
electronics

Article

Can Deep Models Help a Robot to Tune Its Controller? A Step
Closer to Self-Tuning Model Predictive Controllers

Mohit Mehndiratta 1,* , Efe Camci 1 and Erdal Kayacan 2

����������
�������

Citation: Mehndiratta, M.; Camci, E.;

Kayacan, E. Can Deep Models Help a

Robot to Tune Its Controller? A Step

Closer to Self-Tuning Model

Predictive Controllers. Electronics

2021, 10, 2187. https://doi.org/

10.3390/electronics10182187

Academic Editors: Hamid Reza

Karimi, Cheng Siong Chin, Kalyana

C. Veluvolu, Valeri Mladenov, Cecilio

Angulo, Davide Astolfi, Jun Yang and

Len Gelman

Received: 29 July 2021

Accepted: 1 September 2021

Published: 7 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue,
Singapore 639798, Singapore; efe001@e.ntu.edu.sg

2 Artificial Intelligence in Robotics Laboratory (AiR Lab), Department of Electrical and Computer Engineering,
Aarhus University, 8000 Aarhus, Denmark; erdal@ece.au.dk

* Correspondence: mohit005@e.ntu.edu.sg

Abstract: Motivated by the difficulty roboticists experience while tuning model predictive con-
trollers (MPCs), we present an automated weight set tuning framework in this work. The enticing
feature of the proposed methodology is the active exploration approach that adopts the exploration–
exploitation concept at its core. Essentially, it extends the trial-and-error method by benefiting from
the retrospective knowledge gained in previous trials, thereby resulting in a faster tuning procedure.
Moreover, the tuning framework adopts a deep neural network (DNN)-based robot model to conduct
the trials during the simulation tuning phase. Thanks to its high fidelity dynamics representation,
a seamless sim-to-real transition is demonstrated. We compare the proposed approach with the
customary manual tuning procedure through a user study wherein the users inadvertently apply
various tuning methodologies based on their progressive experience with the robot. The results
manifest that the proposed methodology provides a safe and time-saving framework over the manual
tuning of MPC by resulting in flight-worthy weights in less than half the time. Moreover, this is the
first work that presents a complete tuning framework extending from robot modeling to directly
obtaining the flight-worthy weight sets to the best of the authors’ knowledge.

Keywords: auto-tuning; NMPC; active exploration; UAV; aerial robot

1. Introduction

The model predictive controller (MPC) has shown remarkable success for the control
and planning of numerous robotic systems [1–14]. However, its design necessitates an
inevitable tuning procedure that involves the determination of its cost function weights.
These weighting parameters essentially reflect the relative importance of each element in
the underlying optimization problem. Traditionally, users prefer the trial-and-error method
to obtain these weighting parameters either on a real robot or in simulation. Whereas the
former might be dangerous—especially with aerial robots—the latter requires an accurate
system model.

To mitigate the challenges faced by roboticists while tuning their MPCs, we present a
novel, active exploration-based methodology. Rather than dispersedly exploring the viable
weight set cluster via the trial-and-error approach, the proposed active exploration tech-
nique exploits the retrospective knowledge gained over previous trials and thus, efficiently
tunes the weight sets. This is essentially achieved by adopting the exploration–exploitation
concept of reinforcement learning (RL). Consequently, the auto-tuning mechanism sig-
nificantly reduces the time and effort for MPC implementation and hence can be fairly
useful for unskilled MPC users. This work is the first of its kind as being a complete
tuning framework among a few other systematic MPC weight tuning guidelines in the
literature. To list a few, [15] obtains some static tuning rules by first identifying the dom-
inating tunable parameters and later analyzing their influence on the closed-loop MPC
behavior. In [16], a simplified tuning expression is obtained for unconstrained linear MPC.

Electronics 2021, 10, 2187. https://doi.org/10.3390/electronics10182187 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1958-0263
https://orcid.org/0000-0002-7143-8777
https://doi.org/10.3390/electronics10182187
https://doi.org/10.3390/electronics10182187
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10182187
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10182187?type=check_update&version=2


Electronics 2021, 10, 2187 2 of 16

In [17], a controller matching technique is utilized for selecting MPC weights. However,
these approaches are restricted to linear systems. In [18], nonlinear process models are
utilized for an offline, optimization-based tuning procedure for MPC. Nevertheless, this
method requires a precise nonlinear model of the system. Additionally, an online, adaptive
tuning strategy is proposed in [19], wherein analytical expressions for closed-loop response
sensitivity to the tunable MPC parameters are obtained. Yet, this methodology may not be
feasible for many robotic systems due to their complex, nonlinear dynamics.

Machine learning techniques are also incorporated for MPC tuning. As an extension to
the work in [19], a fuzzy logic-based online tuning method for nonlinear MPC (NMPC) is
proposed in [20]. The restricted gradient computation, which is required to determine the
time propagation of the NMPC tuning parameters, is substituted by fuzzy logic. However,
this method requires sufficient experience with the underlying system. Additionally,
we would like to point out some RL-based (online) tuning of PID controllers from the
literature [21–24]. However, in most of these implementations, the tuning starts from some
precomputed gains via the Ziegler–Nichols (Z-N) strategy. Since the Z-N-like strategy is
not available for MPC, the proposed active exploration approach obtains the flight-worthy
MPC weight sets from scratch.

In the authors’ previous work [25], an RL-based automated (N)MPC tuning framework
was developed and tested. The extensions and enhancements in this work over the
previously published paper are threefold:

1. Switching from the Gazebo model to the DNN model: previous work utilizes a
Gazebo model of the robotic platform during weight set exploration. However,
creating a Gazebo model requires expertise that may not be available for novice users.
Hence, we opt for another simpler modeling approach in this work, i.e., deep neural
networks (DNNs). Unlike the complicated process of obtaining a high-fidelity Gazebo
model, in this case, novice users are only required to collect some data by manual
flights and simply feed them to a DNN for modeling. Once trained, it will serve
just like a Gazebo model to eliminate the need for risky trials on a real robot during
weight set exploration.

2. Fine-tuning of weight sets over real flights: to cater to several operational uncertain-
ties, including decreasing battery voltage, communication delays, that may not be
captured within the model, fine-tuning of the weight sets is also performed over the
real robot. The real flight tuning feasibility of the proposed algorithm is demonstrated
in this way.

3. User study to evaluate the proposed tuning methodology: a comparison with the
manual tuning procedure through a user-based study is performed, wherein users
implicitly apply various strategies during the tuning process. Naively, they start by
recognizing the dominating parameters and their effect on the performance, followed
by the appropriate weight set selection. In essence, they optimize performance by
exploring the selection space in a Bayesian way.

Moreover, the efficacy of the obtained weight sets for real-world applications is val-
idated by extensive trajectory tracking results. Unlike the existing tuning guidelines in
the literature, this work provides a complete tuning framework that begins with the robot
modeling and, finally, results in the real flight-worthy weight sets. Additionally, the pro-
posed auto-tuning framework is platform-independent and can be likewise implemented
on any robotic platform.

This work is organized as follows: Section 2 introduces the utilized robotic platform.
Section 3 illustrates the NMPC problem formulation. Section 4 presents the proposed
tuning approach. Section 5 discusses the implementation results of the proposed method.
Section 6 validates the applicability of the explored MPC weight sets in real flights. Lastly,
Section 7 draws some conclusions from this work.



Electronics 2021, 10, 2187 3 of 16

2. Quadrotor Aerial Robot

In this work, we utilize a micro-scale quadrotor robotic platform with "x-configuration"
having arm lengths l1 = 0.073 m and l2 = 0.098 m, as displayed in Figure 1. The overall
frame comprises of off-the-shelf carbon fiber arms that are assembled in-house. A Pixhawk
flight controller is utilized for the low-level stabilization control, whereas an Odroid XU4
computer executes all the control codes onboard. The total takeoff mass (m) including all
the onboard electronics is equal to 0.89 kg.

𝐹1

𝜏1

Ω1

𝐹2

𝜏2

Ω2

𝐹3

𝜏3

Ω3𝐹4
Ω4

𝒙𝑩

𝒚𝑩

F B

𝒛𝑩

𝜏𝑥

𝜏𝑦

𝜏𝑧

𝒙𝑬

𝒚𝑬

𝒛𝑬

F E

𝑙2

𝑙1

𝜏4

Figure 1. Custom-made quadrotor of interest. Notation: Fi and τi are the force and torque generated by
ith rotor with Ωi angular velocity; τx, τy, τz are the external moments about x-, y-, z-axes, respectively.

The translational kinematics are obtained using the transformation from body frame
(FB) to Earth-fixed frame (FE) as follows: ẋ

ẏ
ż

 = REB

 u
v
w

, (1)

where x, y, z represent the translational position which is defined in frameFE; u, v, w are the
translational velocities that are defined in frame FB; REB is the translation transformation
matrix between frames FE and FB, and is expressed as (c : cos, s : sin, t : tan):

REB =

 cθcψ sφsθcψ− sψcφ cφsθcψ + sφsψ
cθsψ sφsθsψ + cψcφ cφsθsψ− sφcψ
−sθ sφcθ cφcθ

, (2)

where φ, θ, ψ represent rotational attitude of the quadrotor defined in frame FE. On the
other hand, the rigid-body dynamic equations are derived based on the Newton–Euler
formulation in the body coordinate system. The quadrotor is assumed to be a point mass,
wherein all the forces act at the CG [26]:

u̇ = rv− qw + g sin(θ) +
1
m

Fx, (3a)

v̇ = pw− ru− g sin(φ) cos(θ) +
1
m

Fy, (3b)

ẇ = qu− pv− g cos(φ) cos(θ) +
1
m

Fz, (3c)

where Fx, Fy, Fz are the total external forces acting on the quadrotor body in frame FB.



Electronics 2021, 10, 2187 4 of 16

Finally, the lumped nonlinear dynamic model of the aerial robot at a high level can be
written in a discretized form as:

xk+1 = fd(xk, uk), zk = h(xk, uk), (4)

where x ∈ R6, u ∈ R4, and z ∈ R6 are the state, control, and measurement vectors. For the
considered quadrotor, state vector x and control vector u are comprised of:

x = [x, y, z, u, v, w]T , u = [φ, θ, ψ, Fz]
T , (5)

wherein the term Fz in control vector is considered as the throttle command. The state and
measurement functions are denoted by fd(·, ·): R6×R4 −→ R6 and h(·, ·): R6×R4 −→ R6,
respectively.

3. Position Tracking Nonlinear Model Predictive Controller

In this work, an NMPC is designed as a high-level position controller. Its optimal
control problem over a given prediction horizon (Nc) is defined in the form of a least-square
function as follows:

min
xk ,uk

1
2

{ j+Nc−1

∑
k=j

(∥∥∥xk − xref
k

∥∥∥2

Wx

+
∥∥∥uk − uref

k

∥∥∥2

Wu

)
+

∥∥∥xNc − xref
Nc

∥∥∥2

WNc

}
(6a)

s.t. xj = x̂j, (6b)

xk+1 = fd(xk, uk), k = j, · · · , j + Nc − 1, (6c)

xk,min ≤ xk ≤ xk,max, k = j, · · · , j + Nc, (6d)

uk,min ≤ uk ≤ uk,max, k = j, · · · , j + Nc − 1, (6e)

where x̂j ∈ R6 is the current state estimate; xref
k and uref

k represent the state and control
references; terminal state reference is given by xref

Nc
; Wx ∈ R6×6, Wu ∈ R4×4, and WNc ∈

R6×6 are the corresponding positive (semi)-definite diagonal weight matrices which need
to be tuned. The terms xk,min ≤ xk,max ∈ R6 and uk,min ≤ uk,max ∈ R4, specify the lower
and upper bounds on the states and control inputs, respectively. It is to be noted that the
high-level model in (6c), utilized in NMPC design is the first principle model as depicted
in Section 2.

For our trajectory tracking application, the state, control, and measurement vectors
for the position tracking NMPC are composed of:

xNMPC = [x, y, z, u, v, w]T , uNMPC = [φ, θ, ψ, Fz]
T ,

zNMPC = xNMPC,

while the following state and control trajectories are given as references for the optimization
problem:

xref = [xr, yr, zr, ur, vr, wr]
T , uref = [0, 0, 0, 1.2mg]T ,

where xr, yr, zr and ur, vr, wr are the position and linear velocity references, respectively.
The control inputs from NMPC are passed to the low-level controller as its desired setpoints.
The low-level controller in Pixhawk employs standard proportional-integral-derivative
(PID) controllers, which are designed individually for each axis with the control vector
uPID = [Ω1, Ω2, Ω3, Ω4]

T . Note that Ωi represents the angular velocity of the ith rotor. The



Electronics 2021, 10, 2187 5 of 16

overall control scheme is summarized in a block diagram shown in Figure 2. Additionally,
the following constraints are defined in the optimization problem for stable behavior:

0.5mg (N) ≤Fz ≤ 1.8mg (N), (7a)

−35 (◦) ≤φ, θ ≤ 35 (◦). (7b)

Within the optimization problem (6), we tune the diagonal elements of state and
control weighting matrices, represented as Wx and Wu, respectively. These weighting ma-
trices penalize the deviations of predicted state and control trajectories from their specified
references. Moreover, we select the terminal weight matrix as: WNc = 1.3×Wx and the
prediction window Nc as 30 for stability reasons. Typically, the terminal weight matrix
is weighted more in comparison to the weight matrix for states, wherein the underlying
reason is to ensure the stability of the optimal control problem (OCP) [27].

Deep 
quadrotor 

model

Performance ObservationTrial Configuration

Hover Single
setpoint

Multiple
setpoints

Weight set selection

Performance 
Evaluation

Criteria:

• Position error
• Derivative of 

position error
• Jerk
• Steady state error
• Settling time

Weight Set Cluster

Lookup table

Stable flight modes

zNMPC
𝑇 ,𝑝, 𝑞, 𝑟

𝑇

Low-level
controller

(PID)

Position
controller

(NMPC)

Figure 2. Proposed (N)MPC weight tuning framework. Throughout the tuning process, each trial starts with the Trial
Configuration module. Weight set selection and Stable flight mode submodules give necessary instructions to (N)MPC.
Taking these as inputs, (N)MPC controls the quadrotor model while its performance is being observed simultaneously.
Once a flight is completed, the performance of the (N)MPC with the utilized weight set is graded based on the five criteria.
Subsequently, the trial is finalized by updating the weight set cluster. Thereafter, a new trial begins with the selection of a
new weight set within the Trial Configuration module, and thus closes the loop.

Remark 1. One may note that while the proposed tuning algorithm can be utilized to obtain the
terminal weight matrix, we preselect it for simplicity.

In addition to numerous optimization solvers proposed in the literature, a genetic
algorithm-based solver has been developed for real-time control of an autonomous vehicle
in [28]. Even though it renders flexibility in defining the OCP, the convergence time appears
to be slow for systems with fast dynamics such as aerial robots. Therefore, in this work, the
optimization problem in (6) is solved utilizing the direct multiple shooting method due to
its several computational advantages over the other techniques. Subsequently, the resulting
discretized OCP is reduced to a sequential quadratic program after linearization. Finally,
with the help of the generalized Gauss–Newton method, the solution to the obtained SQP
is computed. Moreover, the adopted GGN method is a tailored variant of the classical
Newton method which is solved with the help of a special real-time iteration (RTI) scheme
proposed in [29].

4. Proposed Auto-Tuning Approach

The proposed approach (Figure 2) brings together concepts from RL and conventional
trial-and-error-based MPC tuning. The presented methodology can be viewed as an
advanced version of a traditional trial-and-error-based tuning process. It enhances the
baseline trial-and-error method in two key aspects: eliminating the need for numerous



Electronics 2021, 10, 2187 6 of 16

trials on a real robot by utilizing a DNN model of it, and expediting the tuning process by
benefiting from the active exploration paradigm which is inspired from RL.

4.1. DNN-Based System Modeling

Before the MPC weight tuning process, we created a full-state DNN model of the
robot which was utilized in the tuning trials. Note that one could also utilize a model
obtained via the first principle approach or could use some realistic simulators such as
Gazebo. However, obtaining an accurate model via these approaches requires expertise
and involves repetitive trials. Hence, the main reason to adopt neural network-based
modeling is the ease of obtaining a high-fidelity model without requiring much expertise
with system dynamics. Additionally, many off-the-shelf machine learning libraries such
as PyTorch, TensorFlow, and Keras have made the training of DNN models much like a
plug-and-play task, whereby the default settings work in most of the applications.

To create the DNN model, the flight data were recorded at 50 Hz. Within these data,
twelve states of the quadrotor and four control inputs of the high-level controller—roll,
pitch, yaw angle, and thrust—for a finite duration in the past (0.8 s) are regarded as inputs,
whereas the resultant states of the quadrotor at the current time instant are regarded as
outputs. Using these input–output data, we trained a feedforward DNN with 5 hidden
layers and 288 neurons. We trained this network using Adam optimizer [30] in PyTorch
with default settings through 510,000 data samples over 6500 epochs. Since the data were
obtained from the real robot over a variety of trajectories, resulting in persistent excitation,
the DNN represents the real robot’s dynamics fairly well. In this way, we attempted to
assure that all the MPC weight sets obtained over the DNN model are real flight-worthy.
Moreover, we would like to emphasize that other networks could also be utilized here
as the network architecture does not play a vital role for the proposed algorithm in this
paper. Nevertheless, the adopted network architecture embodies feature extraction and
decision-making paradigms and has been shown to work well in the authors’ previous
work [31].

4.2. Active Exploration of Weight Sets

The obtained DNN model can be used for trial-and-error-based tuning. However,
it might take a considerable amount of time and effort from the users to try different weight
sets, observe their performance on the model, and tweak them till finding viable weight
sets. Thus, we automate this process by benefiting from the active exploration paradigm
which is inspired by the conventional RL technique [32].

In the proposed auto-tuning method (summarized in Algorithm 1), different weight
sets are deployed by adopting the exploration–exploitation concept from RL. Exploration
refers to deploying a random MPC weight set while exploitation represents deploying
a similar one to the best MPC weight set obtained until the current trial. As such, the
similarity within exploitation is governed by a parameter λ which represents the neigh-
borhood radius for a weighting parameter as a percentage of its magnitude. Moreover,
the balance between exploration and exploitation is governed by another parameter ε.
By employing exploitation in addition to exploration, we made use of the grades of the
previously deployed weight sets to interpret their neighborhood in the search space. This
strategy caters to a more efficient exploration of the search space and yields better MPC
weight sets over a shorter duration, as validated in the next section.

4.3. Overall Framework with Implementation Details

For the application in this work, we specify reasonable bounds to the search space as:

Wx ∈Wx = diag([O(102)]1×3, [O(101)]1×3),

Wu ∈Wu = diag([O(102)]1×3,O(10−2)),
(8)



Electronics 2021, 10, 2187 7 of 16

where O represents the order of magnitude, and Wx and Wu are the corresponding search
spaces in R++ (positive real values).

During auto-tuning, we considered three essential flight configurations which show
the characteristics of common flight envelopes for quadrotors: “hover”, “move-to-a-
setpoint”, and “follow-sequential-setpoints”. In hover mode, the robot tries to maintain its
original position in the air. In move-to-a-setpoint mode, it tries to navigate to a predefined
setpoint as fast as possible. In the aptly named follow-sequential-setpoints mode, the robot
tracks a sequence of setpoints.

The criteria to assess different weight sets are position error (e), derivative of position
error (ė), jerk (j), steady state error (ess), and settling time (ts). After a flight trial, a weight
set receives a sub-grade for each of these criteria by:

Gc =


Gc,max, for Gc,max ≤ Gc
ctol,init

c
, for c ≤ ctol

−Gc,max, for ctol < c,

(9)

where c is the corresponding criteria, ctol,init and ctol are the respective initial and current
tolerance values for it. These sub-grades together form the grade G as follows:

G =


1
n

sum(Ge, Gė, Gj, Gess , Gts), for Ge, · · · , Gts ∈ R+

−Gc,max, otherwise,
(10)

where n = 13 represents the number of criteria, Ge, Gė, Gj, Gess , Gts represent the sub-grades,
and Gc,max is the maximum sub-grade value which is set to 100 in this work. Moreover,
the following expressions are defined for the weight set with maximum grade value in the
lookup table:

W∗x,u = [W∗x , W∗u ] = max
Wx,Wu

G. (11)

In addition, the relation between ctol,init and ctol is defined as:

ctol = (e−Nw/50)ctol,init, (12)

where Nw is the number of available weight sets with a positive grade in the lookup table.
The motive behind this tolerance decaying approach is to always look for better weight
sets that can satisfy stricter criteria. In this work, the initial parameters ctol,init for the three
different flight modes are selected as in Table 1, considering the usual values observed
during common operations of quadrotors. However, since we incorporate exponential
decay on ctol,init as described in (12), the initial value selection is flexible as long as the
values comply with safe flight conditions.



Electronics 2021, 10, 2187 8 of 16

Algorithm 1 Auto-tuning approach
Result: Real flight-worthy weight sets.

1 Specify maximum episodes, ε, and λ
2 Specify the search space bounds as in (8)
3 Initialize the tolerance values as in Table 1
4 while episode < maximum episodes do
5 ε∗ ∼ rand([0, 1]) . Randomly select within [0, 1]
6 if ε∗ < ε then
7 Wx,u ∼ rand(W∗x,u, λ2) . Sample Wx,u within λ radius of W∗x,u
8 else
9 Wx,u ∼ rand([Wx,Wu]) . Randomly sample Wx,u within (8)

10 end
11 foreach flight mode do
12 Observe flight performance over the DNN model
13 Compute G using (9) and (10)
14 if G < 0 then
15 episode← episode + 1 . Continue with next episodic trial
16 end
17 end
18 Append Wx,u to the lookup table
19 Nw ← Nw + 1
20 Update ctol based on (12)
21 end

Table 1. Initial tolerance values for a stable flight.

Characteristics
Tolerance Values for Each Configuration

Hover Move-to-a-
Setpoint

Follow-Sequential-
Setpoints

Position error
(m)

ex 0.15 0.3 0.35
ey 0.15 0.3 0.35
ez 0.15 0.3 0.35

Derivative of
position error
(m/s)

ėx 0.025 0.4 0.5
ėy 0.025 0.4 0.5
ėz 0.03 0.45 0.55

Jerk (m/s3)
jx 0.5 2 2
jy 0.5 2 2
jz 1 3 3

Steady state
error (m)

essx 0.15 0.15 0.15
essy 0.15 0.15 0.15
essz 0.15 0.15 0.15

Settling time (s) ts 1.5 4.5 4.5

5. Tuning Approach in Action

In this section, we present the implementation results for the proposed active exploration-
based tuning methodology. We first discuss each design setting over batched tuning ses-
sions in simulation and then select the best setting which caters to our needs. Subsequently,
we fine-tune the weight sets from simulation-based tuning in real flights. Note that, while
the simulation tuning sessions are performed on a workstation computer with 2.6 GHz
Intel Core i9-7980XE (octadeca-core) processor with 128 GB RAM, the real flight tuning is
performed on a laptop having Intel Core i7-8750H processor and 16 GB RAM.



Electronics 2021, 10, 2187 9 of 16

5.1. Benchmark Study for Simulation-Based Tuning

We conducted a benchmark study to justify our design choices for the proposed auto-
tuning method. For each design choice, we conducted a batch of ten tuning sessions to
obtain generalized results. We first examined a heuristic to expedite the tuning process,
i.e., we assumed that the weighting parameters along the x- and y-body axes are close to
each other since quadrotors are symmetrical with respect to these axes. Hence, we generate
the respective weights in these axes within each other’s 10% magnitude neighborhood.
Without this heuristic, no positively graded weight set is explored in more than half of
the sessions, even in the 1000 episode setting (Table 2). By exploiting this heuristic, on the
other hand, desirable weight sets were obtained in most of the sessions for 500 episodes
and some of the sessions for even 100 episodes. Therefore, we employed this heuristic for
the rest of the results presented in this work.

Table 2. Number of sessions without a positively graded weight set by using and omitting the heuristic.

Episodes Without Heuristic With Heuristic

100 10 7
500 7 2
1000 7 1

In Table 3, we present the numbers of sessions in which no positively graded weight
set is explored. For both active (ε = 0.5, λ = 20%) and random (ε = 1) explorations,
100 episodes seem to be less to explore desirable weight sets. There are seven failed
sessions out of ten sessions for active exploration in this case. For the 1000 episodes, on
the other hand, there is only one failed session (90% success) both for active and random
exploration. There are only two failed sessions when the episode number is 500, which
implies 80% success. We selected this setting for our tuning purpose since 1000 episodes
take on average 2 h, which is more than twice the duration of 500 episodes (less than
an hour), while the success rate improvement is only 10%.

Table 3. Number of sessions without a positively graded weight set by active and random exploration.

Episodes Active (ε = 0.5) Random (ε = 1)

100 7 8
500 2 4

1000 1 1

Remark 2. Probabilistically speaking, the notion behind selecting ε = 0.5 is to realize equal
occurrence for exploration and exploitation. In essence, it is a parameter that trades off the tuning
speed with the exploration of the search space, thereby affecting the weight set quality. Note that
owing to the high fidelity DNN model, users can set this parameter to a higher value for an optimal
search of the weight set space, without having any safety concern for the robot. On the other hand,
the selection of the similarity parameter λ = 20% is essentially carried out via the trial-and-error
method. During the trials, it has been inferred that setting a high value for this parameter facilitates
a random selection which is contradictory to exploitation.

In Table 4, we present the average and maximum numbers of positively graded weight
sets. The proposed active exploration outperforms the random exploration by yielding
a higher number of positively graded weight sets. It obtains substantially more weight
sets in a similar amount of time. A remark to be made here is that the number of weight
sets obtained does not change significantly when the episode number is increased from
500 to 1000, while the overall tuning duration increases by approximately two times. This
result further supports our previous episode number selection of 500 due to the trade-off
between the tuning duration and success rate.



Electronics 2021, 10, 2187 10 of 16

In Table 5, we present the average and maximum grade values for the positively
graded weight sets obtained over ten sessions. In all the three episode-number settings,
average and maximum grade values are higher for active exploration. In other words, the
weight sets obtained via active exploration satisfy stricter criteria (e, ė, j, ess, ts), and hence,
they are better in quality. All these results prove the superiority of the proposed tuning
method over the random trial-and-error method.

Table 4. Number of positively graded weight sets obtained by active and random exploration.

Active (ε = 0.5) Random (ε = 1)

Episodes Average Maximum Average Maximum

100 1.4 6 0.2 1
500 12.7 24 1 2

1000 15.5 23 1.3 3

Mean 9.87 17.67 0.83 2

Table 5. Grade values for the positively graded weight sets by active and random exploration. One
may notice the same average and maximum grades for ε = 1 with 100 episodes. This is due to the
single positively graded weight set as resulted by the corresponding setting (Table 4).

Active (ε = 0.5) Random (ε = 1)

Episodes Average Maximum Average Maximum

100 10.52 10.76 7.18 7.18
500 9.08 10.21 8.64 9.21
1000 9.01 10.29 8.64 9.17

Mean 9.54 10.42 8.15 8.52

5.2. Further Tuning in Real Flights

Although the weight sets obtained over the DNN model are real flight-worthy, we
investigate fine-tuning possibilities on these weight sets to achieve better flight performance.
For fine-tuning in real flights, we first obtain new grade values for all the positively graded
weight sets obtained in simulation-based tuning. This step is conducted to account for
possible real-world operational uncertainties. As expected, only 17 out of 19 weight sets
yield new grade values as positive. In other words, there are some weight sets, which can
fulfill the design criteria (Table 1) over the DNN model but are unable to do so over the
real robot. We then perform the real flight tuning over 30 episodes with ε = 0 and λ = 10%
using the new grades. These hyperparameters are conservative versions of the ones selected
for simulation-based tuning to account for safety. In essence, ε = 0 makes sure that there
will not be any trial with a random weight set on the real robot, i.e., no exploration. In
addition, λ = 10% focuses the search closer to the desirable weight sets, implying restricted
exploitation. Throughout the real flight tuning, the average and maximum grade values
increase from 9.34 and 12.36 to 9.68 and 13.33. This result demonstrates the successful
fine-tuning in real flights.

Remark 3. Note that the stochastic operational uncertainties would require an indefinite amount of
data for training the DNN model. As such, one could decide to collect hours and hours of operational
data for creating a highly accurate DNN model and just perform DNN-based MPC tuning. Another
approach is to create a fairly accurate DNN model with a moderate amount of data and perform
MPC tuning over it; followed by repeating the tuning procedure over the real robot to further
improve the quality of the obtained weight sets. In this work, we utilize the latter, even though it is
the user’s preference.



Electronics 2021, 10, 2187 11 of 16

6. Trajectory Tracking

In this section, we present evaluative results for the weight sets obtained using the
proposed auto-tuning method. We selected the weight set with the highest grade from
simulation-based tuning and deployed it in the position tracking NMPC for tracking two
types of trajectories: hover (x = 0, y = 0, z = 1.2 m), and sequential setpoints (setpoints
being 0.6–1.2 m apart). We also utilize the weight set having the highest grade from real
flight tuning for tracking the same trajectories. We then compare the performance of these
two groups of weight sets to further justify the fine-tuning in real flights. Moreover, a
demonstration Video S1 of this work can be found at: https://youtu.be/GLxRPCyNogc,
(accessed on 4 September 2021).

6.1. Simulation-Based Tuning

The best weight set from simulation-based tuning is:

W∗x = diag(16, 11, 13, 2.0, 2.1, 2.3),

W∗u = diag(17, 13, 76, 0.058).
(13)

For hovering, this weight set results in a precise tracking with mean Euclidean error values
of 3–4 cm over both the DNN model and real robot, as visible in Figure 3. For the sequential
setpoints tracking case, it again yields a precise tracking with mean Euclidean error values
of 21 cm (Figure 4). A similar performance was obtained for the DNN model and real robot
for both the trajectories, further validating the high fidelity of the DNN model.

0 5 10

Time (s)

0

2

4

6

E
u
c
lid

e
a
n
 (

c
m

)

DNN model Real robot

Figure 3. Hovering performance of the weight set obtained from simulation tuning. (Left): 3D view
of the stationary reference and tracked trajectories. (Right): resulting Euclidean error over the DNN
model and the real robot.

0 10 20

Time (s)

0

50

100

E
u
c
lid

e
a
n
 (

c
m

)

DNN model Real robot

Figure 4. Sequential-setpoints tracking performance of the weight set obtained from simulation
tuning. (Left): 3D view of the sequential-setpoints and tracked trajectories. (Right): resulting
Euclidean error over the DNN model and the real robot.

Remark 4. In Figure 4, one may note that the error values for sequential-setpoints are significantly
higher as compared to the ones obtained for hovering (Figure 3). The main reason behind this is the

https://youtu.be/GLxRPCyNogc


Electronics 2021, 10, 2187 12 of 16

underlying jumps of 1.2 m that the robot has to execute to reach the commanded setpoint as fast
as possible.

We repeat the above experiments with the ten best weight sets from simulation-based
tuning to assess the overall quality. Their corresponding mean Euclidean error values are
presented on the left side of Figure 5. The average and maximum error values over the
DNN model are 2.98 and 3.49 cm for hovering. The same values over the real robot are 5.11
and 7.94 cm. A similar result is obtained for sequential setpoints. The respective average
and maximum error values rise from 22.12 and 26.61 cm over the DNN model to 22.21 and
28.27 cm over the real robot. The slight error rise in the case of the real robot is mainly due
to the operational uncertainties that are possibly not captured by the DNN model.

Hover Setpoints Hover Setpoints

                 Simulation tuning      |      Real flight tuning

0

5

10

15

20

25

30

M
e
a
n
 E

u
c
lid

e
a
n
 e

rr
o
r 

(c
m

)

DNN model Real robot

Figure 5. Boxplot of mean Euclidean error obtained by the weight sets having top ten grade values
in the lookup tables from simulation (left) and real flight (right) tuning.

6.2. Real Flight Tuning

The best weight set from real flight tuning is:

W∗x = diag(17, 11, 14, 1.5, 1.8, 1.9),

W∗u = diag(20, 15, 68, 0.064).
(14)

For hovering, this weight set results in a precise tracking with mean Euclidean error values
of 3–4 cm over both the DNN model and real robot, as evident in Figure 6. In terms of the
sequential-setpoint tracking, it again yields precise tracking performance with the mean
Euclidean error values of around 18 cm (Figure 6) which are slightly less compared to the
ones in the former subsection. This exhibits the tracking improvement by fine-tuning in
real flights.



Electronics 2021, 10, 2187 13 of 16

0 5 10

Time (s)

0

2

4

6

E
u
c
lid

e
a
n
 (

c
m

)

DNN model Real robot

0 10 20

Time (s)

0

50

100

E
u
c
lid

e
a
n

 (
c
m

)

DNN model Real robot

Figure 6. Euclidean errors for hover (left) and for sequential-setpoints (right) by the weight set from
real flight tuning.

We repeated the above experiments with the ten best weight sets from real flight
tuning and the complete right side of Figure 5. While the average and maximum error
values for hovering with the DNN model were 2.63 and 2.85 cm, they increased slightly
over the real robot to 4.54 and 6.12 cm. As for the sequential setpoints, the average and
maximum error values changed from 19.43 and 21.16 cm over the DNN model to 18.49 and
21.7 cm over the real robot.

An important comment that need to be made about Figure 5 is that the respective
average and maximum mean Euclidean error values obtained over the real robot for
hovering reduce from 5.11 and 7.94 cm to 4.54 and 6.12 cm after the real flight tuning,
which implies 11.15% and 22.92% improvements in these values. For the sequential-
setpoint tracking case, these numbers reduce from 22.21 and 28.27 cm to 18.49 and 21.7 cm,
which suggests a performance improvement by 16.75% and 23.24% in terms of average and
maximum mean Euclidean errors. These small improvements both show the high fidelity
of the DNN model and reveal the possible benefits of fine-tuning in real flights.

Remark 5. As already known, the tracking performance of NMPC for any trajectory is critically
linked to a specific weight set. That is, if a weight set performs best for one trajectory, it is not
guaranteed to do the same for other time-based trajectories. This limitation also exists with the
weight set obtained by the auto-tuning algorithm. Nevertheless, the users can accordingly select/add
the flight configurations keeping in mind the trajectories of interest.

6.3. User-Based Tuning Study

To further analyze the proposed auto-tuning method’s efficacy, we conducted a user-
based tuning study for comparison. Ten users with different quadrotor backgrounds were
given the task of tuning NMPC over a Gazebo model of our quadrotor for two hours. We
recorded two weight sets from each user: one after the first hour and one after the second
hour of tuning. We then performed trajectory tracking over the DNN model to evaluate
the performance of these weight sets. One may note that evaluation of these weights over
the real robot was avoided due to safety reasons.

Remark 6. The motivation to adopt the Gazebo simulation platform is its rendering capability by
which the robot’s response can be visually observed. In this way, the overall tuning process mimics
the manual tuning of the robot in real flights.

The resulting mean Euclidean errors are listed in Table 6 along with the observed
number of oscillations, depicting the oscillatory behavior of a particular weight set. It
is to be noted that oscillation is characterized as an abrupt change of more than 3 cm
in the Euclidean error response. As can be seen, most users resulted in high Euclidean
errors with moderate to high oscillations, implying an eventual crash of the robot, whereas
three users obtained the real flight-worthy weight sets (marked with bold-font), which
accounts for only 15% success. We would like to emphasize that most users could obtain



Electronics 2021, 10, 2187 14 of 16

some meaningful weight sets in a limited time as they could try abrupt values over the
simulation model which otherwise might not be possible over the real robot. Essentially,
the proper tuning procedure in a general case takes around 3–4 h (or even more), as noticed
in our informal observations. Another point to take note in Table 6 is that for almost half of
the users, the tracking performance decreased from the first to the second hour of tuning.
This is counterintuitive as one expects to perform better after gaining some experience
with the system. Nevertheless, utilizing the relation in (12), the proposed algorithm always
looks for the weight sets which could perform better by satisfying stricter criteria.

Table 6. Mean Euclidean error and the corresponding oscillatory response for the weight sets obtained by user-based tuning.
Accordingly, the weight sets whose results are marked with bold font are regarded as real flight-worthy.

First Hour Second Hour

Hover Sequential-Setpoints Hover Sequential-Setpoints

Mean
Euc.

Error
(cm)

Number
of Oscil-
lations

Mean Euc.
Error (cm)

Number
of Oscil-
lations

Mean
Euc.

Error
(cm)

Num-
ber of

Oscilla-
tions

Mean Euc.
Error (cm)

Number
of Oscil-
lations

User 1 12.70 31 1.21× 105 176 4.83 1 1.10 × 104 204
User 2 30.64 20 3.09× 104 220 34.51 20 89.47 34
User 3 15.10 34 7.21× 104 138 14.42 29 1.03× 105 232
User 4 10.74 20 25.74 50 10.09 18 38.13 47
User 5 13.29 36 7.82× 104 146 6.24 0 23.41 17
User 6 3.96 2 24.87 37 12.46 19 33.78 45
User 7 5.28 0 35.11 5 9.70 6 31.88 31
User 8 3.41 3 22.01 21 2.69 0 23.62 44
User 9 8.50 16 4.36× 106 250 4.20 1 36.55 29

User 10 3.02 0 38.26 32 8.23 10 26.78 35

For a quantitative comparison, we deployed the best weight set from user-based
tuning (User 8 after the first hour) with the best one obtained from simulation-based
tuning (given in (13)) for hover and sequential-setpoint tracking of the DNN model. The
comparison plots are given in Figure 7. While the corresponding mean Euclidean error
values for the user-based weight set are 3.41 cm and 22.01 cm, the proposed algorithm
outperforms it by resulting in error values of 2.85 cm and 21.16 cm, respectively. In addition,
in terms of the number of oscillations, the user-based weight set has values of 3 and 21
for hover and sequential setpoints, respectively, whereas the auto-tuned weight set has
values of 0 and 9, respectively. These values are significantly less when compared to the
user-based weight set, thereby implying a safer weight set. All these results signify that the
proposed method can realize better weight sets in a limited time (less than an hour) that an
average user cannot obtain even after two hours.



Electronics 2021, 10, 2187 15 of 16

0 5 10

Time (s)

0

5

10

E
u

c
lid

e
a

n
 (

c
m

)

Simulation tuning User tuning

0 10 20

Time (s)

0

50

100

E
u

c
lid

e
a

n
 (

c
m

)

Simulation tuning User tuning

Figure 7. Euclidean errors for hover (left) and for sequential setpoints (right) by the best weight sets
from simulation and user-based tuning.

7. Conclusions

In this work, we have aimed to tackle one of the arduous yet unavoidable tasks for the
real-time implementation of MPC on robots. We have presented a novel, active exploration-
based tuning framework for obtaining MPC weight sets. To avoid the weight set trials
on the real robot for the sake of safety, we have incorporated a DNN model. Thanks to
its high fidelity, it has facilitated the direct utilization of the obtained weight sets on the
real robot. We have also demonstrated fine-tuning over the real robot. Extensive statistical
analysis, real flight trajectory tracking results, and a comparative user study validate that
this work could help researchers with the real-time implementation of their MPCs by
saving a considerable amount of tuning time without compromising the safety of the robot.

As future work, we intend to update the DNN model such that it incorporates effects
such as sensor noise and modeling uncertainties. This will result in a stochastic model of
the overall system, thereby further justifying the usage of the active-exploration paradigm.
Furthermore, to enhance the generalization of the auto-tuning framework, we aim to
eliminate heuristics, such as including reasonable bounds on search space, which require
some domain knowledge.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/electronics10182187/s1, Video S1: Auto-tuning of model predictive controllers.

Author Contributions: Conceptualization, M.M.; funding acquisition, E.K.; methodology, M.M. and
E.C.; resources, E.K.; software, M.M. and E.C.; supervision, E.K.; validation, M.M.; visualization,
M.M.; writing—original draft, M.M. and E.C.; writing—review and editing, M.M., E.C. and E.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was equally funded by SINGAPORE MINISTRY OF EDUCATION grant num-
ber RG185/17 and AARHUS UNIVERSITY, DEPARTMENT OF ELECTRICAL AND COMPUTER
ENGINEERING grant number 28173.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ortiz, A.; Garcia-Nieto, S.; Simarro, R. Comparative Study of Optimal Multivariable LQR and MPC Controllers for Unmanned

Combat Air Systems in Trajectory Tracking. Electronics 2021, 10, 331. [CrossRef]
2. Ahn, T.; Lee, Y.; Park, K. Design of Integrated Autonomous Driving Control System That Incorporates Chassis Controllers for

Improving Path Tracking Performance and Vehicle Stability. Electronics 2021, 10, 144. [CrossRef]
3. Mehndiratta, M.; Kayacan, E. Gaussian Process-based Learning Control of Aerial Robots for Precise Visualization of Geological

Outcrops. In Proceedings of the 2020 European Control Conference (ECC), St. Petersburg, Russia, 12–15 May 2020; pp. 10–16.
4. Imanberdiyev, N.; Kayacan, E. Redundancy Resolution based Trajectory Generation for Dual-Arm Aerial Manipulators via Online

Model Predictive Control. In Proceedings of the IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics
Society, Singapore, 18–21 October 2020; pp. 674–681. [CrossRef]

5. Mehndiratta, M.; Kayacan, E.; Patel, S.; Kayacan, E.; Chowdhary, G. Learning-based Fast Nonlinear Model Predictive Control for
Custom-made 3D Printed Ground and Aerial Robots. Control Eng. 2019. [CrossRef]

https://www.mdpi.com/article/10.3390/electronics10182187/s1
https://www.mdpi.com/article/10.3390/electronics10182187/s1
http://doi.org/10.3390/electronics10030331
http://dx.doi.org/10.3390/electronics10020144
http://dx.doi.org/10.1109/IECON43393.2020.9254702
http://dx.doi.org/10.1007/978-3-319-77489-3


Electronics 2021, 10, 2187 16 of 16

6. Bai, G.; Meng, Y.; Liu, L.; Luo, W.; Gu, Q.; Liu, L. Review and Comparison of Path Tracking Based on Model Predictive Control.
Electronics 2019, 8, 1077. [CrossRef]

7. Mehndiratta, M.; Kayacan, E. A constrained instantaneous learning approach for aerial package delivery robots: Onboard
implementation and experimental results. Auton. Robots 2019, 43, 2209–2228. [CrossRef]

8. Baca, T.; Hert, D.; Loianno, G.; Saska, M.; Kumar, V. Model Predictive Trajectory Tracking and Collision Avoidance for Reliable
Outdoor Deployment of Unmanned Aerial Vehicles. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 6753–6760. [CrossRef]

9. Mehndiratta, M.; Kayacan, E. Reconfigurable Fault-tolerant NMPC for Y6 Coaxial Tricopter with Complete Loss of One Rotor.
In Proceedings of the 2018 IEEE Conference on Control Technology and Applications (CCTA), Copenhagen, Denmark, 21–24
August 2018; pp. 774–780. [CrossRef]

10. Mehndiratta, M.; Kayacan, E. Online Learning-based Receding Horizon Control of Tilt-rotor Tricopter: A Cascade Implementation.
In Proceedings of the 2018 American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; pp. 1–6.

11. Mehndiratta, M.; Kayacan, E. Receding horizon control of a 3 DOF helicopter using online estimation of aerodynamic parameters.
Proc. Inst. Mech. Eng. Part J. Aerosp. Eng. 2017.[CrossRef]

12. Eren, U.; Prach, A.; Koçer, B.B.; Raković, S.V.; Kayacan, E.; Açikmeşe, B. Model Predictive Control in Aerospace Systems: Current
State and Opportunities. J. Guid. Control Dyn. 2017, 40, 1541–1566. [CrossRef]

13. Lee, W.Y.J.; Mehndiratta, M.; Kayacan, E. Fly without borders with additive manufacturing: A microscale tilt-rotor tricopter
design. In Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018), Singapore,
14–17 May 2018; pp. 256–261. [CrossRef]

14. Kayacan, E.; Kayacan, E.; Ramon, H.; Saeys, W. Learning in Centralized Nonlinear Model Predictive Control: Application to an
Autonomous Tractor-Trailer System. IEEE Trans. Control Syst. Technol. 2015, 23, 197–205. [CrossRef]

15. Lee, J.; Yu, Z. Tuning of model predictive controllers for robust performance. Comput. Chem. Eng. 1994, 18, 15–37. [CrossRef]
16. Shridhar, R.; Cooper, D.J. A Tuning Strategy for Unconstrained Multivariable Model Predictive Control. Ind. Eng. Chem. Res.

1998, 37, 4003–4016. [CrossRef]
17. Di Cairano, S.; Bemporad, A. Model Predictive Control Tuning by Controller Matching. IEEE Trans. Autom. Control 2010,

55, 185–190. [CrossRef]
18. Ali, E.; Zafiriou, E. Optimization-based tuning of nonlinear model predictive control with state estimation. J. Process Control 1993,

3, 97–107. [CrossRef]
19. Al-Ghazzawi, A.; Ali, E.; Nouh, A.; Zafiriou, E. On-line tuning strategy for model predictive controllers. J. Process Control 2001,

11, 265–284. [CrossRef]
20. Ali, E. Heuristic on-line tuning for nonlinear model predictive controllers using fuzzy logic. J. Process Control 2003, 13, 383–396.

[CrossRef]
21. Shipman, W.J.; Coetzee, L.C. Reinforcement Learning and Deep Neural Networks for PI Controller Tuning. IFAC-PapersOnLine

2019, 52, 111–116. [CrossRef]
22. Kofinas, P.; Dounis, A.I. Fuzzy Q-Learning Agent for Online Tuning of PID Controller for DC Motor Speed Control. Algorithms

2018, 11, 148. [CrossRef]
23. Junell, J.; Mannucci, T.; Zhou, Y.; Van Kampen, E.J. Self-tuning gains of a quadrotor using a simple model for policy gradient

reinforcement learning. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, San Diego, CA, USA, 4–8
January 2016; p. 1387.

24. Howell, M.; Best, M. On-line PID tuning for engine idle-speed control using continuous action reinforcement learning automata.
Control Eng. Pract. 2000, 8, 147–154. [CrossRef]

25. Mehndiratta, M.; Camci, E.; Kayacan, E. Automated Tuning of Nonlinear Model Predictive Controller by Reinforcement Learning.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2018.

26. Bouabdallah, S. Design and Control of Quadrotors with Application to Autonomous Flying. Ph.D. Thesis, EPFL, Swiss Federal
Institute of Technology Lausanne, Lausanne, Switzerland, 2007.

27. Kraus, T.; Ferreau, H.; Kayacan, E.; Ramon, H.; Baerdemaeker, J.D.; Diehl, M.; Saeys, W. Moving horizon estimation and nonlinear
model predictive control for autonomous agricultural vehicles. Comput. Electron. Agric. 2013, 98, 25–33. [CrossRef]

28. Du, X.; Htet, K.K.K.; Tan, K.K. Development of a Genetic-Algorithm-Based Nonlinear Model Predictive Control Scheme on
Velocity and Steering of Autonomous Vehicles. IEEE Trans. Ind. Electron. 2016, 63, 6970–6977. [CrossRef]

29. Diehl, M.; Bock, H.; Schlöder, J.P.; Findeisen, R.; Nagy, Z.; Allgöwer, F. Real-time optimization and nonlinear model predictive
control of processes governed by differential-algebraic equations. J. Process Control 2002, 12, 577–585. [CrossRef]

30. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
31. Camci, E.; Campolo, D.; Kayacan, E. Deep Reinforcement Learning for Motion Planning of Quadrotors Using Raw Depth Images.

In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–7.
32. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, UK, 1998; Volume 1.

http://dx.doi.org/10.3390/electronics8101077
http://dx.doi.org/10.1007/s10514-019-09875-y
http://dx.doi.org/10.1109/IROS.2018.8594266
http://dx.doi.org/10.1109/CCTA.2018.8511444
http://dx.doi.org/10.1177/0954410017703414
http://dx.doi.org/10.2514/1.G002507
http://dx.doi.org/10.25341/D43K5G
http://dx.doi.org/10.1109/TCST.2014.2321514
http://dx.doi.org/10.1016/0098-1354(94)85020-8
http://xxx.lanl.gov/abs/doi: 10.1021/ie980202s
http://dx.doi.org/10.1021/ie980202s
http://dx.doi.org/10.1109/TAC.2009.2033838
http://dx.doi.org/10.1016/0959-1524(93)80005-V
http://dx.doi.org/10.1016/S0959-1524(00)00033-0
http://dx.doi.org/10.1016/S0959-1524(02)00064-1
http://dx.doi.org/10.1016/j.ifacol.2019.09.173
http://dx.doi.org/10.3390/a11100148
http://dx.doi.org/10.1016/S0967-0661(99)00141-0
http://dx.doi.org/10.1016/j.compag.2013.06.009
http://dx.doi.org/10.1109/TIE.2016.2585079
http://dx.doi.org/10.1016/S0959-1524(01)00023-3

	Introduction
	Quadrotor Aerial Robot
	Position Tracking Nonlinear Model Predictive Controller
	Proposed Auto-Tuning Approach
	DNN-Based System Modeling
	Active Exploration of Weight Sets
	Overall Framework with Implementation Details

	Tuning Approach in Action
	Benchmark Study for Simulation-Based Tuning
	Further Tuning in Real Flights

	Trajectory Tracking
	Simulation-Based Tuning
	Real Flight Tuning
	User-Based Tuning Study

	Conclusions
	References

