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Abstract: This paper proposes the effects of chamber pressures on the passivation layer of hydro-
genated nano-crystalline silicon (nc-Si:H) mixed-phase thin film using microwave annealing (MWA)
to achieve a high-quality thin film. The use of 40.68 MHz very-high-frequency plasma-enhanced
chemical vapor deposition (VHFPECVD) deposited the nc-Si:H mixed-phase thin film on the top and
bottom of the n-type crystalline silicon substrate. The chamber pressures (0.2, 0.4, 0.6, and 0.8 Torr) of
the VHFPECVD were critical factors in controlling the carrier lifetime of the symmetric structure.
By using the VHFPECVD to deposit the nc-Si:H and using the MWA to enhance the quality of the
symmetric structure, the deposited nc-Si:H’s properties of a crystalline volume fraction of 29.6%, an
optical bandgap of 1.744 eV, and a carrier lifetime of 2942.36 µs were well achieved, and could be
valuable in thin-film solar-cell applications.

Keywords: passivation; microwave annealing; nano-crystallite mixed-phase silicon thin film

1. Introduction

Thin-film solar cells are being increasingly adopted as a pollution-free power source.
Current research is focused on high-efficiency solar cells. Surface passivation is crucial
for achieving high-conversion-efficiency crystalline silicon solar cells [1]. The passivation
layer deposition is an essential process step in developing crystalline silicon (c-Si) solar
cells [2]. Some studies reported the deposition of hydrogenated nano-crystalline silicon
(nc-Si:H) passivation layer thin films [3–7]. The nc-Si:H thin film shows much promise in
the application of solar cells due to good features such as a tunable bandgap (1.1 to 3 eV),
high optical absorption (>104 cm−1), and better carrier mobility (~103 cm2/V s) [8–11]. The
growing methods of nc-Si:H film typically are plasma-enhanced chemical vapor deposition
(PECVD) [12], radio-frequency (RF) sputtering [13], and hot-wire chemical vapor deposition
(HWCVD) [14].

The use of very-high-frequency PECVD (VHFPECVD) has several advantages, such as
high plasma density (>1.0 × 1010 cm−3) and reduced ionic bombardment (energy of about
10–100 eV) [15–19]. It was reported that a high deposition rate (>4 Å/s) and high pressure
(>0.1 Torr) of VHFPECVD are effective for growing high-quality µc-Si:H films [20–24].
However, when using hot-wire chemical vapor deposition, the radiant heat of the filaments
leads to a substantial increase of the substrate temperatures, limiting the deposition rate
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for high-quality thin films [25]. Therefore, VHFPECVD at 40.68 MHz is a preferred method
for mixed-phase (a combination of amorphous and nano-crystalline) silicon thin-film
deposition on crystalline silicon wafer substrates.

The annealing process plays a crucial role in obtaining a high carrier lifetime in the
hydrogenation from the film to the c-Si surface. Some studies related to post-annealing
have been reported [26–30]. Microwave annealing (MWA) is a new and effective method
to obtain high-carrier-lifetime thin films. The effects are ascribed to the details of mi-
crowave absorption, which selectively affects Si–H bonds, and thus hydrogen bonds were
restructured [31]. Some studies have reported microwave annealing in the thin-film coating
technology [32–35]. The MWA has two major microwave heating processes: ohmic conduc-
tion and dielectric polarization losses, mainly influenced by the thickness and conductivity
of the thin films; and the other is the dielectric permittivity of the thin film materials [36].
Microwave annealing provides uniform and fast heating flows to enable strong bonding
inside thin films [36].

We studied the effects of various chamber pressures on the passivation layer depo-
sition of symmetric structure (nc-Si:H/c-Si/nc-Si:H) solar cells. The VHFPECVD was
performed at 40.68 MHz to deposit nc-Si:H on the top and bottom of the n-type c-Si
substrate. High chamber pressures of the VHFPECVD can achieve a high growth rate,
randomize the crystallite orientation, and reduce the thin film’s defect density [37]. Recent
evidence suggests that defect density affects the nc-Si:H film’s grain size and number of
grains [38]. However, the low chamber pressures of VHFPECVD reduce the deposition rate.
A high-rate growth of high-quality thin films is required for high-efficiency and low-cost
production [39]. Chamber pressures of 0.2 to 0.8 Torr were applied to control the carrier
lifetime of the symmetric structures. The deposited nc-Si:H exhibited a crystalline volume
fraction of 29.6% and an optical bandgap of 1.744 eV. Microwave annealing can be used to
achieve high-quality thin films with a high carrier lifetime of 2942.36 µs.

2. Materials and Methods

Figure 1 displays the schematic of the passivation layer of nc-Si:H deposited on a
300 µm thick n-type polished float zone (FZ) wafer with resistivity of 5 Ω-cm. The 20 nm
intrinsic nc-Si:H was deposited on the top and bottom of the c-Si substrate. In applying
the symmetric structure, the passivation layer of nc-Si:H played a crucial role in reducing
the surface recombination and defects at an interface between the highly doped crystalline
thin film and the c-Si substrate [40]. The 40.68 MHz VHFPECVD process is illustrated in
Figure 2.
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Figure 1. Schematic structure of the passivation layer of nc-Si:H deposited on an n-type crystalline
silicon substrate.

Figure 3 displays the deposition of nc-Si:H on the n-type crystalline silicon substrates.
Here, nc-Si:H was deposited through VHFPECVD at a ratio (H2/SiH4) of 23%; a total
flow rate of 50 sccm; a substrate temperature of 150 ◦C; chamber pressures of 0.2, 0.4, 0.6,
and 0.8 Torr; and a power density of 40 mW/cm2. The electrode area was 1681 cm2, and
the electrode–substrate distance was 15 mm. The c-Si substrate was cleaned first using a
standard Radio Corporation of America (RCA) cleaning technique [41]. Immediately before
the nc-Si:H deposition, the native oxide was removed from the c-Si substrate by dipping
the c-Si substrate into 5% hydrofluoric acid (HF) for 30 s. VHFPECVD was performed to
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deposit the nc-Si:H at a c-Si substrate temperature of 150 ◦C. The top nc-Si:H was 20 nm
thick. The deposition completed nc-Si:H/c-Si upside down through the rotation chamber
and repeated the deposition step. The thickness of the bottom nc-Si:H was 20 nm. MWA
was used in the last step.
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ure 4a displays the thermal image of the samples and various MWA times, as well as 
corresponding operating temperatures. The use of MWA on the prepared thin films was 
performed in a 2.45 GHz microwave annealing system with RF power of 100–1320 W. The 
in situ temperature of each sample was monitored by a Fluke Ti10 infrared camera. A 
Renishaw Invia Raman microscope was used to study the crystalline volume fraction of 
the film (with a 514 nm laser). To avoid the influence of signal from the c-Si substrate, the 
20 nm nc-Si:H thin film/glass substrate was used to measure the Raman spectrum. The 
microwave annealing system (PYRO 260 Microwave System, purchased from Milestone 
Inc. in Milan, Italy) was used for sample microwave annealing. The FTIR spectra were 
recorded using an Agilent 660 spectrometer. The FTIR measurement signal was weak due 

Figure 2. The use of the in-line 40.68 MHz VHFPECVD in this study: (a) equipment diagram; (b) entity diagram. (I) The
substrates input; (II) the preheating chamber; (III) process chamber 1 for depositing the nc-Si:H; (IV) the rotation chamber
for depositing the thin film on the back of the substrate; (V) process chamber 2 for depositing the nc-Si:H on the back of
substrates; (VI) the cooling chamber; and (VII) the substrate output.
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Figure 3. Fabrication process flow of the deposition of nc-Si:H on an n-type crystalline
silicon substrate.

The properties of the deposited symmetric structures are summarized in Table 1.
Figure 4a displays the thermal image of the samples and various MWA times, as well as
corresponding operating temperatures. The use of MWA on the prepared thin films was
performed in a 2.45 GHz microwave annealing system with RF power of 100–1320 W. The
in situ temperature of each sample was monitored by a Fluke Ti10 infrared camera. A
Renishaw Invia Raman microscope was used to study the crystalline volume fraction of
the film (with a 514 nm laser). To avoid the influence of signal from the c-Si substrate, the
20 nm nc-Si:H thin film/glass substrate was used to measure the Raman spectrum. The
microwave annealing system (PYRO 260 Microwave System, purchased from Milestone
Inc. in Milan, Italy) was used for sample microwave annealing. The FTIR spectra were
recorded using an Agilent 660 spectrometer. The FTIR measurement signal was weak due
to the nc-Si:H’s thickness, so we increased the thickness to about 1 µm and deposited it on
the glass. Thus, we were able to observe the difference in FTIR spectra after microwave
annealing. Wavenumbers were scanned from 670 to 4000 cm−1 at a scan rate of 0.4 cm s−1.
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Table 1. Properties of the deposited nc-Si:H mixed-phase thin films. Note: MWA = microwave annealing.

Chamber
Pressure (Torr)

Power Density
(mW/cm2)

Substrate
Temperature (◦C) H2/SiH4 (sccm) MWA

Temperature (◦C)

Carrier Lifetime (µs)

before
Passivation without MWA after MWA

0.2 40 150 50 180 4.32 25.43 688.03

0.4 40 150 50 180 4.01 27.53 1140.95

0.6 40 150 50 180 6.29 11.83 1228.35

0.8 40 150 50 180 5.08 131.29 2942.36
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The variations of surface morphology and root mean square (RMS) roughness as a
function of before and after MWA were evaluated using an atomic force microscope (AFM,
NT-MDT Solver P47 system). The wavelength-dependent ellipsometric parameters, refrac-
tive index, and extinction coefficient (n, k) were measured using spectroscopic ellipsometry
(M2000-DI, J. A. Woollam Co., Lincoln, NE, USA) at three incident angles of 55◦, 65◦, and
75◦, and a wavelength ranging from 350 to 1100 nm. The carrier lifetime for samples
without contacts was measured with a Sinton WCT-120 lifetime tester.

3. Results and Discussion

In the microwave annealing process, the collisions between the electrons (or holes)
and silicon lattices induced resistivity heating inside the deposited Si thin films, which
caused the realignment of the Si atoms [36]. MWA was rapid (9 ◦C/min), and uniformly
(±6.8 ◦C/cm2) heated the thin films. This study provided a practical annealing approach to
achieve a high-quality thin film of nc-Si:H. Figure 4b displays MWA at various powers and
operating temperatures. The MWA temperature increased with an increase in microwave
power. Low-temperature annealing is beneficial for the interface passivation quality, and
an annealing temperature of 180 ◦C can yield interface recombination activity [42].

Figure 5 displays the deposition rate of the thin film as a function of chamber pressures
of 0.2 to 0.8 Torr. The deposition rate was proportional to the chamber pressure in the
VHFPECVD process. By increasing the chamber pressures from 0.2 to 0.8 Torr, the surface
mobility of the VHFPECVD plasma increased [43], which increased the possibility of
collisions of H2/SiH4 molecules. The high chamber pressures resulted in the fast growth
rate of the nc-Si:H in the VHFPECVD process because the ions’ and radicals’ molecule
reactions in the VHFPECVD became frequent and achieved high energy, increasing the
deposition rate of the thin films [44]. However, promoting gas-phase particle formation
instead resulted in dust-particle generation at the substrate of the deposition chamber at a
higher deposition pressure.
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with a power density of 40 mW/cm2, a substrate temperature of 150 ◦C, and a H2/SiH4 flow of
50 sccm for all cases.

Figure 6 displays a comparison of deconvoluted Raman spectra of the crystalline
volume fraction of the deposited nc-Si:H on the glass substrate before and after MWA. The
crystalline volume fraction (Xc) can be found by [45]:

Xc = Ic/(Ic + yIa) (1)

where Ic, Ia, and y are the amorphous integrated intensities of the crystallite volume
fraction, and ∑c/∑a is the ratio of the Raman diffusion cross-section for c-Si over that of
thin film [46] The scattering cross-section ratio was estimated to be 0.88, according to the
results presented by R. Tsu [47]. When the chamber pressures of VHFPECVD increased
from 0.2 to 0.8 Torr, the crystalline volume fraction of the nc-Si:H increased from 13.5 to
21.9%. Many hydrogen-vacuum regions were generated due to the chamber pressure
increase, causing grain growth [48]. When the pressure was too low, the number of silicon
atoms was too few to enable them as nucleation centers. At the same time, the number
of silicon atoms at a higher pressure was too high, which produced too many nucleation
centers, which was not favorable to an increase in the growth of grains in the amorphous
phase [45]. Chaochao et al. [36] found that the key factors for microwave absorption are
the high density of dipoles from the thin film (high density of defects). The high-density
defects come from an amorphous phase in the mixed-phase thin film. After MWA, the
crystalline volume fraction of the nc-Si:H (0.8 Torr) increased considerably, from 21.9 to
29.6%, and exhibited increased nano-crystalline structures inside the thin film [4,49].

Figure 7 displays the Fourier transform infrared spectroscopy (FTIR) with 950 to 2300 cm−1

variation before and after microwave annealing at a chamber pressure of 0.8 Torr. The spec-
tra also exhibit peaks, with one centered at ~1050 cm−1. The Si-H2 intensity reduction after
using MWA showed that the nc-Si:H hydrogen content of the nc-Si:H had decreased [50],
and the nano-crystalline of the mixed-phase had increased [51]. Among these, there were
more Si-H and Si-H2 in the nc-Si:H film after deposition, and the characteristics (high
density of defects) of microwave annealing helped to achieve the recrystallization effect
due to the rapid release of surface hydrogen. The reduced concentration of O impurity
(O-Si-O) in the nc-Si:H seemed to be related to decreased defect density [52]. Therefore,
the recrystallization and reduction in nc-Si:H defect density could be achieved simply and
quickly through MWA.
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Figure 7. Fourier transform infrared spectroscopy (FTIR) of the thin film at a 0.8 Torr chamber
pressure before and after using microwave annealing.

Figure 8 displays the atomic force microscopy images of the nc-Si:H under a chamber
pressure of 0.8 Torr before and after MWA. The crystalline volume fraction of the nc-Si:H
was 29.6%, and for the root mean square (RMS), there was little difference after MWA.
However, a major problem with this kind of crystallinity is only a nanometer-level change
(≈10%), so the process did not affect changes in the film morphology.

The refractive index and extinction coefficient (n, k) of the nc-Si:H were measured
through spectroscopic ellipsometry. The absorption coefficient (α) of the nc-Si:H was
obtained using the following formula [53,54]:

α = 4πk/λ (2)
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where k indicates the extinction coefficient and λ is the wavelength of visible light at 300 to
1100 nm. The optical bandgap (Eg) and absorption coefficient (α) are given by [53,54]:

(αhυ)1/2 = B(hυ − Eg) (3)

where B is the optical density of state, hυ is the energy of light, and Eg is the optical
bandgap. Figure 9 displays the optical bandgap of the deposited nc-Si:H before and after
MWA under different chamber pressures in the VHFPECVD process.
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In this study, the deposited thin films had an optical bandgap exceeding 1.8 eV,
confirming that they were mixed-phase silicon thin films. In some studies [55,56], the
increase in the chamber pressure led to a reduction in the optical bandgap, suggesting
an increment in the defect density. Consistent with previous findings, the film defect
density was helpful for microwave absorption. The dielectric polarization and ohmic
conduction losses generated during MWA changed the nanoclusters in the mixed-phase
silicon thin films to produce uniform bonding reactions [36]. The nanoclusters had non-
fully crystallized grain growth to the coalescence stage. With microwave annealing, the
increase in nanoclusters led to a reduction in the optical bandgap in all cases. Many studies
have shown that the influence of the mixed phase on the optical bandgap is related to
the size ratio and nanoclusters of the amorphous phase to the nanocrystal phase [57–59].
Therefore, the quality of the film can be improved when the mixed-phase film, through
microwave annealing, causes the amorphous phase to begin to produce the nanocrystal
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phase. Notably, based on these studies, we believe the use of nc-Si:H mixed-phase thin
films in symmetric structures can be discussed in more depth.

Figure 10 displays the carrier lifetime of the thin film (symmetric structures) after
microwave annealing at 0.2 to 0.8 Torr chamber pressures in the VHFPECVD process. The
microwave annealing treatment on the deposited symmetric structures resulted in a high
carrier lifetime of 2942.36 µs and a crystalline volume fraction of 29.6%. In addition, the
crystalline surface effectively reduced defect density [60]; therefore, it can be seen that the
best carrier lifetime was achieved at a chamber pressure of 0.8 Torr and after annealing. It
is known that the recrystallization effect will occur after microwave annealing. Notably,
although the recrystallization effect will increase crystallinity, a significant problem of
crystallinity is nanometer-level change (≈10%). Studies of the size ratio and distribution of
the amorphous phase to the nanocrystals phase showed the importance of the mixed-phase
thin film. This result suggested that when the mixed-phase thin film was microwave-
annealed, the optical bandgap would be from 1.8 to 1.76 eV when the nanophase was
grown, resulting in only a nanometer-level change. Thus, the method gave a more realistic
estimate of the actual merit of the nc-Si:H thin films for symmetric structures. Table 2
compares the current and previous study results.
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Figure 10. Carrier lifetime of the thin film (symmetric structures) after microwave annealing. In all
cases, the c-Si substrate size was 2.5 cm2, the MWA power was 440 W, the annealing temperature
was 180 ◦C, and the MWA time was 20 min.

Table 2. Comparison of carrier lifetime, annealing method, annealing temperatures, and annealing time performance
between the previous research and the current study. Note: a-Si:H = amorphous silicon; c-Si = crystalline silicon; HWA
= high-pressure water-vapor annealing; MWA = microwave annealing; x = not reported in the reference; PDA = post-
deposition annealing; SHJ = silicon hetero junction; BSF = back surface field.

Ref. Structures Annealing Method Annealing
Temperatures (◦C)

Annealing
Time (min)

Optical
Bandgap (eV) Carrier Lifetime (µs)

[61] a-Si:H/c-Si/a-Si:H HWA 210 60 x 72

[62] a-Si:H/c-Si/a-Si:H Annealing 270 2 x 883

[63] SHJ (a-Si:H) x x x 1.81 1774

[64] a-Si:H/c-Si PDA 200 30 x ~2000

[65] nc-Si:H/c-Si x x x x 1987

[66] BSF (nc-Si:H) x x x 1.76 ~1500

[67] a-Si:H/c-Si/a-Si:H Annealing 180 30 x ~1000

This work nc-Si:H/c-Si/nc-Si:H MWA 180 20 1.744 2942.36
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4. Conclusions

In this paper, an approach to depositing nc-Si:H using VHFPECVD under different
chamber pressures and treating by microwave annealing to achieve the high-quality nc-
Si:H was proposed. The relationships between the chamber pressures of the VHFPECVD
and MWA on the nc-Si:H depositions were investigated. The chamber pressures (0.2, 0.4,
0.6, and 0.8 Torr) of the VHFPECVD process were critical factors in controlling the nc-Si:H
carrier lifetime. Microwave annealing at a power of 440 W, a temperature of 180 ◦C, and
a duration of 20 min were used to further improve the deposited nc-Si:H. The deposited
nc-Si:H with a crystalline volume fraction of 29.6%, an optical bandgap of 1.744 eV, and a
carrier lifetime of 2942.36 µs was well achieved. This study provided an effective method
to accomplish the passivation layer of nano-crystalline silicon mixed-phase thin film in the
applications of symmetric structures.
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