches is used to
generate a new reference frame ŷre f (r, t).

ŷre f (r, t) =
∑∆t∈Ωt wr,t(∆t)y(r, t + ∆t)

∑∆t∈Ωt wr,t(∆t)
(1)

where r denotes the given patch center location, Ωt is a search window surrounding the
current patch, ∆t denotes the shift in terms of pixels between the current patch and a
patch in the search window, and ωr,t represents the weighting of a given patch and is
the inverse of Euclidean distance between the current patch and a given patch within the
search window.

Figure 5 illustrates how to generate a sequence of reference (Ref) video. For a group of
N frames, Equation (1) is applied to generate one reference frame. The window of frames
shifts to the right by one and then another reference frame is generated. This process
repeats for the whole video.
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Previous approaches, such as averaging the frames [8–10], do not work as well as this
approach. If there is air turbulence or even motion in the frames, simply averaging the
frames will only smear the moving objects. This new approach to generating reference
frames creates a much smooth frame that maintains the edges and shapes of moving objects.
Figure 6 shows a comparison of the two different approaches and the advantages offered
by the patch-based reference generation.
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3.2. Proposed Workflow for Air Turbulence Mitigation

Instead of independently using reference frame alignment, CLEAR, or ZSM, these can
be used in conjunction with one another to further improve image quality of air turbulent
videos. The following order of algorithms are proposed: reference frame alignment,
CLEAR, ZSM. As shown above in Section 3.1, the reference frame alignment can provide
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crisper frames. In theory, this will make objects sharper even before the air turbulence
mitigation. The final step would be to apply ZSM to the output of CLEAR. Although
ZSM is a super resolution method, it also performs image fusion. It does so by aligning
neighboring sequences of frames. These alignments further improve the quality of the
frames. In essence, this proposed workflow utilizes a variety of registration and alignment
methods to perform more holistic air turbulence mitigation.

3.3. Proposed Simple Inter-Frame RMSE (IFRMSE) Metric for Inter-Frame Quality Assessment

Simply using a blind quality assessment metric on a still frame does not give a holistic
representation of the performance of different turbulence mitigation algorithms in a video
with turbulence. The issue with air turbulence is not the noise in the individual frame but
the noise that randomly changes from frame to frame due to air turbulence. In order to
better assess air turbulence mitigation, a metric needs to measure the consistency of pixels
across frames.

One simple way to measure the consistency is to take the RMSE at each pixel location
between frame pairs. Using an inter-frame RMSE to measure the effect of air turbulence
across frames is proposed. For every frame pair, the RMSE between the current frame, Fi,
and the subsequent frame, Fi+1 is taken. That is, the inter-frame RMSE for frame pair i is
defined as

IFRMSEi =

√
∑N

j=1
(

Fi,j − Fi+1,j
)2

N
(2)

where Fi,j denotes the jth pixel in frame Fi and N is the total number of pixels in a frame.
To assess the video quality, it is necessary to compute IFRMSE values from multiple

frame pairs in order to reduce the statistical variations. For a video sequence, v, of n
frames, there will be n−1 frame pairs. The following equation calculates the mean of the
IFRMSEs as

IFRMSE =
∑n−1

i=1 IFRMSEi

n− 1
(3)

A few cautionary notes are needed. First, if the camera moves, then an image regis-
tration step is needed between the two frames in a frame pair. The aligned images can
then be used for computing the IMRMSE. Second, if there are moving objects in the videos,
the number and size of the moving objects may limit the effectiveness of the metric. If
the number of pixels related to the moving objects is a small percentage (<5%) of the total
number of pixels in a frame, then it should be alright to proceed with the calculation of
IFRMSE. However, if the number of moving pixels due to moving objects is too large (10%
or more), then one must apply optical flow techniques to determine those large moving
objects and then exclude them in the computation of IFRMSE.

3.4. Proposed Hybrid Blind Video Quality Assessment Metric

One shortcoming of the IFRMSE metric is that it does not measure the actual quality
of individual frames. For example, in a case where the image quality in a video was poor
and the frames were consistently poor across the sequence, the IFRMSE metric would be
quite low (indicating a high-quality video) even though there is no air turbulence. Such a
case can happen to a highly compressed video in which all frames have poor quality due
to compression. To overcome this shortcoming of IFRMSE, one can combine the score with
one of the blind quality assessment scores. More specifically, take the geometric mean of
the IFRMSE metric over many frame pairs and the intra-frame metric BRISQUE scores over
many frames to generate a hybrid score. That is, the hybrid metric is given by

HIB =
√
(IFRMSE) ∗ BRISQUE (4)
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Experiments were conducted with PIQE, but could not get consistent results. Hence,
only Equation (4) is used in the experiments. PIQE could be used as a replacement for
BRISQUE for certain datasets if needed.

The geometric mean has a few advantages over the arithmetic mean. First, in dealing
with metrics from different domains, it will be a good practice to use geometric mean. This
will be fair to each of the contributing metrics in the product. That is, a given percentage
change in any of the two metrics has the same effect on the product. For example, a 10%
change in intra-frame metric from 0.1 to 0.11 has the same effect on the overall geometric
mean as a 10% change in inter-frame metric from 0.5 to 0.55. Second, the geometric mean
can better handle large dynamic ranges of two metrics. For instance, if the intra-frame
metric is 0.01 and inter-frame is 0.9, the geometric of the two will be 0.3, but the arithmetic
mean will give 0.455. As a result, the arithmetic mean will favor the metric that has
large values.

The hybrid metric above should be more indicative of air turbulence mitigation across
videos. Additionally, the metric can be used on datasets without having a ground truth
video. This makes it more flexible in real-world scenarios where the ground truth video
may not be available or possible to attain.

One might think that the proposed metric in Equation (4) is too simple and lacks
novelty. Indeed, the proposed blind metric is simple and intuitive. However, there were no
similar approaches in the literature. Moreover, scientific discoveries are usually incremental
in nature. In this sense, the proposed metric is contributing new knowledge to the literature.

It is worth mentioning some differences between VIIDEO and the proposed metric.
First, the VIIDEO metric is a patch-based method. It computes the local contrast of each
patch across multiple frames. The metric is simpler in that one only needs to compute the
RMSE between neighboring frames without using patches. Second, VIIDEO does not have
a spatial only metric for assessing the image quality in each frame whereas the proposed
approach has an explicit spatial quality component.

4. Experimental Results

Here, an overview of the 12 video datasets containing air turbulence as well as
assessment results are presented. Eleven of them are well-known in the literature.

4.1. Dataset and Workflow Overview

A combination of simulated data and real video datasets were used to validate both
the blind quality assessment metric as well as the proposed air turbulence mitigation
workflow. Table 1 and Figure 7 summarize those videos. Barcode #1–#3 have different
levels of turbulence. If a video is not wild it is a simulated video. Moving refers to whether
the object or camera is moving in the video. This is an important distinction because the
motion of the object or camera can interfere with blind quality measurements.

For each video, the following workflows are compared:

� Raw: This is the raw video with turbulence.
� Ref: This is the video generated by using the method described in Section 3.1
� Raw + CLEAR: This is the turbulence mitigated video using CLEAR.
� Ref + CLEAR: This is the video generated by applying CLEAR to the Ref video.
� Raw + CLEAR + ZSM: This is the video generated by applying ZSM to the Raw +

CLEAR video.
� Ref + CLEAR + ZSM: This is the video generated by applying ZSM to the Ref +

CLEAR video.

In the following tables showcasing the experimental results, the IFRMSE and BRISQUE
scores are the average score across the frames used in a particular video. This is done to
give a more holistic view of how a particular method performs over the course of a video.
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Table 1. Summary of video datasets used in experiments. “Wild” means that a video was taken from
an actual scene.

Video Wild Moving Size Frames

Chimney No No 256 × 256 50

Building No No 256 × 256 50

SENSIAC Yes Yes 256 × 256 50

Barcode #1 No No 215 × 215 50

Barcode #2 No No 215 × 215 50

Barcode #3 No No 215 × 215 50

Watertower Yes No 225 × 225 50

Moon Yes No 256 × 256 50

Monument Yes No 256 × 256 50

Secret base Yes No 256 × 256 100

Mirage Yes Yes 256 × 256 100

Airport Yes Yes 256 × 256 100
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Videos comparing the various methods can be found in the following link: https:
//rb.gy/wdwxh7 (accessed on 16 September 2021). Readers are encouraged to watch those
videos and check the visual performance of different methods.

4.2. Hybrid Blind Quality Assessment Results

As one can observe from Table 2 that the results for the rankings of hybrid score of
BRISQUE and the proposed IFRMSE are very consistent. Raw and Ref methods are always
ranked 5–6, CLEAR based methods are ranked 3–4, and ZSM methods are always ranked
1–2. These rankings are strongly aligned with visual inspection of various outputs from
each method.

Table 2. IFRMSE, BRISQUE, and HIB scores for 12 videos.

SENSIAC Building Chimney

Methods IFRMSE BRISQUE HIB Rank IFRMSE BRISQUE HIB Rank IFRMSE BRISQUE HIB Rank

Raw 4.39 23.48 10.15 6 1.2602 45.3415 7.5592 6 3.73 52.81 14.04 6
Ref 3.15 25.61 8.98 5 1.152 46.8207 7.3442 5 3.21 38.69 11.14 5

Raw + CLEAR 1.77 18.73 5.76 4 0.6076 39.5277 4.9008 4 1.87 45.81 9.26 4
Ref + CLEAR 1.26 21.14 5.16 3 0.3452 38.4578 3.6434 3 1.22 44.97 7.41 2

Raw + CLEAR
+ZSM 1.24 19.33 4.9 2 0.3108 38.0239 3.4376 2 1.66 37.16 7.85 3

Ref+ CLEAR +ZSM 0.88 21.54 4.35 1 0.1711 38.5113 2.5666 1 1.21 30.34 6.06 1

Water Tower Moon Monument

Methods IFRMSE BRISQUE HIB Rank IFRMSE BRISQUE HIB Rank IFRMSE BRISQUE HIB Rank

Raw 1.5043 53.1893 8.945 6 1.2602 45.3415 7.5592 6 2.7772 42.4074 10.8523 6
Ref 1.4077 53.9155 8.7119 5 1.152 46.8207 7.3442 5 2.6891 42.9818 10.751 5

Raw + CLEAR 0.5673 46.6926 5.1469 3 0.6076 39.5277 4.9008 4 1.1373 36.7082 6.4613 4
Ref + CLEAR 0.5228 51.5237 5.19 4 0.3452 38.4578 3.6434 3 0.8158 36.9296 5.4887 3

Raw + CLEAR
+ZSM 0.2781 44.3203 3.5107 1 0.3108 38.0239 3.4376 2 0.6776 37.11 5.0147 2

Ref+ CLEAR +ZSM 0.2562 52.5189 3.668 2 0.1711 38.5113 2.5666 1 0.4475 37.4448 4.0934 1

Barcode #1 Barcode #2 Barcode #3

Methods IFRMSE BRISQUE HIB Rank IFRMSE BRISQUE HIB Rank IFRMSE BRISQUE HIB Rank

Raw 3.577 40.919 12.0983 5 4.8176 41.15 14.0799 6 5.3736 46.1176 15.7423 5
Ref 3.4943 41.977 12.1112 6 4.7447 41.7146 14.0685 5 5.2976 46.9052 15.7634 6

Raw + CLEAR 1.2879 29.5506 6.1691 4 1.4656 29.5351 6.5793 4 1.874 30.9387 7.6145 4
Ref + CLEAR 0.7784 27.1397 4.5964 3 1.0033 29.3368 5.4254 3 1.3501 35.9165 6.9636 3

Raw + CLEAR
+ZSM 0.7413 26.2908 4.4145 2 0.794 27.6011 4.6815 2 0.9427 32.9359 5.572 2

Ref+ CLEAR +ZSM 0.4172 27.2035 3.3691 1 0.5216 28.7136 3.8699 1 0.6933 37.7056 5.1128 1

Base Mirage Airport

Methods IFRMSE BRISQUE HIB Rank IFRMSE BRISQUE HIB Rank IFRMSE BRISQUE HIB Rank

Raw 1.8141 38.0121 8.3041 6 5.3942 37.9655 14.3106 6 3.0487 49.477 12.2817 6
Ref 1.7372 39.4329 8.2765 5 5.2914 37.0854 14.0084 5 2.9227 50.3713 12.1334 5

Raw + CLEAR 0.5584 37.188 4.5571 4 3.1875 33.6723 10.36 4 2.1779 37.0528 8.9832 4
Ref + CLEAR 0.5055 35.9097 4.2605 3 2.94 33.3768 9.906 3 2.0918 38.0481 8.9214 3

Raw + CLEAR
+ZSM 0.2957 35.6662 3.2473 2 1.4926 33.3824 7.0589 1 1.9084 38.3016 8.5496 2

Ref+ CLEAR +ZSM 0.2633 34.3795 3.0084 1 1.5584 34.7729 7.3614 2 1.8277 39.3859 8.4845 1

4.2.1. Reference Alignment vs. Raw

Using the reference alignment produces a slight improvement in IFRMSE over the
Raw in all videos except for ‘Barcode #3′. Although the difference in IFRMSE is not very
significant between the Raw and Ref, the effects are amplified when used in conjunction
with CLEAR and ZSM. CLEAR and ZSM have drastrically lower IFRMSE when using Ref
based frames than just the Raw for most videos. BRISQUE scores across the Raw and Ref
methods are fairly consistent, with only the ‘Chimney’ sequence as an exception. This
makes sense as BRISQUE does not take into account inter-frame variability.

https://rb.gy/wdwxh7
https://rb.gy/wdwxh7
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4.2.2. Effects of CLEAR and ZSM

If CLEAR is respectively applied to the output of the Raw and Ref, there is a significant
improvement in the IFRMSE and therefore the HIB as well. When CLEAR removes the
air turbulence and the frame contents become stable, there is significantly less motion
between frames. The scores for any method utilizing CLEAR are significantly lower than
that of its respective counterpart. This means the IFRMSE is in agreement with these visual
observations in all the video datasets. CLEAR has mostly positive effects BRISQUE scores
of the Raw and Ref based methods. For example, in all three ‘Barcode’ sequences there is a
~25% improvement in BRISQUE scores from the Raw and Ref to the Raw + CLEAR and
Ref + CLEAR. In the Watertower and Base videos, the effects are more subtle.

When ZSM is applied to the output of the CLEAR based methods, there is another
significant improvement in IFRMSE scores. Although the ZSM visual effects are subtle, the
IFRMSE does indicate a significant improvement. These improvements can be attributed
to the ConvLSTM module in the ZSM which temporally aligns sequences of frames. This
alignment further reduces pixel fluctuations between frames. There is no consistent trend
for the BRISQUE scores of ZSM based methods perhaps due to the fact that BRISQUE is
not sensitive enough to notice the minor improvements from the ZSM.

4.3. Chimney and Building Videos

Here, there are detailed analysis of the Chimney and Building videos. Readers are
encouraged to visualize these videos in the link: https://rb.gy/wdwxh7 (accessed on
16 September 2021). Snapshots of one frame from every video are shown in Figures 8 and 9
for the Chimney and Building videos, respectively.

From Tables 3 and 4, Figures 8 and 9, following observations can be made:

� The use of Ref sequence helps improve the turbulence mitigation performance. This
can be seen when one compares the IFRMSE and BRISQUE scores of Raw vs. Ref,
Raw + CLEAR vs. Ref + CLEAR, Raw + CLEAR + ZSM vs. Ref + CLEAR + ZSM. This
is because Ref sequence provides more stable frames for image alignment, which is
an important step in CLEAR.

� The combination of CLEAR and ZSM improves over that of using only CLEAR.
� The visual inspection of the various turbulence videos seems to agree with the ob-

jective metrics in Tables 3 and 4. It is difficult to visually differentiate between the
ZSM results with their non-ZSM counterparts. That is why it is important to have an
objective metric to be able to better distinguish the subtle differences in the images. In
the included cases, the Hybrid IFRMSE and BRISQUE metric seemed to better assess
the quality of the videos.

� It can be observed in the videos that CLEAR greatly reduces the ‘wobbling’ of the
scene suffering from significant air turbulence.

� Although it is difficult to determine the extent of improvement from a still image, the
images do provide a general indication of the level of improvement. Figures 8 and 9
below show the various methods affect the quality of individual frames.

https://rb.gy/wdwxh7
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Table 3. Comparison of different approaches using BRISQUE, inter-frame RMSE, and hybrid metrics
for the ‘Chimney’ sequence.

Methods IFRMSE BRISQUE HIB HIB Rank

Raw 3.73 52.81 14.04 6
Ref 3.21 38.69 11.14 5

Raw + CLEAR 1.87 45.81 9.26 4
Ref + CLEAR 1.22 44.97 7.41 2

Raw + CLEAR + ZSM * 1.66 37.16 7.85 3
Ref + CLEAR + ZSM * 1.21 30.34 6.06 1

* Rescaled to same size as raw when calculating metrics.



Electronics 2021, 10, 2277 13 of 16

Table 4. Comparison of different approaches using BRISQUE, inter-frame RMSE, and hybrid metrics
for the ‘Building’ sequence.

Methods IFRMSE BRISQUE HIB HIB Rank

Raw 12.67 53.88 26.13 6

Ref 5.72 53.51 17.50 5

Raw + CLEAR 3.53 48.06 13.03 4

Ref + CLEAR 2.53 51.98 11.47 3

Raw + CLEAR + ZSM * 1.85 52.34 9.84 2

Ref + CLEAR + ZSM * 1.58 41.07 8.06 1
* Rescaled to same size as raw when calculating metrics.

4.4. Comparison with VIIDEO

The VIIDEO metric was tested on the three videos. Initially, the ‘Building’ sequence
was used to test various parameters for the metric. In particular, experiments were con-
ducted to determine the optimal block size. From the initial study, it was found that a small
block size, like 4, more accurately rates the videos. As can be seen in Table 5 and Figure 10,
VIIDEO with a smaller block size more appropriately ranks the methods. The Raw is rated
as the worst and the Raw + CLEAR is the best. These are more closely aligned with visual
inspection than the rankings from the other block sizes.

Table 5. Block size selection for the ‘Building’ sequence.

Block Sizes 4 8 18 26 36

Method VIIDEO VIIDEO
Rank VIIDEO VIIDEO

Rank VIIDEO VIIDEO
Rank VIIDEO VIIDEO

Rank VIIDEO VIIDEO
Rank

Raw 0.294 6 0.327 3 0.485 4 0.584 6 0.665 5
Ref 0.291 5 0.332 4 0.359 1 0.329 1 0.541 2

Raw + CLEAR 0.235 1 0.245 1 0.410 3 0.433 3 0.556 3
Ref + CLEAR 0.245 2 0.315 2 0.405 2 0.371 2 0.474 1

Raw + CLEAR + ZSM * 0.257 3 0.351 5 0.539 6 0.554 4 0.691 6
Ref + CLEAR + ZSM * 0.289 4 0.391 6 0.532 5 0.561 5 0.633 4

* Rescaled to same size as raw when calculating metrics.
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A block size of 4 was used for VIIDEO in all three videos. The VIIDEO metrics are
shown in Table 6 and Figure 11. There is inconsistency across the three video sequences in
terms of which method performs the best. For instance, VIIDEO ranked the raw turbulence
video as the second in the Chimney case, which is clearly inconsistent with subjective
evaluation. Another inconsistent instance is that the Ref + CLEAR + ZSM videos were
ranked 4, 6, and 4 in the Building, Chimney, and SENSIAC videos, respectively. This
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inconsistency indicates that VIIDEO metrics are still not robust at handling various types
of distortions in videos. For example, authors in [16] found that the VIIDEO metric
worked well in distinguishing between compression artifacts but did not mention their
performance for other types of distortions that may arise, such as air turbulence. From the
preliminary studies, one can see that the VIIDEO performance metric was inconsistent for
air turbulence.

Table 6. VIIDEO score for all three sequences.

(a) VIIDEO Metrics and Rankings for Building and Chimney Videos

Building Chimney

Methods VIIDEO VIIDEO Rank VIIDEO VIIDEO Rank

Raw 0.294 6 0.262 2
Ref 0.291 5 0.299 3

Raw + CLEAR 0.235 1 0.224 1
Ref + CLEAR 0.245 2 0.324 5

Raw + CLEAR + ZSM * 0.257 3 0.301 4
Ref + CLEAR + ZSM * 0.289 4 0.386 6

(b) VIIDEO metrics and rankings for the SENSIAC video

SENSIAC

Methods VIIDEO VIIDEO Rank

Raw 0.101 6
Ref 0.052 3

Raw + CLEAR 0.046 1
Ref+ CLEAR 0.056 5

Raw+ CLEAR + ZSM * 0.051 2
Ref + CLEAR + ZSM * 0.056 4

* Rescaled to same size as raw when calculating metrics.
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5. Conclusions

A new blind video quality metric was proposed to assess air turbulence mitigation
performance in video sequences. These results were in agreement with visual inspection.
Twelve commonly used videos were used to perform this validation. Experimental results
showed that the metrics are consistent with subjective evaluation of videos. The experi-
ments demonstrated the effectiveness of using CLEAR in combination with reference frame
alignment and ZSM to mitigate air turbulence.

One anonymous reviewer pointed out that turbulence may be treated as shake and
blurry effects and hence some denoising algorithms such as [27,28] can be used. This
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could be a reasonable future research topic. Another future direction is to investigate how
one can adapt some blind assessment metrics, such as those in [16,29,30], to turbulence
mitigated videos. Finally, there could be further research into the effects of motion within
videos and how they may affect blind quality assessment metrics like IFRMSE. Some new
developments in video quality assessment [31–33] in non-air-turbulence mitigation areas
could potentially be adapted to blind image quality assessment in air turbulence videos.
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