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Abstract: Chaotic maps that can provide highly secure key sequences and ease of structure implemen-
tation are predominant requirements in image encryption systems. One Dimensional (1D) chaotic
maps have the advantage of a simple structure and can be easily implemented by software and hard-
ware. However, key sequences produced by 1D chaotic maps are not adequately secure. Therefore,
to improve the 1D chaotic maps sequence security, we propose two chaotic maps: 1D Improved
Logistic Map (1D-ILM) and 1D Improved Quadratic Map (1D-IQM). The proposed maps have shown
higher efficiency than existing maps in terms of Lyapunov exponent, complexity, wider chaotic range,
and higher sensitivity. Additionally, we present an efficient and fast encryption method based on
1D-ILM and 1D-IQM to enhance image encryption system performance. This paper also introduces
a key expansion method to reduce the number of chaotic map iteration needs, thereby decreasing
encryption time. The security analyses and experimental results are confirmed that 2D Correlation
Coefficient (CC) Information Entropy (IE), Number of Pixels Change Rate (NPCR), Unified Average
Changing Intensity (UACI), Mean Absolute Error (MAE), and decryption quality are able to meet the
encryption security demands (CC = −0.00139, IE = 7.9990, NPCR = 99.6114%, UACI = 33.46952%
and MAE = 85.3473). Furthermore, the proposed keyspace reaches 10240, and the encryption time
is 0.025s for an image with a size of 256 × 256. The proposed system can yield efficacious security
results compared to obtained results from other encryption systems.

Keywords: chaotic maps; cryptography; image encryption; logistic map; quadratic map

1. Introduction

Due to the massive multimedia technology progression, transmitting digital images
through the Internet and mobile communications networks have gained increasing popu-
larity. At the same time, digital image processing technology and the security of images
transmitted through public networks have also gained much attention. Image encryption
is an effective technique to prohibit unauthorised access of images from public networks.
Due to the inherent characteristics of the digital images, such as the bulk data capacity,
high redundancy, and robust correlation, conventional methods of the image encryption
such as the International Data Encryption Algorithm, Data Encryption Standard (DES), and
Advanced Encryption Standard (AES), could not meet the demands of acceptable digital
image encryption [1]. To overcome this problem, the researchers suggested numerous
cipher methods from several perspectives, in providing sufficient security for the multi-
media information, for example, the substitution box (S-box)-based encryption [2], DNA
coding-based encryption [3], wave function-based encryption [4], compressive sensing-
based encryption [5], Latin square [6], and chaos [7–9]. Among the technologies, the Chaos
method of image encryption is an excellent and effective one. This is so because chaotic
maps have a significant level of sensitivity to the control parameters and initial values, and
are characterised by non-convergence, chaotic, and ergodicity. For these reasons, a consid-
erable number of algorithms of chaotic image encryption were developed by the direct
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utilisation of the available chaotic maps to their processes of encryption [10]. Generally,
an algorithm of chaos-based image encryption includes two essential parts: a chaotic map
and an image encryption system. The chaotic maps in algorithms of image encryption
can be categorised into two classes: high dimensional (HD) and one dimensional (1D).
HD chaotic maps have an increased image security applications [11] due to the fact that
they have multiple parameters and highly complicated structures. In spite of the fact that
the HD chaotic maps have highly complicated structures, their execution time is slow,
and their hardware/software implementations are difficult [12]. On the other hand, 1D
chaotic maps have problems with their chaotic behaviour and chaotic range. Nevertheless,
due to their simple structure and ease of implementation [13], the 1D chaotic maps have
been widely utilised. It has been found that the main problems of 1D chaotic maps are:
(a) the chaotic range is relatively limited; (b) there is non-uniform distribution of data of
the output chaotic sequences; (c) the proposed key is not sufficiently secure; (d) the attacks
on random sequences are fast with a rather low computational cost. Consequently, some
researchers have suggested an improved version of existing 1D chaotic maps in order to
overcome 1D chaotic maps problems [14–18], while other researchers have suggested some
novel 1D chaotic maps [19,20].

In the image encryption system that is based on chaotic maps, the encryption system
includes a pair of linear (i.e., permutation) -non-linear (i.e., diffusion) conversions. Some of
the encryption systems are repeating this procedure to raise the encryption strength [21–25].
However, in those algorithms, a large number of iterations of chaotic maps is required to
produce large sequences to be utilised in permutation and diffusion steps. Consequently, a
high number of iterations can lead to high encryption time. For chaotic cryptosystems, the
chaotic maps have a significant impact in developing excellent chaotic image encryption
systems. Nonetheless, we must pay more attention to the steps of confusion and diffusion
to make the encryption system valid against differential encryption attacks.

This research addresses the defects of the Logistic map and Quadratic map. Hence, an
improved version of these maps (1D-ILM and 1D-IQM) is proposed in order to overcome
the defects. In addition, an encryption system for images is proposed in this paper, which
utilises the 1D-ILM and 1D-IQM to satisfy the security and protection needs of a digital
image before being transmitted in a public network. The proposed image scheme is
designed to meet the requirements of security to defeat several encryption-attack types.
The implementation of encryption and decryption’s scheme is simple and fast.

The key contributions of this paper are summarised as follows:

• A new method to improve 1D chaotic maps is designed to overcome the problems of
1D chaotic maps.

• A new key generation scheme is designed to update the initial keys according to
information of plaintext image, and a new key expansion method is used to reduce
the number of chaotic map iterations.

• In the diffusion phase, not only is the value of pixel modified but it is also shifted
based on the location value of pixels and chaotic sequences.

• The proposed system not only provides a high degree of security but also ensures a
low encryption time and a simple computational process.

This article is organised as follows. Section 2 presents related work. Section 3 reviews
the performance of existing chaotic maps. Section 4 introduces the new chaotic map and
demonstrate its accuracy. Section 5 includes the proposed encryption method. Section 6
provides experimental results and analysis, and Section 7 concludes the paper.

2. Related Work

Over the previous decade, many researchers have attention to present developed and
improved image encryption algorithms.

In [26], Herbadji et al. presented an enhanced Quadratic map with enhanced chaotic
range to be utilised in colour image cryptosystem. The encryption system includes two
rounds of the permutation-diffusion process. The diffusion step is applied in which the
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three image components are simultaneously encrypted. The security analysis demonstrates
the efficiency of the proposed cryptosystem in colour images, although it is not able to
encrypt grey-scale images.

In [27], Pak et al. proposed an improved 1D chaotic map made with output sequences
of two of the same classical 1-D chaotic maps. The proposed map applications are suc-
cessfully employed in colour and grey images cryptosystem consisting of permutation,
diffusion, and linear transformation steps. In the case of colour image encryption, the
chaotic sequence generated in this algorithm needs a high number of iterations to fit all
image pixels, thus, taking up a high execution time.

In [28], Ge et al. proposed a symmetric encryption algorithm based on a new chaotic
map. The proposed map is used in an encryption system, consisting of two phases: bit-pair
level process and pixel-level diffusion. The proposed chaotic map has multiple parameters
which can provide good security. On the other hand, the proposed map is relatively
complex and needs a high execution time. This is because the map consists of complex
trigonometric functions and many conditions determined in each iteration.

In [29], Huang et al. introduced a tweak-cube cryptosystem based on a new 1D chaotic
map and a 4D hyper-chaotic map. The suggested map is associated with a 4D map to
generate key streams utilised in diffusion and scramble steps. The proposed 1D map
behaviour becomes chaotic only in specific regions. Tiny perturbation to the chaotic map
parameter can make the parameter enter a nonchaotic part, thereby making the encryption
key not secure.

In [30], Pak and Huang suggested enhanced 1D chaotic maps. The enhanced chaotic
maps have been generated by combining two classical 1D chaotic maps. Based on those
enhanced maps, a cryptosystem with steps of linear-nonlinear-linear conversion is intro-
duced to improve the security of image encryption. The enhanced chaotic maps show
superior chaotic properties compared with the classical maps. The proposed encryption
system shows adequate security results, but the number of chaotic map iteration needs is
considerably high, making the encryption system relatively slow.

In [31], Yavuz et al. suggested encryption based on two chaotic functions, where the
encryption system consists of confusion and diffusion principles. In order to provide high
resistance against differential attacks, additional operations of circular rotation and XOR
are applied on the encrypted image. The algorithm has a good security analysis, but the
process of encryption/decryption is complicated and hard to implement, thus making the
encryption system not applicable. Furthermore, ideal encryption needs more than three
encryption rounds.

Wang et al. [32] have suggested a fast algorithm for encrypting images based on
logistic maps that simultaneously performed the operations of diffusion and permutation.
Therefore, the number of iterations is decreased to reduce the computational time. The
suggested algorithm is capable of resisting the chosen plain text attacks. However, its
keyspace is not adequately large in order to endure the statistical attacks, and the effect of
the scrambling step is not optimal.

In [33], Liu et al. introduced a fast scheme that simultaneously performs the diffusion
and permutation. This cryptosystem has good capability for withstanding the chosen
plaintext attacks and low execution time. Nonetheless, it was unsuccessful in resisting the
data loss and noise attacks.

In [34], a grey image encryption scheme is presented using a 6D chaotic map combined
with Fibonacci Q-matrix. The 6D chaotic map is used to scramble the positions of image
pixels, where the Fibonacci Q-matrix is used to diffuse the pixels. The 6D chaotic map
provides sufficient keyspace that is able to challenge the differential attacks.

In [35], Liu et al. have introduced a fast method for image encryption in which the
processes of permutation and diffusion are simultaneously performed. The row and the
column techniques are performed in this method to reduce the processing time. This
proposed method showed efficient security and good speed performance.



Electronics 2021, 10, 2116 4 of 30

In [36], Ding and Ding combine 2D chaotic map and 4D Chaotic map with 2D Discrete
Wavelet Transform (DWT) to produce a new image encryption system. The authors prove
that the encrypted image has high keyspace and security. However, the utilisation of HD
chaotic map with DWT increases the complexity in hardware/software implementation.

In [37], a fast encryption method based on chaos, DNA encryption technique, and
parallel compressive sensing is introduced. The parallel compressive sensing technique is
employed to speed up the encryption system by minimizing the size of the image.

3. D Chaotic Map

The chaotic map has been produced with a non-linear dynamic system. A specific
range of its control parameters can have a strong sensitivity to its initial values. In this
section, we will discuss the Logistic map and Quadratic map in brief.

3.1. Logistic Map

The Logistic map is an efficient and simple 1D chaotic map that has a complicated,
chaotic behaviour, and it can be represented by the equation below:

xn+1= LM(m, xn) = m × xn × (1 − x n) (1)

m represents a control parameter with ranges of (0, 4], and xn represents the chaotic
output sequence with range [0, 1]. The Logistic map can be chaotic only when m is in the
range of [3.57, 4.0], and if the control parameter m is higher than the range, the logistic map
cannot be having chaotic behaviours [30]. The bifurcation diagram of the map is capable
of the objective reflection of the state and the region of a map’s chaotic behaviour. The
Logistic map’s bifurcation diagram is depicted in Figure 1a. The 1D chaotic map includes
a single largest Lyapunov exponent (LE), used to measure whether a map is chaotic. If
the value of the LE is bigger than 0, the map can be considered chaotic and the other way
around. With the increase of the value of the LE, the complexity of the map is increased
(i.e., it becomes less predictable). The LE for the 1D maps is defined in Equation (2), and
Figure 2a shows the LE diagram of the Logistic chaotic map.

LE = lim
n→∞

1
n

n−1

∑
i=0

ln
∣∣ f ′(xi)

∣∣, (2)

where f ′(x) indicates the derivative function of function f (x), while f (x) indicates a 1D
chaotic map. n is the number of chaotic map iterations.

For the Logistic map output sequence, there are two main drawbacks that are illus-
trated as follows:

• The sequence of the Logistic map can be chaotic only when parameter m in the range
of [3.57, 4.0], which has been verified by the negative values in the curve of LE diagram
that is shown in Figure 2a.

• Even in the range of m ∈ [3.57, 4.0], there are values that result in no chaotic behaviours
in the Logistic map. This has been verified by the blank area in the diagram of the
bifurcation that is shown in Figure 1a.

The encryption system must have a close relation to the encryption key, so it is essential
to use a sufficient and secure encryption key. The encryption key produced by the Logistic
map is relatively small. Only parameter m and initial state x0 are utilised as initial keys
for the Logistic chaotic sequence causing the Logistic map applications to be narrowed
down. As a result, it is essential to select a high complexity chaotic map to design the
encryption algorithm.
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Figure 1. Bifurcation diagrams: (a) Logistic map bifurcation diagram of parameter m; (b) Quadratic map bifurcation
diagram of parameter c; (c) 1D−ILM bifurcation diagram of parameter m for K = 12 and R = 1; (d) 1D−ILM bifurcation
diagram of parameter K for m = 4 and R = 1; (e) 1D−ILM bifurcation diagram of parameter R for m = 4 and K = 12; (f)
1D−IQM bifurcation diagram of parameter c for K = 12 and R = 1; (g) 1D−IQM bifurcation diagram of parameter K for c =
4 and R = 1; (h) 1D−IQM bifurcation diagram of parameter R for c = 4 and K = 12.

Figure 1. Bifurcation diagrams: (a) Logistic map bifurcation diagram of parameter m; (b) Quadratic map
bifurcation diagram of parameter c; (c) 1D−ILM bifurcation diagram of parameter m for K = 12 and
R = 1; (d) 1D−ILM bifurcation diagram of parameter K for m = 4 and R = 1; (e) 1D−ILM bifurcation
diagram of parameter R for m = 4 and K = 12; (f) 1D−IQM bifurcation diagram of parameter c for
K = 12 and R = 1; (g) 1D−IQM bifurcation diagram of parameter K for c = 4 and R = 1; (h) 1D−IQM
bifurcation diagram of parameter R for c = 4 and K = 12.

3.2. Quadratic Map

The conventional Quadratic map can be defined as the famed chaotic map that has
high complexity dynamic behaviour. This map is commonly utilised in the applications of
cryptography. The Quadratic map equation can be seen below:

vn+1= QM(c, vn) = c − (v n)
2 (3)

Here, c represents the controlling parameter that has the range [0, 2], vn ∈ [−2, 2]
represents the produced chaotic sequence. In the case of parameter c ∈ [1.4, 2.0], the
Quadratic map has a chaotic behaviour [26]. Even when c ∈ [1.4, 2.0], there are some values
that make the quadratic map has no chaotic sequence. Similar to the logistic map, the
Quadratic map has the same problems. The bifurcation and LE diagrams are illustrated in
Figures 1b and 2b.
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Figure 2. Lyapunov exponent diagrams: (a) Logistic map Lyapunov exponent diagram of parameter m; (b) Quadratic map
Lyapunov exponent diagram of parameter c; (c) 1D−ILM Lyapunov exponent diagram of parameter m for K = 12 and
R = 1; (d) 1D−ILM Lyapunov exponent diagram of parameter K for m = 4 and R = 1; (e) 1D−ILM Lyapunov exponent
diagram of parameter R for m = 4 and K = 12; (f) 1D−IQM Lyapunov exponent diagram of parameter c for K = 12 and
R = 1; (g) 1D−IQM Lyapunov exponent diagram of parameter K for c = 4 and R = 1; (h) 1D−IQM Lyapunov exponent of
parameter R for c = 4 and K = 12.

4. New Chaotic Maps

This section includes the proposed new chaotic map. To verify its precision, the
abovementioned 1D chaotic maps have been utilised.
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4.1. System Designing

The new chaotic map has been characterised using the equation below,

xn+1= F(m, x n , K, R) = (((F chaos(m, x n)) × 2K)/sin (x n)
R) mod 1 (4)

where F(m, x n , K, R) represents a new chaotic map. Fchaos(m, xn) is an existing 1D chaotic
map (one of the abovementioned). m, K and R represent control parameters with a wide
range. The mod represents module operation, which is utilised to make sure that the
produced chaotic sequence is confined in the [0, 1] range. F(m, x n , K, R) has a chaotic
characteristic in an expanded range that is larger than the existing range of 1D chaotic
maps. In the case of the parameters K and R in the range of [2, 26] and [1, 3], respectively,
the new suggested chaotic map has a high complex chaotic behaviour. The m, K and R
range has been experimentally confirmed by bifurcation and LE in the following subsection.
The new suggested chaotic system structure is simple, and it can be easily implemented by
hardware as well as software.

4.2. System Verified

To verify the suggested chaotic system’s efficiency, the abovementioned 1D chaotic
maps have been utilised as follows.

4.2.1. 1D-ILM

In this subsection, the improved version of the Logistic map (1D-ILM) is presented
using Equation (4). The presented chaotic map can overcome the problems mentioned in
Section 3, making it more appropriate for designing cryptosystems. The improved Logistic
map (1D-ILM) can be represented in Equation (5),

xn+1 = FL(m, xn) = (((m × xn × (1 − x n)) × 2K)/sin (xn)
R) mod 1 (5)

where the parameter m ∈ (0, 10]. Parameters K and R in the range of [2, 26] and [1, 3], xn
represents the initial value of the sequence, where xn 6= 0. n represents the number of
iterations. The bifurcation diagram of 1D-ILM is shown in Figure 1c–e. The 1D-ILM se-
quence can exhibit uniform distributions in the range within [0, 1]. Additionally, according
to the LE curve that is shown in Figure 2c–e, the results of LE are positive at all values
of m ∈ (0.1, 10] K ∈ [2, 26] and R ∈ [1, 3]. As a result, the chaotic range and the chaotic
characteristics of 1D-ILM are efficient, and 1D-ILM is appropriate to be employed in the
encryption algorithm.

4.2.2. 1D-IQM

For the purpose of generating a chaotic sequence that has an adequate chaotic effi-
ciency, the Quadratic map is modified with the use of Equation (4). The map is referred to
as the 1D-Improved Quadratic Map (1D-IQM). The modified equation is as follows:

vn+1 = FQ(c, vn) = (((c − (v n)
2) × 2K)/sin(v n)

R) mod 1 (6)

c, K, and R represent the control parameters, and vn represents the initial map’s value
within (0, 1]. K ∈ [2, 26] and R ∈ [1, 3]. According to the observations that have been
provided in Figure 2f–h, the proposed 1D-IQM exhibits positive LE values (its chaotic
conduct) when c ∈ [0, 10], K ∈ [2, 26] and R ∈ [1, 3]. The chaotic sequences that are
generated using 1D-IQM are uniformly distributed in the range of [0, 1], as illustrated in
Figure 1f–h.

4.2.3. Application to Other Maps

Numerous 1D chaotic maps are able to be improved with the use of the suggested
system designing (Equation (4)).
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4.3. Performance Evaluation

The new chaotic maps will be evaluated using phase diagram (Attractor), approximate
entropy, sensitivity, and uniformity. For simplicity, the value of K and R of 1D-ILM and
1D-IQM are set to 12 and 1 respectively.

4.3.1. Phase Diagram of Chaotic Map

Chaotic systems have outputs of higher randomness in the case where its chaos phase
diagram is capable of occupying a bigger phase space. As observed in Figure 3c,d, the
output sequence of 1D-ILM and 1D-IQM maps fill a bigger region than the regular Logistic
and Quadratic maps sequences in the 2D phase diagram. This means that the 1D-ILM and
1D-IQM sequences have better randomness and ergodicity and are more convenient to be
used in image encryption systems. From Figure 4, the Logistic and Quadratic maps have a
closed trajectory and significant structure in 3D phase space. On the contrary, the 1D-ILM
and 1D-IQM show no closed trajectory, indicating better randomness.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 32 
 

 

 
Figure 3. 2D phase space diagrams: (a) 2D phase space diagram of Logistic map for m = 3.99; (b) 2D phase space diagram 
of Quadratic map for c = 1.99; (c) 2D phase space diagram of 1D−ILM for m = 3.99; (d) 2D phase space diagram of 1D−IQM 
for c = 1.99. 

 
(a) (b) (c) (d) 

Figure 4. 3D phase space diagrams: (a) 3D phase space diagram of Logistic map for m = 3.99; (b) 3D phase space diagram 
of Quadratic map for c = 1.99; (c) 3D phase space diagram of 1D−ILM for m = 3.99; (d) 3D phase space diagram of 1D−IQM 
for c = 1.99. 

4.3.2. Approximate Entropy (Complexity) 
The fundamental concept of the Approximate Entropy (ApEn) algorithm is using a 

non-negative value to quantify the time series irregularity, unpredictability, and complex-
ity. Moreover, the larger the computed value of the ApEn, the more complex is the se-
quence produced by a chaotic map [38]. The specific details of the ApEn calculation can 
be found in [39]. Besides the proposed chaotic maps, three chaotic maps (1DSP [20], 
LFHCM [29], EQM3 [26]) are compared with the proposed maps. The ApEn diagrams are 
shown in Figure 5. From Figure 5, the suggested chaotic maps have better ApEn, proving 
that they can produce sequences with higher unpredictability and complexity. 

Figure 3. 2D phase space diagrams: (a) 2D phase space diagram of Logistic map for m = 3.99; (b) 2D phase space diagram of
Quadratic map for c = 1.99; (c) 2D phase space diagram of 1D−ILM for m = 3.99; (d) 2D phase space diagram of 1D−IQM
for c = 1.99.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 32 
 

 

 
Figure 3. 2D phase space diagrams: (a) 2D phase space diagram of Logistic map for m = 3.99; (b) 2D phase space diagram 
of Quadratic map for c = 1.99; (c) 2D phase space diagram of 1D−ILM for m = 3.99; (d) 2D phase space diagram of 1D−IQM 
for c = 1.99. 

 
(a) (b) (c) (d) 

Figure 4. 3D phase space diagrams: (a) 3D phase space diagram of Logistic map for m = 3.99; (b) 3D phase space diagram 
of Quadratic map for c = 1.99; (c) 3D phase space diagram of 1D−ILM for m = 3.99; (d) 3D phase space diagram of 1D−IQM 
for c = 1.99. 

4.3.2. Approximate Entropy (Complexity) 
The fundamental concept of the Approximate Entropy (ApEn) algorithm is using a 

non-negative value to quantify the time series irregularity, unpredictability, and complex-
ity. Moreover, the larger the computed value of the ApEn, the more complex is the se-
quence produced by a chaotic map [38]. The specific details of the ApEn calculation can 
be found in [39]. Besides the proposed chaotic maps, three chaotic maps (1DSP [20], 
LFHCM [29], EQM3 [26]) are compared with the proposed maps. The ApEn diagrams are 
shown in Figure 5. From Figure 5, the suggested chaotic maps have better ApEn, proving 
that they can produce sequences with higher unpredictability and complexity. 

Figure 4. 3D phase space diagrams: (a) 3D phase space diagram of Logistic map for m = 3.99; (b) 3D phase space diagram of
Quadratic map for c = 1.99; (c) 3D phase space diagram of 1D−ILM for m = 3.99; (d) 3D phase space diagram of 1D−IQM
for c = 1.99.

4.3.2. Approximate Entropy (Complexity)

The fundamental concept of the Approximate Entropy (ApEn) algorithm is using a
non-negative value to quantify the time series irregularity, unpredictability, and complexity.
Moreover, the larger the computed value of the ApEn, the more complex is the sequence
produced by a chaotic map [38]. The specific details of the ApEn calculation can be found
in [39]. Besides the proposed chaotic maps, three chaotic maps (1DSP [20], LFHCM [29],
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EQM3 [26]) are compared with the proposed maps. The ApEn diagrams are shown in
Figure 5. From Figure 5, the suggested chaotic maps have better ApEn, proving that they
can produce sequences with higher unpredictability and complexity.
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4.3.3. Map Sensitivity

The chaotic maps used in the cryptosystem should be sensitive to the initial value and
the control parameters [28]. In order to test the sensitivity level of the proposed chaotic
maps, the following procedures will be followed:

• The chaotic map is iterated 100 times to form the first chaotic sequence.
• The chaotic map is re-iterated after tiny changes to one of its parameters to form the

second sequence.
• The trajectories of the two generated sequences are compared.

Figure 6 shows the map sensitivity results. The difference between the two trajectories
of 1D-ILM and 1D-IQM can be visually distinguishable after nearly five iterations, as
shown in Figure 6c,d. In regard to the Logistic map and Quadratic map in Figure 6a,b, the
difference is distinguishable after nearly 50 iterations. From this result, the 1D-ILM and
1D-IQM have better sensitivity to their parameters.

4.3.4. Sequence Uniformity

The uniform distribution of the sequences is an indication of the fact that the sequence
is robustly random and it has preferable secure performance [40]. On the other hand, in
the case of the non-uniform distribution of the sequences, the sequences are not secure,
and the statistical attacks have sufficient attack effects. The uneven distribution is an
indication that the output sequence randomness is insufficient. The sequence uniformity
analysis for chaotic maps can be shown in Figure 7, where the distribution of the Logistic
map and Quadratic map is uneven. Consequently, their randomness is relatively poor,
and their safety performance, weak. On the other hand, the proposed maps 1D-ILM and
1D-IQM are uniformly distributed, thereby proving significant randomness and preferable
security performance.
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Figure 7. Sequences uniformity diagrams: (a) Sequences uniformity diagram of Logistic map for m = 3.99; (b) Sequences
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5. Image Encryption System Based on 1D-ILM and 1D-IQM

The architecture for the proposed encryption system is shown in Figure 8, which
consists of two main phases: permutation phase and diffusion phase.

Figure 7. Sequences uniformity diagrams: (a) Sequences uniformity diagram of Logistic map
for m = 3.99; (b) Sequences uniformity diagram of Quadratic map for c = 1.99; (c) Sequences unifor-
mity diagram of 1D−ILM for m = 3.99; (d) Sequences uniformity diagram of 1D−IQM for c = 1.99.
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5. Image Encryption System Based on 1D-ILM and 1D-IQM

The architecture for the proposed encryption system is shown in Figure 8, which
consists of two main phases: permutation phase and diffusion phase.
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5.1. Key Generation Scheme

Key generation scheme steps of the encryption scheme with the use of Message-Digest
Algorithm (MD5) are introduced in this subsection, where MD5 is a cryptographic hash
function that plays an essential role in image encryption. MD5 can generate a 128-bit
hash value [41]. As MD5 is irreversible, it can resist different types of attacks, such as
known-plaintext attacks.

In the proposed encryption scheme, the initial values, and parameters of 1D-ILM and
1D-IQM are the secret keys. To make the secret key mainly dependent on image pixels and
image size, the following steps will be followed:

Step 1: Suppose the plaintext image P(M, N), where M indicates the number of the
rows while N indicates the number of columns, we calculate sumP, where sumP represents
the sum of all pixel values of P.

Step 2: We calculate two vectors: sumR with the size of M and sumC with the size of
N, where sumR is the sum of each row of P and sumC is the sum of each column of P. Then,
the MD5 hash of sumR and sumC is calculated to generate Rhash and Chash with 128-bit hash
value. Divide Rhash and Chash into 8-bit (2-byte) blocks in decimal format as expressed in
the following equations. {

Rhash = MD5 (sumR)
Rhash = {r1, r2, . . . r16}

(7){
Chash= MD5 (sumC)
Chash = {c1, c2, . . . c16}

(8)

Since the MD5 is very sensitive to any minor changes, one-bit change in P can lead to
a significant difference in the hash values (Rhash, Chash). After that, we generate four values
based on hash values (Rhash, Chash) using XOR operation (⊕) as in the following equations,{

RKey1 = r1 ⊕ r2 ⊕ . . .⊕ r8
RKey2 = r9 ⊕ r10 ⊕ . . .⊕ r16

(9)

{
CKey1 = c1 ⊕ c2 ⊕ . . .⊕ c8
CKey2 = c9 ⊕ c10 ⊕ . . .⊕ c16

(10)

Step 3: Suppose the initial keys
..
x1,

..
x2,

..
v1,

..
v2,

..
m1,

..
m2,

..
c1 and

..
c2 are randomly selected.

Then, the initial keys are updated according to the plain image pixel value as follows:
x1 = (

..
x1 mod RKey1)/256

x2= (
..
x2 mod RKey2)/256

v1= (
..
v1 mod CKey1)/256

v2= (
..
v2 mod CKey2)/256

(11)


m1 =

((
sump mod

..
m1
)
× (sumP/M)

)
mod 9 + 1

m2 =
((

sump mod
..
m2
)
× (sumP/M)

)
mod 9 + 1

c1 =
((

sump mod
..
c1
)
× (sumP/N)

)
mod 9 + 1

c2 =
((

sump mod
..
c2
)
× (sumP/N)

)
mod 9 + 1

(12)

Step 4: 1D-ILM is firstly iterated (M + 100 times) using x1 and m1 and secondly
iterated using x2 and m2 to form two chaotic sequences X1 and X2, respectively. After that,
the 1D-IQM is firstly iterated (N + 100 times) using v1 and c1 and secondly iterated using
v2 and c2 to form two chaotic sequences Y1 and Y2, respectively. The First 100 elements of
sequences X1, X2, Y1 and Y2 are discarded in order to improve the sensitivity of initial
values and parameters of the map (to avert transient effect).

Step 5: After the chaotic sequences X1(M, 1), X2(M, 1), Y1(1, N) and Y2(1, N) are
generated by 1D-ILM and 1D-IQM, we propose a key expansion method to reduce the
number of iteration as well as the encryption time especially in large-sized images. By
using a multiply operation between X1(M, 1) and Y1(1, N) and between X2(M, 1) and
Y2(1, N), we obtain two chaotic matrices S1 (M, N) and S2 (M, N) respectively. Then, they
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are manipulated together to form a chaotic matrix S(M, N) as expressed in Equation (13),
which has the same size as the input image.

S = ((S1+S2) × 1000) mod Ekey (13)

where Ekey is a secret key. For each value of Ekey, we have a unique chaotic sequence of
S. Numerical example of the key expansion method is depicted in Figure 9. The chaotic
sequences of the proposed encryption system are directly related to the plaintext image. In
the case of minor changes in pixel value or size of plaintext image that occurs, the value
of sumP, sumR and sumC will change. Consequentially, the initial value (x1, x2, v1, v2),
parameters (m1, m2, c1, c2) and chaotic sequences (X1, X2, Y1, Y2) will significantly change.
This is because the proposed chaotic maps and the proposed key generation scheme are
extremely sensitive to any minor changes.
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5.2. Permutation Phase

There is a natural high correlation between the neighbouring pixels in the relevant
plaintext image. A good encryption method has to be capable of decreasing that correlation
and obscuring the positions of the pixels and making the original image to meaningless
chaotic image so that the pixel positions are arranged in a random and unorderly manner.

In the proposed permutation phase, a new permutation scheme using chaotic matrix S
to alter the location of all pixels of plaintext image chaotically is proposed. The permutation
phase is illustrated in the following steps:

Step 1: Sort the S in ascending order by performing Equation (14)

[Ssorted , Sindex] = sort(S), (14)

where Ssorted represents the sorted sequence of S, and Sindex represents the index value
of Ssorted.

Step 2: The pixels positions of P are re-arranged according to the index matrix
(Sindex). After all the pixels of P are moved to their new positions, the permuted image PP
is generated.

5.3. Diffusion Phase

Chosen plaintext attacks have been designed for breaking the encryption system by
examining how a minor change in plaintext images can affect the system’s encryption
results. An efficient diffusion phase is able to make an image encryption system withstand
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those types of attacks. In the proposed diffusion phase, the column diffusion and row
diffusion techniques are used in which the pixels of an image are diffused by columns and
then by rows. The diffusion steps are illustrated in the following steps:

Step 1: Convert the chaotic sequences X1, X2, Y1 and Y2 into integer sequences by
using the following equations,

IX1 = dX1 × R Key1× L1emod M,
IY1 = dY1 × C Key1 × L2emod N,
IX2 = dX2 × R Key2 × L3emod M,
IY2 = dY2 × C Key2 × L4emod N,

(15)

where d.e represents floor function, L1, L2, L3, and L4 are integer values ∈ (1000, 4000).
Step 2: Chaotic matrix S is converted into integer form to produce diffusion matrix D

as in Equation (16).

D = bS × (R Key1 +CKey1) × L5cmod 256, (16)

where b.c represents ceil function, L5 ∈ (1000, 4000).
Step 3: Apply Column Diffusion. The image pixels can be chaotically encrypted by

using the value of two previous encrypted pixels to encrypt the current one. For column
diffusion, Equation (17) is applied.

EC(., 1) =
[(

PP(., 1) +
(
CKey1 × IY1(1)

))
mod256

]
⊕ D(., IY1(1))

EC(., 2) =
[(

PP(., 2) +
(
EC(., 1) + CKey1

)
× IY1(2)

)
mod256

]
⊕ D(., IY1(2))

EC(., j) =
[(

PP(., j) +
(
EC(., j− 1) × IY1(j − 1)

)
+
(
EC(., j − 2) × IY1(j− 2)

)
+
(
CKey2 × IY1(j)

))
mod256

]
⊕ D(., IY1(j))

(17)

where j from 3 to N. And then chaotic column shift is applied to shuffle the columns as in
the following expression,{

EC
s (i, j) = EC(i, j + IY2(i)) j + IY2(i) ≤ N

EC
s (i, j) = EC(i, j + IY2(i) − N) j + IY2(i) > N

(18)

where i from 1 to M, j from 1 to N.
Step 4: Apply row Diffusion. Encrypt the image rows according to Equation (19).

ER(1, .) =
[(

EC
s (1, .) +

(
RKey1 × IX1(1)

))
mod256

]
⊕ D(IX1(1), .)

ER(2, .) =
[(

EC
s (2, .) +

(
ER(1, .) + RKey1

)
× IX1(2)

)
mod256

]
⊕ D(IX1(2), .)

ER(i, .) =
[(

EC
s (i, .) +

(
ER(i− 1, .) × IX1(i − 1)

)
+
(
ER(i − 2, .) × IX1(i− 2)

)
+
(

RKey2 × IX1(i)
))

mod256
]
⊕ D(IX1(i), .)

(19)

where i from 3 to M. After that, shift the rows of image as in Equation (20),{
ER

s (i, j) = ER(i + IX2(j), j) i + IX2(j) ≤ M
ER

s (i, j) = ER(i + IX2(j) − M, j) i + IX2(j) > M
(20)

where i from 1 to M, j from 1 to N.
The chaotic row and column shift is used to increase the security and is also used

to increase the encryption system sensitivity. After the diffusion phase is completed, the
encrypted image is generated. It is evident that the decryption process is similar to the
encryption process but in a reverse way. The encrypted images can be shown in Figure 10.

5.4. Extended to Colour Images

In the case of a colour image, it is encrypted by splitting the image components, Red
(R), Green (G) and Blue (B). We then treat each component as a grey image. In consequence,
the encryption of each component is exactly similar to the proposed encryption steps.
Following that, we combine the result of the encryption process of each component to
obtain the encrypted image. The encrypted colour images are shown in Figure 11.
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6. Performance Analysis

The test images consist of standard Lena image of size 512 × 512, and 9 grey images
have been chosen from the USC-SIPI Image Database. The secret keys in the encryption
algorithm are selected as follows:

..
x1 = 1000.567,

..
x2 = 1344.455,

..
v1 = 2000.345,

..
v2 = 1235.345,

..
m1 = 4,

..
m2 = 3,

..
c1 = 2,

..
c2 = 3,

L1 = 2600, L2 = 3500 , L3 = 3000 and L4 = L5 = 1000. K and R for 1D-ILM and IQM are
set to 12 and 1, respectively. MATLAB R2015a with Intel Core i7-4600 CPU @2.7GHz and
8GB RAM on Windows 10 operating system.
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6.1. Statistical Analysis

In this work, three indicators used to evaluate the capability of the proposed image
encryption system towards resisting statistical attacks are histogram analysis, correlation
analysis, and entropy.

6.1.1. Histogram Analysis

The histogram exhibits the pixel intensity value distribution for a grey image. Figure 12a
illustrates plain image histograms. Figure 12b shows that the encrypted image results of
even distribution at a [0, 255] interval. It entirely differs from the histogram of the plain
image. Based on Figure 12c, the decrypted image results completely preserve the plain
image information. In consequence, it becomes hard for the attackers to predict plain
images using statistical analyses.
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To further prove the histogram uniformity of the proposed encryption system, the Chi-
square test

(
x2) is utilised, where the Chi-square test (x2) indicates a statistical measure of

the distribution of pixels. The formula of the Chi-square test (x2) can be justified below [42].

x2 = ∑256
i

(P i − 256)2

256
, (21)

where i represents the levels number of the grey-scale and Pi ∈ (0–255) represents the
observed frequency occurrences of the grey levels. The value of the Chi-square test (x2) for
the encrypted images should be close or below the theoretical value 293.24783 [35]. The
results of Chi-square test (x2) are tabulated in Table 1, where the Chi-square test (x2) of
encrypted images are close to the theoretical one.

6.1.2. Adjacent Pixels Correlation

The adjacent pixel correlation (Cxy) can be defined as one of the common ways for the
evaluation of the image encryption algorithm’s performance, and an efficient cryptosystem
must eliminate such intrinsic relation for the purpose of improving the resistance against
the statistical analyses [43]. Equation (22) is used to calculate the correlation of adjacent
pixels (Cxy).

E(x) = 1
N ∑N

i=1 xi

D(x) = 1
N ∑N

i=1(xi − E(x))2

cov(x, y) = 1
N ∑N

i=1(xi − E(x))(yi − E(y))

Cxy= cov(x, y) /
√

D(x)
√

D(y),

(22)
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where x and y represent the grey-scale values of two pixels that are adjacent in location. N
represents the entire number of the x and y obtained from an image. Table 2 lists the Corre-
lation (Cxy) values for various plain images as well as their equivalent encrypted images.

Table 1. Chi-square test.

Image Plain Image Encrypted Image

Lena 114,486.457 233.779
Boat 383,969.687 239.060
Couple 298,865.244 261.164
Tank 957,952.570 259.609
Elaine 140,667.152 237.857
Stream and bridge 1,185,618.347 245.048
Man 709,340.680 293.547
Airport 1,974,776.136 278.427
Chemical plant 50,326.4453 246.375
Clock 282,061.562 255.359
Average 609,806.400 255.022

Table 2. Correlation analysis.

Image
Plaintext Image Encrypted Image

2D-CC
Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Lena 0.97380 0.98564 0.96039 −0.000805 −0.000776 0.003297 0.001463
Boat 0.93812 0.97131 0.92216 0.001051 0.000723 0.000096 0.002264

Couple 0.93707 0.89264 0.85572 −0.00168 0.001695 −0.000275 0.001045
Tank 0.96566 0.93040 0.91676 0.000832 0.000673 −0.003580 −0.003580

Elaine 0.97565 0.97302 0.96925 0.000989 −0.001817 −0.001210 −0.000595
Stream and bridge 0.94041 0.92751 0.89749 0.000407 −0.003383 0.001103 −0.004226

Man 0.97745 0.98127 0.96715 0.001012 −0.000191 0.001548 −0.000125
Airport 0.90993 0.90337 0.85905 −0.001955 −0.000400 −0.000430 0.000143

Chemical plant 0.94662 0.89841 0.85291 0.0019064 −0.000793 −0.001858 −0.005777
Clock 0.95649 0.97408 0.93893 0.0080607 −0.001130 0.000842 −0.004517

Average 0.95212 0.943765 0.913981 0.000982 −0.00054 −0.000046 −0.00139

The correlation values of the ideal ciphering system have to approach the 0 value.
Table 2 shows that the correlation values of encrypted images are noticeably decreased (the
values are very close to the 0 value). Additionally, Table 3 lists the comparison with different
algorithms. In addition, the adjacent pixel distributions in three various directions are
illustrated in Figure 13. As can be seen, from Figure 13a,c,e, the plaintext image has a robust
correlation between the neighbouring pixels in the three directions; vertical, horizontal and
diagonal. From Figure 13b,d,f, the cipher image points are full of space and are chaotically
distributed. Evidently, the pixel value correlations between two neighbouring encrypted
image points are considerably decreased.

Table 3. Correlation comparison.

Algorithm Proposed Ref. [28] Ref. [44] Ref. [45] Ref. [46]

Horizontal −0.000805 0.0054 0.0019 −0.0056 −0.0022
Vertical −0.000776 0.0064 −0.0024 0.0006 0.0015

Diagonal 0.003297 0.0046 0.0011 0.0018 0.0025
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6.1.3. Correlations between Original and Encrypted Image

The 2D Correlation Coefficient (CC) between different plain/cipher-image pairs have
been analysed through the calculation of the 2D Correlations Coefficient (CC) between the
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plaintext image and its corresponding encrypted image [47]. The CC can be computed as
in the following equation:

CC =
∑M

i=1 ∑N
j=1
(
Xij − X

)(
Yij −Y

)√(
∑M

i=1 ∑N
j=1
(
Xij − X

)2
)(

∑M
i=1 ∑N

j=1
(
Yij −Y

)2
) (23)

Xij denotes plaintext image and Yij denotes cipher-image. X and Y represent the average
values of Xij and Yij elements, respectively. M and N indicate the number of rows and
columns of the cipher and plaintext images, respectively. The values of the CC of various
plain images have been listed in Table 2. The values in Table 2 are very close to optimal
value. i.e., 0.

6.1.4. Information Entropy (IE)

Here, IE is utilised for the evaluation of image randomness, and an information source
entropy is:

IE(n) =∑ N
i=0 P(ni) log2

1
P (ni)

(24)

ni denotes a source of the image, N represents a total number of the symbols and P(ni)
denotes the symbol ni probability [48]. For the grey level images, the maximal IE equals
8. Results for various images are given in Table 4. In addition, the entropy comparison
of the encrypted Lena image is listed in Table 5. IE of the proposed algorithm remains
tightly close to 8 in Tables 4 and 5. Consequently, it is nearly impossible to obtain visual
information from encrypted images.

Table 4. Information entropy (IE).

Image IE

Lena 7.9994
Boat 7.9993
Couple 7.9993
Tank 7.9993
Elaine 7.9993
Stream and bridge 7.9993
Man 7.9998
Airport 7.9998
Chemical plant 7.9973
Clock 7.9972
Average 7.9990

Table 5. Information entropy (IE) comparison.

Method Proposed Ref. [28] Ref. [44] Ref. [45] Ref. [46]

IE 7.9994 7.9992 7.9993 7.9971 7.9991

6.2. Key Analysis
6.2.1. Key Space

A secure encryption system must have a massive keyspace that can resist attacks
adequately. The keyspace size is obligated to be bigger than 2100 to provide a high-security
level [49]. For proposed image encryption, the parameters and initial values of chaotic
maps are secret keys. The 1D-ILM has one initial value and three control parameters when
R and K are considered, and 1D-IQM also has one initial value and three control parameters
when R and K are considered. In the proposed scheme, each map is used twice to generate
the key sequence. As a consequence, we have twelve control parameters and four initial
values. In the case of precision of the initial values and parameter, it is set to 10−15, the
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keyspace equals 1015×16 = 10240 ≈ 2797, which is bigger than 2100. As a result, the suggested
method has quite a sufficient keyspace to resist various brute-force attack types. Table 6
lists the keyspace comparison between different algorithms.

Table 6. Keyspace comparison.

Algorithm Keyspace

Proposed 10240 ≈ 2797

Ref. [28] 10210 ≈ 2697

Ref. [44] 2564

Ref. [45] 2124

Ref. [46] 2199

6.2.2. Key Sensitivity

An efficient method of encryption must have efficient sensitivity to the secret keys. In
our method, sensitivity is split into the two points below:

1. Changing the key’s value throughout the encryption process causes a significant
alteration to the encrypted image. The m1 is tested in original secret keys. The results
of the test following the slight change of m1 by 10−15 are observed in Figure 14. The
remaining secret keys are the same as above. Based on the results, the encrypted
image undergoes a dramatic change in the case where the individual key has been
changed 10−15. From such results, the proposed method has an efficient sensitivity of
the encryption key.

2. The slight change of the key value throughout the decryption process will have a
considerable difference in the decrypted image. The test results in the case where
the decryption key differs from the key of the encryption by 10−15 may be observed
in Figure 15. Here, a considerable difference is seen between correctly and incor-
rectly decrypted images in the case where the decryption key differs from the key
of encryption by 10−15. The accurately decrypted image in Figure 15d restores the
original image successfully, while the inaccurately decrypted image in Figure 15c does
not recognise any information compared to the original image. From this result, the
proposed scheme has sufficient key sensitivity.
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6.3. Analysis of the Permutation Performance

According to the permutation performance evaluation method [44], a white image
with a small black square in the middle is permuted using the suggested permutation
phase. The permutation phase aims to prevent the attackers from recognition of image
information. If the permuted image has entirely failed in recognising the original image, it
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is an indication that the permutation phase is efficient. The permutation result is illustrated
in Figure 16, where the black block pixels are dispersed over the whole image.
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6.4. Diffusion Performance Analysis

The Differential attack, plaintext attack analysis and avalanche criterion analysis are
widely utilised for the assessment of the diffusion efficiency.

6.4.1. Differential Attack Analysis

The Differential attack is considered to be a kind of plaintext attack [44]. The attackers
usually make small changes to plain images and utilise the suggested encryption algorithm
to encrypt the plain image of prior and post changes. By comparing those two encrypted
images, they discover the correlations between the plaintext and cipher images. This
type of attack is referred to as the differential attack. For the purpose of resisting the
differential attacks, a small plaintext image change must result in a massive alteration in
the corresponding encrypted image [50,51]. The number of Pixels Change Rate (NPCR),
Unified Average Changing Intensity (UACI), and Mean Absolute Error (MAE) are three
common measures that are often utilised. The NPCR and UACI can be measured according
to the following equation [52].

DE1,E2(i, j) =
{

1, E1(i, j) = E2(i, j)
0, E1(i, j) 6= E2(i, j)

NPCR =∑i,j
DE1,E2 (i,j)

M × N × 100%
(25)
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UACI =
1

M × N ∑
i,j

|E1(i, j) − E2(i, j)|
255

× 100% (26)

where E1 and E2 are equally sized images, which represent the cipher image prior and post-
modification. E1 represents the original ciphered image, while E2 represents ciphered image
after one pixel in the plaintext image is changed. The expected NPCR and UACI values for
the random grey images should be within 99.6094% and 33.4635%, respectively [53]. The
encrypted image results are given in Table 7, and the comparison of the encrypted Lena
image is listed in Table 8. The NPCR and UACI of the encrypted image in Table 7 are close
to the expected value (NPCR = 99.6094% and UACI = 33.4635). Therefore, the proposed
encryption method has a high capability to resist differential attacks.

Table 7. Differential attacks.

Image NPCR UACI MAE

Lena 99.6114% 33.5499% 85.5523
Boat 99.6151% 33.5107% 85.4523
Couple 99.5934% 33.4131% 85.2035
Tank 99.6063% 33.5461% 85.5426
Elaine 99.6155% 33.4066% 85.1868
Stream and bridge 99.6170% 33.4287% 85.2432
Man 99.6111% 33.4590% 85.3205
Airport 99.6066% 33.4751% 85.3615
Chemical plant 99.6124% 33.4435% 85.2808
Clock 99.6155% 33.4625% 85.3295
Average 99.6114% 33.46952% 85.3473

Table 8. Differential attacks of Lena image.

Algorithm Proposed Ref. [28] Ref. [44] Ref. [46]

NPCR 99.61% 99.62% 99.61% 99.62%
UACI 33.54% 33.51% 33.46% 33.51%

The Mean Absolute Error (MAE) test is another examination used to prove the valida-
tion of the encryption system in terms of differential attack [52]. MAE can be described as
in the following equation.

MAE =
1

M × N ∑
i,j
|E1 (i, j) − E2(i, j)| (27)

In order to reach better encryption security, large value of MAE is needed. Table 7
shows the values of MAE.

6.4.2. Plaintext Attacks Analysis

The conventional cryptanalysis attacks include known-plaintext attacks, ciphertext-
only attacks, chosen-ciphertext attacks, and chosen-plaintext attacks. In those four attacks,
the chosen-plaintext attacks can be considered the most powerful type of attacks [54].
For this reason, it is presumed that when an encryption system is capable of resisting
chosen plaintext attacks, it is capable of withstanding the other three as well [55]. Attackers
usually use white or black image to recover the original images. For this reason, they
are used to determine the resistance of the algorithm to the chosen plaintext attacks. The
results are shown in Figure 17 and Table 9. The encrypted white and black images are
not comprehensible, and their histograms are uniform, as can be seen in Figure 17. From
Table 9, it can be seen that the correlation in different directions is considerably decreased,
and the two image entropies are close to the ideal value. Moreover, their NPCR and UACI
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are close to optimal values. As all tests are close to the optimum value, the chosen-plaintext
attacks are efficiently resisted in the suggested algorithm of diffusion.
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Table 9. Chosen-plaintext attack results.

Image
Correlation Information

Entropy (IE)
Differential Attack

Horizontal Vertical Diagonal NPCR UACI MAE

White 0.003161 −0.000333 −0.002679 7.9992 99.6136 33.4224 85.2272
Black 0.001546 0.001025 −0.000541 7.9994 99.6143 33.4613 85.3262

6.4.3. Avalanche Criterion (AC)

Evidently, changing a single bit in a plaintext image must theoretically result in a
50% difference in the bits of the cipher image [56]. The plain image will be encrypted in
order to form cipher image E1, and after that, a single bit of the original image is changed
and the image is encrypted for forming E2. Avalanche Criterion (AC) is applied between
E1 and E2 based on Equation (28). The results are depicted in Figure 18. As shown in
Figure 18, Avalanche Criterion (AC) results of the suggested model are quite close to
the theoretical value.

AC =
Number of changed bit between E1 and E2

Total number of bit
× 100% (28)

6.5. Noise and Data Loss Attacks Analysis

In this subsection, the noise attacks and the data loss attacks of the proposed encryp-
tion algorithm are analysed, which is highly important in encrypted image transmission.



Electronics 2021, 10, 2116 25 of 30

Electronics 2021, 10, x FOR PEER REVIEW 27 of 32 
 

 

AC = Number of changed bit between E1 and  E2 
Total number of bit   × 100% (28) 

Av
ala

nch
e (%

) 

 
Figure 18. Avalanche criterion. 

6.5. Noise and Data Loss Attacks Analysis 
In this subsection, the noise attacks and the data loss attacks of the proposed encryp-

tion algorithm are analysed, which is highly important in encrypted image transmission. 

6.5.1. Noise Attack Analysis 
For the purpose of testing the robustness of the suggested approach against the noise 

attacks, the following process has been performed. The original image OI has been en-
crypted with the use of the suggested algorithm of encryption. After that, a different den-
sity noise has been added to the encrypted image. Then, the noisy encrypted image is 
decrypted to form DI. Results of the encrypted image with 1%, 5%, and 10% of noise den-
sity are shown in Figure 19. The Mean Square Error (MSE) is widely used to measure the 
average difference between OI and DI. The MSE is calculated using Equation (29). 

MSE = 1
M × N  OI i,j − DI i,j

2
N

j = 1   
M

i = 1  (29) 

M and N denote the entire number of rows and columns, while Peak Signal-to-Noise Ratio 
(PSNR) is a quantitative evaluation of similarity between OI and DI. PSNR is calculated 
as follows: 

PSNR = 10 log10  Imax
2

MSE (30) 

where Imax
2  is the maximum value of pixels of MSE. Both Figure 19 and Table 10 con-

firmed that the encrypted images can be retrieved properly. 

Figure 18. Avalanche criterion.

6.5.1. Noise Attack Analysis

For the purpose of testing the robustness of the suggested approach against the
noise attacks, the following process has been performed. The original image OI has been
encrypted with the use of the suggested algorithm of encryption. After that, a different
density noise has been added to the encrypted image. Then, the noisy encrypted image
is decrypted to form DI . Results of the encrypted image with 1%, 5%, and 10% of noise
density are shown in Figure 19. The Mean Square Error (MSE) is widely used to measure
the average difference between OI and DI . The MSE is calculated using Equation (29).

MSE =
1

M × N

M

∑
i=1

N

∑
j=1

(OI (i, j) − DI(i, j))2 (29)

M and N denote the entire number of rows and columns, while Peak Signal-to-Noise Ratio
(PSNR) is a quantitative evaluation of similarity between OI and DI . PSNR is calculated
as follows:

PSNR = 10 log10
I2
max

MSE
(30)

where I2
max is the maximum value of pixels of MSE. Both Figure 19 and Table 10 confirmed

that the encrypted images can be retrieved properly.

Table 10. Noise attack and data loss attack results.

Attack Noise Attack Data Lose Attack

1% Noise 5% Noise 10% Noise 1/16 Crop 1/4 Crop 1/2 Crop
MSE 10.5007 43.0918 72.1406 17.2808 52.2921 59.7997

PSNR (dB) 19.8831 13.7393 11.4837 17.6868 12.8504 12.2726

6.5.2. Data Loss Attack Analysis

Data in a different size in the encrypted image have been eliminated (Cropped) by
substituting them with zeros. Following that, we try to recover the plaintext image from
the encrypted image with data loss. Results of encrypted images with 1/16 data crop,
1/4 data crop and 1/2 data crop are illustrated in Figure 20. Those recovered images are
also evaluated by calculating the respective MSE and PSNR. The larger calculated value of
PSNR means better resistance to attacks. The result of MSE and PSNR are listed in Table 10.
As can be seen from Figure 20 and Table 10, the suggested algorithm can resist various
attacks (i.e., data loss attacks) in the spatial domain.
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6.6. The Quality of Decryption

Decryption quality was assessed through the calculation of the 2D Correlation Coeffi-
cient (CC). For adequate decryption, CC has to be near or equal to 1. For the suggested
decryption, the CC of every decrypted image equals 1, and it is proven that each de-
cryption process is highly accurate. In other words, the decrypted image is identical
to its corresponding plaintext image. Therefore, good quality has been shown in the
suggested decryption.

6.7. Execution Time

Encryption speed is a necessary condition for evaluating the efficiency of cryptosys-
tems. The experimental environment was the MATLAB R2015a with Intel Core i7-4600 CPU
@2.7 GHz and 8 GB RAM on Windows 10 operating system. Taking the 256 × 256 image
as an example, the results are shown in Table 11. In our algorithm, the result proves
that the proposed encryption system has low encryption time as compared with the
referenced systems.

Table 11. Encryption speed.

Algorithm Encryption
Time (s) Processor Speed Ram Platform

Proposed 0.0256 2.70 GHz 8 GB MATLAB R2015a
Ref. [28] 0.2219 2.60 GHz 8 GB MATLAB R2013a
Ref. [44] 1.1708 3.90 GHz 4 GB MATLAB R2014a
Ref. [45] 0.3820 3.30 GHz 4 GB MATLAB R2016b

7. Conclusions

Firstly, this paper improved two chaotic maps: 1D-ILM and 1D-ILM based on Logistic
and Quadratic maps. Their performance evaluation showed that the improved maps have
a large Lyapunov exponent, high complexity, wider chaotic range, and high sensitivity.
Thus, they proposed efficient chaotic performance to be used in an image encryption
system. Secondly, an image encryption system based on proposed maps is designed with
a high-security level. The proposed scheme is very sensitive to the secret keys in which
any changes can produce a completely different encrypted image. The NPCR and UACI
values are close to the expected values, and the black and white image test has proven
the capability of resisting the chosen-plaintext attacks. A high level of randomness of
the encrypted image is proven by entropy measure and is very close to the ideal entropy
value, i.e., eight. The histogram distribution is uniform for the encrypted image, and the
correlation coefficient is considerably decreased between the adjacent pixels.

Additionally, the proposed scheme can effectively withstand noise and data loss
attacks. Lastly, encryption schemes with a sufficient keyspace can be characterised by
a long execution time. Nonetheless, the suggested system has sufficient keyspace in
comparison with referenced schemes along with a shorter encryption time. This is because
the proposed key expansion method can reduce the number of chaotic map iteration needs
for the encryption/decryption process and thereby the execution time of the encryption
system is enhanced. The proposed encryption system has a large keyspace that reaches
10240, and the encryption time for an image of the size of 256× 256 is 0.025 s. In consequence,
it can be efficiently utilised to transmit digital images in public networks. In future work,
we will try to study three main points: (1) the effect of altering the chaotic maps on the
encryption system efficiency; (2) the effect of simultaneously performing permutation
and diffusion operations on processing time; (3) the effect of combining other encryption
technique such as DNA technique and S-box technique with the proposed technique on
encryption system robustness and security.
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