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Abstract: Soil erosion control is a complex, integrated management process, constructed based on
unified planning by adjusting the land use structure, reasonably configuring engineering, plant, and
farming measures to form a complete erosion control system, while meeting the laws of soil erosion,
economic and social development, and ecological and environmental security. The accurate predic-
tion and quantitative forecasting of soil erosion is a critical reference indicator for comprehensive
erosion control. This paper applies a new swarm intelligence optimization algorithm to the soil
erosion classification and prediction problem, based on an enhanced moth-flame optimizer with sine–
cosine mechanisms (SMFO). It is used to improve the exploration and detection capability by using
the positive cosine strategy, meanwhile, to optimize the penalty parameter and the kernel parameter
of the kernel extreme learning machine (KELM) for the rainfall-induced soil erosion classification
prediction problem, to obtain more-accurate soil erosion classifications and the prediction results. In
this paper, a dataset of the Vietnam Son La province was used for the model evaluation and testing,
and the experimental results show that this SMFO-KELM method can accurately predict the results,
with significant advantages in terms of classification accuracy (ACC), Mathews correlation coeffi-
cient (MCC), sensitivity (sensitivity), and specificity (specificity). Compared with other optimizer
models, the adopted method is more suitable for the accurate classification of soil erosion, and can
provide new solutions for natural soil supply capacity analysis, integrated erosion management, and
environmental sustainability judgment.

Keywords: sine–cosine algorithm; moth-flame algorithm; kernel extreme learning machine; parame-
ter optimization; soil erosion prediction

1. Introduction

With over 98.8% of the world’s human food coming from the land and less than 1.2%
from marine, aquatic ecosystems, protecting arable land and maintaining soil fertility
is vital to human well-being [1,2]. Soil erosion is one of the most critical threats to the
world’s food production [3–5]. Globally, about ten million hectares of arable land are
lost each year due to soil erosion, resulting in less arable land available for world food
production [6]. The loss of arable land is a serious problem; according to the World Health
Organization, and Food and Agriculture Organization of the United Nations (FAO) reports,
two-thirds of the global population is still undernourished [7]. Soil erosion is the process
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by which soil particles and surface appurtenances are eroded, moved, and deposited by
the interaction of a number of factors [8]. Soil erosion can be divided into hydraulic erosion,
cultivation erosion, wind erosion, freeze–thaw erosion, and gravity erosion [9,10]. Soil
erosion leads to numerous serious hazards, directly causing soil acidification, soil sanding,
soil consolidation, and water pollution.

In contrast, soil erosion will diminish the productivity of terrestrial ecosystems; soil
erosion will result in increased water runoff, which decreases water infiltration and the
soil’s water storage capacity. In addition, during erosion, organic matter and essential plant
nutrients are reduced, and the depth of the soil nutrient layer is reduced; all these changes
can depress plant growth, and decrease valuable biota and the overall biodiversity of the
soil [11–13]. These factors interact to create soil erosion, which is a major environmental
problem shared globally. China is one of the countries with the most serious soil erosion,
with 4.92 million km2 of soil erosion nationwide, accounting for 51% of the total land area,
including 1.79 million km2 of hydraulic erosion, accounting for 36% of the total soil erosion
area [11]. The most significant threat to soil erosion in the country is hydraulic erosion.
The main cause of hydraulic erosion is rainfall, where raindrops hit the soil and loosen
the soil particles, and where the soil tilt deviates by a percentage of 2%; the soil starts to
move downhill, and the impact of erosion is felt on all slopes, with more topsoil being
carried away as water moves downslope into valleys and streams, causing erosion [14]. The
accurate prediction of soil erosion is key to help address soil conservation and management
efforts, and is an important guide to quantitative soil erosion prediction, soil and water
planning, and other integrated soil erosion management.

There are many causes of soil erosion, such as geological features, climate, soil, veg-
etation, hydrology, and many other factors that influence it. A large number of research
scholars, at home and abroad, have conducted studies on soil erosion, and the models
that are currently available, such as the universal soil loss equation (USLE) model [15],
Revised Universal Soil Loss Equation (RUSLE) model [16], AGricultural Non-Point Source
Pollution (AGNPS) model [17], Annualized Agricultural Non-Point Source Pollutant (An-
nGNPS) model [18], water erosion prediction project (WEPP) model [19], and artificial
neural network (ANN) model [20,21] and Artificial Neural Network (ANN) model [22–24],
etc. Traditional models have poor computational accuracy and robustness, and do not meet
the criteria of real needs. It can be observed that the research into soil erosion has moved
from simple models to machine learning models, and in recent years there have been
many new machine learning classification methods for soil erosion problem prediction.
Dinh et al. [25,26] proposed the following two methods: the first is a proposed method
for predicting soil erodibility based on a combination of multivariate adaptive regression
splines and the social spider algorithm; the other is a method for predicting soil erodibil-
ity based on adaptive differential evolution and support vector classification. Fathizad
et al. [27] put forward a random forest model with a set of covariates that were used to
model the spatial and temporal dynamics of soil quality in the central Iranian desert, where
the coefficient of determination between the soil quality index and the covariates was set
to 0.69. Chen et al. [28] developed the different predictive performance of the boosted
linear model (BLM), boosted regression tree, boosted generalized linear model, and deep
boosting models, for piping erosion susceptibility mapping in Zarandieh watershed, which
is located in the Markazi province of Iran. Chowdhuri [29] investigated gully erosion sus-
ceptibility maps using the machine learning algorithms, including the boosted regression
tree, Bayesian additive regression tree, support vector regression, and the ensemble of the
SVR-Bee algorithm. Lee et al. [30] used decision tree, K-nearest neighbors, random forest,
gradient boosting, extreme gradient boost, and the deep neural network to evaluate the
rainfall erosivity factor estimation. Nguyen et al. [31] proposed multivariate adaptive re-
gression splines and random forest, and the boosting method includes cubist and gradient
boosting machines.

Although research in machine learning has been carried out in various fields for
many years, it is evident, in the soil erosion classification problem, that its application is



Electronics 2021, 10, 2115 3 of 24

still in relatively simple machine learning classification, such as support vector machine
(SVM) [32], k-Nearest Neighbor (KNN) [33], Random Forest (RF) [34], Gradient boosting
(GB) [35] and Extreme Gradient Boost (EGB) [36] etc. The KELM is a recent classification
prediction model proposed by G. Huang et al. [37] in 2011. The extreme learning machine
introduces the idea of the kernel, which guarantees a better generalization performance,
similar to SVM but with better generalization ability than SVM. It is a derivative of Extreme
Learning Machine (ELM) [38], a class of machine learning systems or methods built on
Feedforward Neuron Network for supervised and unsupervised learning problems. Shan
et al. [39] suggested a hybrid artificial fish particle swarm optimizer and KELM for the type-
II diabetes predictive model. Cai et al. [40] proposed Label Rectification Learning through
KELM. Zhang et al. [41] presented a prospective bankruptcy prediction model based on
LSEOFOA and KELM. Yu et al. [42] proposed an improved butterfly optimizer algorithm
optimized KELM model that was used to timely and accurately offered a dependable
basis for identifying the rolling bearing condition in the real production application. Shan
et al. [43] proposed that WEMFO was also applied to train KELM; the resultant optimized
WEMFO-KELM model was used to solve six clinical disease classification problems.

As we can observe from the above study, machine learning is constrained by parameter
settings. Swarm intelligence optimization algorithms are usually used as a good candidate
to optimize the parameters of individual machine learning classifiers, to obtain higher clas-
sification accuracy. The swarm intelligence optimization algorithm simulates the behavior
of groups of insects, animals, birds, and fish, which cooperatively search for food [44–49].
Each group member constantly changes the direction of their search by learning from its
own experience and the experience of other members [50–59]. Any algorithm or distributed
problem-solving strategy inspired by insect groups or other mechanisms of animal social
behavior is part of swarm intelligence [60–63]. These optimizers can be generally classified
based on many criteria [64,65]. The classical group-wise optimization algorithms are the
firefly algorithm (FA) [66], Runge Kutta method (RUN) (https://aliasgharheidari.com/
RUN.html (accessed on 25th August 2021)) [67], gravitational search algorithm (GSA) [68],
whale optimizer (WOA) [69,70], moth-flame optimizer (MFO) [69], bat algorithm (BA) [71],
Harris hawks optimizer (HHO) (https://aliasgharheidari.com/HHO.html (accessed on
25 August 2021)) [72], fruit fly optimization algorithm (FOA) [73–75], slime mould algo-
rithm (SMA) (https://aliasgharheidari.com/SMA.html (accessed on 25 August 2021)) [76],
Hunger games search (HGS) (https://aliasgharheidari.com/HGS.html (accessed on 25
August 2021)) [77], differential evolution (DE) [78], continuous ant colony optimization
(ACOR) [79], multi-verse optimizer (MVO), particle swarm optimizer (PSO) [80,81], simu-
lated annealing algorithm (SA) [82,83], sine cosine algorithm (SCA) [69], and grasshopper
optimization algorithm(GOA) [69,84], etc. However, we should notice that some of these
methods’ originality, such as GWO, BAT, and FA, is not high and criticized in several pa-
pers [44,85,86]. Meanwhile, there are many corresponding improvement algorithms, such
as enhanced comprehensive learning particle swarm optimizer(GCLPSO) [87], random
spare ant colony optimization (RCACO) [88], enhanced whale optimizer with associative
learning (BMWOA) [89], enhanced GWO with a new hierarchical structure (IGWO) [48],
hybridizing grey wolf optimization (HGWO) [90], boosted GWO (OBLGWO) [91] and
ant colony optimizer with random spare strategy and chaotic intensification strategy
(CCACO) [88], etc. MFO is a novel meta-heuristic algorithm for solving optimization prob-
lems. The main inspiration for this optimization is the method of navigation used by moths
in nature, namely, lateral orientation. Night moths fly by maintaining a fixed angle relative
to the moon, which is a very efficient mechanism for moving long distances in a straight
line. The MFO algorithm is widely used in many engineering and optimization problems,
but the principles and structure of the MFO algorithm are relatively simple [92,93]; it
suffers from the pool exploration problem and is prone to falling into local or deceptive
optimization (LO) during successive iterations. Many researchers have recently worked
on adding improved mechanisms based on the MFO algorithm to address these problems.
This paper uses a novel SMFO [94] algorithm that introduces a sine–cosine strategy into

https://aliasgharheidari.com/RUN.html
https://aliasgharheidari.com/RUN.html
https://aliasgharheidari.com/HHO.html
https://aliasgharheidari.com/SMA.html
https://aliasgharheidari.com/HGS.html
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MFO, thus further improving the detection capability. The exploratory and exploitative
nature of the method and the convergence pattern are significantly improved, and are
validated in engineering optimization problems.

The framework of this paper is schematically shown in Figure 1 below. This paper uses
the SMFO-KELM approach, choosing a dataset of 236 samples from the Son La province of
Vietnam, and constructing a prediction and validation model using ten explanatory factors
as features. Firstly, we use the five-fold crossover method for optimizing the parameter
settings of the KELM; secondly, we use the ten-fold crossover validation method for
classifying soil erosion predictions; and finally, we compare six original algorithm models,
such as BA-KELM models, and four improved algorithm models, such as CLOFOA-KELM.
The experimental results show that the adopted SMFO-KELM method can obtain much
higher soil erosion classification prediction results.
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In summary, the main contributions of this paper are as follow:
1. A new and improved swarm intelligence optimization algorithm SMFO combined

with the machine learning model KELM is proposed.
2. SMFO is applied for the first time, applied to optimize and determine key parame-

ters in KELM.
3. The first application of SMFO-KELM to a soil erosion classification prediction model.
4. SMFO-KELM classification prediction results of soil erosion are significantly higher

than other algorithms, in the following four aspects: accuracy, Matthews correlation
coefficient, sensitivity, and specificity.

The chapters of this paper are structured as follows: Section 2 presents the materials
and methods, mainly including the methods SMFO, KELM, and the dataset. Section 3
presents the experimental results and evaluation indicators. Section 4 is the discussion and
outlook section.

2. Materials and Methods
2.1. Dataset

This paper uses a soil dataset from two limited experimental areas eroded by heavy
rainfall in the north-western city of Vietnam—Son La Province, during three years from
2009 to 2011 [26], shown in Appendix A Table A1. The area has a tropical monsoon climate
with higher levels of soil erosion from heavy rainfall than at other latitudes, so the area
chosen as the site for the experiment has apparent contrasting data. The 4 m × 18 m
plots were selected as unit plots, and there are 24 such plots; the shape of the plots was
chosen randomly without restriction. In order to ensure the accuracy of data acquisition,
the explanatory factor data were acquired using surface runoff subsurface set water pipes,
OC measurements with the carbonate component removed followed by a C/N analyzer,
transect methods for coverage, and interpolation techniques for residues, respectively.
Cultivation methods, fertilizer application, and soil conservation measures are all based
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on the traditional farming practices of local farmers. Based on the multi-model for soil
erosion prediction as a comprehensive reference and the experimentally obtained data, the
following ten explanatory variables were identified as explanatory factors for conducting
soil erosion classification, as shown in Table 1 below.

Table 1. Influencing factors of soil erosion.

Factors Unit Variables Min Max Mean Std.

EI30 % X1 0.00 3008.93 134.77 385.10
Slope degree % X2 24.83 34.77 28.85 2.39
OC topsoil % X3 0.89 2.79 1.86 0.56
pH topsoil % X4 5.13 7.06 5.75 0.56

Bulk density g/cm3 X5 1.23 1.58 1.39 0.08
Topsoil porosity % X6 46.34 59.48 52.36 3.15

Topsoil texture (silt fraction) % X7 31.35 37.71 33.82 1.48
Topsoil texture (clay fraction) % X8 18.61 38.35 30.03 4.67
Topsoil texture (sand fraction) % X9 29.66 46.51 36.15 4.12

Soil cover rate % X10 1.05 99.71 53.51 25.36

Where EI30 is the extended peak rate of disengagement and runoff over 30 min. The
following formula gives the storm energy E:

E = 1099[1− 0.72 exp(−1.27i)] (1)

where i is the 30-min maximum intensity. The multiplication of E and I 30 provided the
dynamic rainfall energy (EI), a combination of the total and peak intensities in each storm.
This number represents the combination of particles detachment and transport capabilities.

Slope degree is the degree of slope in the terrain, i.e., the length and gradient of the
slope. It is a key factor in soil erosion. The steeper and longer the slope, the more runoff
accumulation it causes and the greater the probability of soil erosion. These data were
collected using a Nikon Forestry (550) inclinometer to measure the slope of the plots.

Soil erodibility is also affected by permeability, structure, organic materials, and pH
value. Two simple soil characteristics, OC (organic carbon) and pH, were used to apply
interpretive parameters to soil erodibility. OC was obtained with a C/N analyzer (minus
HCL), and pH was measured with a glass electrode using water-to-soil ratio of 2.5:1.

Bulk density, topsoil porosity, topsoil texture (silt fraction, clay fraction, sand frac-
tion), and soil cover rate are important influencing factors normally used by traditional
models [95].

In the model prediction of soil erodibility, we ultimately aim to classify the samples
(related to each vector of the value of explanatory variables) into two categories, namely,
the following: “erosion category” or “non-erosion category”. To ensure the accuracy of the
experimental classification, we used the same criteria for soil loss as in [96], with samples
that lost more than 3 tons of soil per hectare being defined as ‘erosive’ and vice versa as
‘non-erodible’. The experimental data consisted of 236 data samples, with 50% erosion and
50% non-erosion.

2.2. KELM

Kernel function-based extreme learning machine (KELM), the extreme learning ma-
chine (ELM) algorithm, was combined with a kernel function to replace the feature mapping
of the implicit layer in ELM with a kernel function to form a kernel function-based ELM
algorithm. Because of the kernel function, the data features were up-dimensioned and
therefore could be divided more precisely.

ELM is a novel fast learning algorithm of single hidden-layer neural networks that
randomly initialize the input weights and biases, and obtains the corresponding output
weights. For every single hidden-layer neural network, assume that there are N arbitrary
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samples (xi, ti), where Xi = [xi1, xi2, · · · , xin]
T ∈ Rn, ti = [ti1, ti2, · · · , tim]

T ∈ Rm. A single
hidden L layer neural network with one hidden layer node can be represented as follows:

L

∑
i=1

βig
(
Wi·Xj + bi

)
= oj , i = 1, 2, · · · , N; j = 1, 2, · · · , N (2)

where g(x) is the activation function, Wi = [wi,1, wi,2, · · · , wi,n]
T is the input weight, βi is

the output weight and bi is the bias of the ith hidden-layer unit. Wi·Xj denotes the inner
product of Wi and Xj.

Minimal error in the output is the goal of single hidden-layer neural network learning,
expressed as follows:

N

∑
j=1
||oj − tj|| = 0 (3)

βi, wi, and bi exist, such that the following applies:

L

∑
i=1

βig
(
Wi·Xj + bi

)
= tj j = 1, 2, · · · , N (4)

It can be matrixed as follows:
Hβ = T (5)

where H is the hidden-layer node output, β is the weight of output, and T is the output
of desired.

H(W1, W2, · · · , WL, b1, b2, · · · , bL, X1, X2, · · · , XL) =

 g(W1·X1 + b1) · · · g(WL·X1 + bL)
...

. . .
...

g(W1·XN + b1) · · · g(WL·XN + bL)


N×L

(6)

where β = [β1m, β2m, · · · , βLm]
T , T = [t1m, t2m, · · · , tNm]

T .
In order to be able to train a single hidden-layer neural network, we want to obtain

Ŵi, b̂i, and the following:

||H
(

Ŵi, b̂i

)
β̂i − T|| = min

W,b,β
||H(Wi, bi)βi − T|| (7)

where i = 1, 2, · · · , N, which is equivalented to minimizing the loss function.

E =
N

∑
j=1

(
L

∑
i=1

βig
(
Wi·Xj + bi

)
− tj

)2

(8)

Some traditional gradient descent-based algorithms can solve such problems, but
the basic gradient-based learning algorithms require all parameters to be adjusted during
the iterative process. In the ELM algorithm, once the input weights Wi and the bias of
the hidden layer bi are determined randomly, the output matrix of the hidden layer H is
determined uniquely. Training a single hidden-layer neural network could be transformed
into solving a linear system Hβ = T. Moreover, the output weights β can be determined
as follows:

β̂ = H+T (9)

where H+ is the Moore–Penrose generalized inverse of the matrix. Meanwhile, there is
H+ = HT(HHT)−1. Moreover, it can be shown that the norm of the resulting solution
β̂ is minimal and unique. As a result, it can help achieve a powerful performance in
generalization and significantly increase learning speed.
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Kernel-based ELM was proposed in order to improve the ability of the ELM to gen-
eralize and outperform the least square-based ELM, and it is proposed to add a positive
constant C to the diagonal of HT , which is used to calculate the output weight β, we have
the following:

β = HT
(

I
C
+ HHT

)−1
T (10)

where the coefficient C is the penalty parameter, whereas I is the identities matrix.
Hence, the output function is defined below:

f (x) = h(x)HT
(

I
C
+ HHT

)−1
T (11)

A kernel matrix of the ELM is obtained by the following:

ΩELM = HHT : ΩELMi,j = h(xi)h
(
xj
)
= K

(
xi, xj

)
(12)

where K
(

xi, xj
)

is one kind of kernel function. For the output function, then there is
the following:

f (x) =

 K(x, x1)
...

K(x, xN)


T(

I
C
+ ΩEML

)−1
T (13)

The kernel implementation of the ELM, called KELM, has better stability and general-
ization capabilities than the basic ELM. The structure of the KELM model is schematically
shown in Figure 2, where the kernel function acts as an alternative feature mapping function
used to achieve the same mapping from the information input to the feature space. Hence,
the neural network’s output is independent of the feature mapping of the hidden layer, but
depends on the kernel function, which is explicitly provided. Both the feature mapping of
the hidden layer and the dimensionality of the feature space are not pre-defined.
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In this paper, use the Gaussian kernel function as the kernel function of KELM with
the following formula:

K(u, v) = exp
(
−γ||u− v||2

)
(14)

the penalty parameter C and the kernel parameter γ are two critical parameters in the
KELM model. The penalty parameter C defines the balancing act between the minimal
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fitting error and the model’s sophistication, and the kernel parameter γ determines the non-
linear mapping from the input space to a specific high-dimensional hidden-layer feature
space. In general, these two main parameters can be optimized by using appropriate
optimization algorithms in order to improve the performance of KELM better.

KELM is widely used to solve problems in areas such as parameter optimization and model
prediction because of its significant advantages in learning speed and generalization ability.

2.3. SMFO
2.3.1. MFO

The basic MFO was proposed in 2015 [47], intended to be a swarm intelligence
optimization algorithm based on moths’ spiral flight path mechanism in flight.

MFO is an evolution of the moth lateral positioning navigation mechanism found in
nature. At night, moths fly using the distant moon as a reference, which can be considered
as parallel light, and the moths adjust their flight direction according to the direction of the
light to the angle between themselves. Due to the proximity of the artificial flame, the moths
fly at a fixed angle to the flame, and the distance between the moth and the flame changes
continuously, eventually producing a flight path that spirals closer to the flame [97]. The
MFO algorithm has strong parallel optimization capabilities and good overall properties
for non-convex functions; the MFO algorithm can explore the search space extensively and
find regions with a greater probability of global optimality, as non-convex functions have a
large number of local optimality points [98–100].

By definition, moths and flames are two important components of the MFO algorithm.
We can observe this from Figure 3 above. The moths fly in d-dimensional hyper plane

(d = 1, 2, 3), search agents store their position in the matrix
→
M, and store the fitness value

of each moth in array OM. The flames are the best position that the moth had reached so

far, then they are stored in matrix
→
F . The fitness values of flames are stored in array OF.

Every moth updates its position depend on its flame, then the equation is as follows:

→
Mi =

→
S (
→
Mi,

→
F j) (15)

where
→
Mi indicate the i-th moth, Fj is the j-th flame after sorting, and

→
S is the spiral function.

This spiral function should fulfill the conditions below:
(1) The vector position of the initial point of the S function needs to be given first

before the MFO algorithm can perform the corresponding calculation.
(2) Before the end of each iteration of the MFO algorithm, the S function should

preserve the location of the optimal solution found in this iteration.
(3) The function’s magnitude is between the upper bound vector ub and the lower

bound vector lb. Considering these points, the equation is defined as follows:

→
S
(→

Mi,
→
F j

)
=
→
Di·ebt· cos(2πt) +

→
F j (16)

where b is logarithmic helix shape constant, t is values in the range [−1,1],
→
Di is the distance

of the i-th moth to the j-th flame, it can be calculated as follows:

→
Di =

∣∣∣∣→F j −
→
Mi

∣∣∣∣ (17)

The t parameter determines the step size of the moth’s next movement. Equation (16)
has limitations, as it only defines how the moth flies towards the flame, which makes the
MFO algorithm easily fall into a local optimum. To avoid this problem, an adaptive update
of the flame is required, and the number of flames is gradually reduced, reducing the
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computation time and improving the operation efficiency. The updated formula of the
flame is shown in Equation (18) as follows:

f lameno = round
(

N − k ∗ N − 1
T

)
(18)

where k is the number of current iterations, N is the maximum flame counts, and T indicates
the maximum iterations. When the end-of-iteration condition is satisfied, the best moth is
returned as the best obtained value.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 26 
 

 

 
Figure 3. The flight path of moths. 

The 𝑡 parameter determines the step size of the moth’s next movement. Equation 
(16) has limitations, as it only defines how the moth flies towards the flame, which makes 
the MFO algorithm easily fall into a local optimum. To avoid this problem, an adaptive 
update of the flame is required, and the number of flames is gradually reduced, reducing 
the computation time and improving the operation efficiency. The updated formula of the 
flame is shown in Equation (18) as follows: 𝑓𝑙𝑎𝑚𝑒 = round 𝑁 − 𝑘 ∗ 𝑁 − 1𝑇  (18)

where k is the number of current iterations, N is the maximum flame counts, and T indi-
cates the maximum iterations. When the end-of-iteration condition is satisfied, the best 
moth is returned as the best obtained value. 

2.3.2. SMFO 
SMFO [94] improves the global exploration capability of MFO by incorporating the 

SCA, which increases the diversity of initial solutions and frees the solutions from local 
distress. At the same time, the adjustment parameters in the positive cosine strategy in-
crease the accuracy of the optimal solution. 

The core of the sine and cosine strategy (SCA) is to modify the position of the initial 
state through the change in the mathematical function [101–103], which is shown in Figure 
4. The update of individual positions in the population relies on changes in the value of 
the sine and cosine function to randomly update the position of each individual in each 
iteration by using a multi-parameter adjustment, to ensure that the population remains 
diverse in the early stages and that individuals tend to localize in the later stages, eventu-
ally converging to the optimal solution. During each iteration, the state of the individual 
is updated using the following formula: �⃗� = �⃗� + 𝑟 × sin (𝑟 ) × 𝑟 �⃗� − �⃗� , 𝑟 0.5�⃗� + 𝑟 × cos (𝑟 ) × 𝑟 �⃗� − �⃗� , 𝑟 0.5 (19)

where �⃗�  is the position of the location of the current solution in 𝑖-th dimension at 𝑡-th 
iteration (solution), �⃗�  is the position of the location of the current optimal solution in 𝑖-
th dimension at 𝑡-th iteration (destination), whereas | | denotes the absolute value. 

Figure 3. The flight path of moths.

2.3.2. SMFO

SMFO [94] improves the global exploration capability of MFO by incorporating the
SCA, which increases the diversity of initial solutions and frees the solutions from local
distress. At the same time, the adjustment parameters in the positive cosine strategy
increase the accuracy of the optimal solution.

The core of the sine and cosine strategy (SCA) is to modify the position of the ini-
tial state through the change in the mathematical function [101–103], which is shown in
Figure 4. The update of individual positions in the population relies on changes in the
value of the sine and cosine function to randomly update the position of each individual
in each iteration by using a multi-parameter adjustment, to ensure that the population
remains diverse in the early stages and that individuals tend to localize in the later stages,
eventually converging to the optimal solution. During each iteration, the state of the
individual is updated using the following formula:

→
X

t+1

i =


→
X

t

i + r1 × sin(r2)× |r3
→
P

t

i −
→
X

t

i |, r4 < 0.5
→
X

t

i + r1 × cos(r2)× |r3
→
P

t

i −
→
X

t

i |, r4 ≥ 0.5
(19)

where
→
X

t

i is the position of the location of the current solution in i-th dimension at t-th

iteration (solution),
→
P

t

i is the position of the location of the current optimal solution in i-th
dimension at t-th iteration (destination), whereas | | denotes the absolute value.
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The parameter r1 defines whether the next position is searched between the solution
and the destination or beyond. It enhances the MFO algorithm global exploration capability.
Parameter r2 determines the next position update step. r3 is a random weight with a range
of values that decide the impact of the target destination on the current solution. r4 is
the random probability of switching between the sine and cosine function. The recurring
pattern of sine and cosine functions makes one solution relocate around another. To ensure
the use of the space that is identified between the two solutions, Equation (20) is introduced
as follows:

r1 = a− t
a
T

(20)

where t is the current number of iterations, T is the maximum number of iterations, and a is
a constant, generally set to 2. This formula can adaptively adapt the size of the parameters
for the exploration to gradually converge to the global optimum.

2.4. SMFO-KELM for Soil Erosion Prediction Method

The performance of models in machine learning is often closely related to hyper-
parameters. Initially, the “optimal” hyperparameter is usually found by manual trial to
find the best hyperparameter. However, the approach is inefficient, so swarm intelligence
optimization has been proposed to find the optimal hyperparameters. From the exper-
iments mentioned above comparing SMFO with other swarm intelligence optimization
algorithms, it can be observed that the proposed SMFO is significantly better than other
similar algorithms, in terms of exploration and detection capability, with competitive
convergence and balance effect, and it has undeniable advantages in the optimization of
SMFO in engineering problems [94]. The penalty parameters and kernel parameters of
the SMFO optimized machine learning method kernel extreme learning machine are used
to make more-accurate classification predictions for soil erosion classification prediction.
Figure 5 shows the proposed SMFO-KELM soil erosion classification prediction model
flowchart, which is mainly applied in the following two processes: model optimization
and classification evaluation. As with the machine learning validation approach, to obtain
reliable and unbiased results, the validation of the classification evaluation model uses a
ten-fold crossover to evaluate the classifier’s performance, where nine are the test set, and
one is the validation set. At the same time, the process of optimizing the two parameters
of the classifier uses a five-fold crossover validation, where five are the test set, and five
are the validation set. This experimental scheme can help to obtain unbiased estimates of
generalization accuracy and reliable results. The final evaluation of the metrics is carried
out by accuracy (ACC), Matthews correlation coefficient (MCC), sensitivity, specificity.
Due to random sampling, single 10-fold cross-validation will not be representative of the
accuracy of the classification. Therefore, the results of 10 10-fold crossover runs are run for
all methods to be averaged as the final result of the evaluation.

Two hundred and thirty-six soil erosion binary classification datasets from Son La city
of Vietnam were used to evaluate the SMFO-KELM model with ten explanatory factors of
EI30, slope degree, OC topsoil, pH topsoil, bulk density, topsoil porosity, topsoil texture (silt
fraction), topsoil texture (clay fraction), topsoil texture (sand fraction), and soil cover rate
as factors for classification assessment and SMFO for the KELM hyperparameter selection
stage optimization of the penalty parameter c and the kernel parameter γ.
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2.5. Experimental Environment

To ensure the fairness and validity of the experiments [62,64,104,105], all the algo-
rithms involved in the comparison in all experiments were conducted under the same
experimental conditions. The population size was set to 20, the maximum number of
evaluations MaxFEs was uniformly set to 100, and all algorithms were tested 30 times
independently to reduce the influence of random conditions. The searching spaces of the
two hyperparameters in KELM were set to C ∈

{
2−15, · · · , 215} and γ ∈

{
2−15, · · · , 215}.

All experimental results were evaluated using box plots with the following four metrics:
ACC, MCC, sensitivity, and specificity.

All experiments were performed on a computer with a 3.40 GHz Intel® Core i7
processor and 16 GB RAM; the coding was conducted using Matlab2018b.



Electronics 2021, 10, 2115 12 of 24

2.6. Measures for Performance Evaluation

For a binary classification problem, the actual values are only positive and negative,
and the actual predicted results will only have two values, 0 and 1. If an instance is positive
and is predicted to be positive, it is true positive; if it is negative and is predicted to be
positive, it is false positive, and if it is negative and is predicted to be negative, it is a
true negative, and if it is positive and is predicted to be negative, it is a false negative.
The most widely used classifications based on the above are ACC, MCC, sensitivity, and
specificity [106,107], which are used to assess the quality of the binary classification and
evaluate the proposed method’s performance.

ACC =
TP + TN

TP + FP + FN + TN
× 100% (21)

MCC =
TP× TN − FP× FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
× 100% (22)

sensitivity =
TP

TP + FN
× 100% (23)

speci f icity =
TN

FP + TN
× 100% (24)

The MCC is essentially a correlation coefficient between the actual classification and
the predicted classification, which can range from a value of 1, which indicates a perfect
prediction of the subject, to a value of 0, which indicates that the prediction is not a good
random prediction, and −1, which means that the predicted classification and the actual
classification do not agree at all. Sensitivity (also known as true positive rate) is the
proportion of samples that are positive that are judged to be positive, and specificity (also
known as true negative rate) is the proportion of samples that are actually negative that
are judged to be negative.

3. Results

Figure 6 shows the results of a comparison between SMFO-KELM and the six classical
primitive optimization algorithm classifiers MFO-KELM, BA-KELM, GSA-KELM, MVO-
KELM, GOA-KELM, and WOA-KELM, on a two-classification dataset of 236 features,
consisting of 10 features in the Son La province. These boxplots show that SMFO-KELM
obtained the best performance, in terms of ACC, MCC, sensitivity, and specificity. The
values obtained by BA-KELM, for all four metrics, ranked last. Furthermore, MVO-KELM
produced lower values for all four metrics, in terms of ACC, MCC, and specificity, except
for sensitivity, which means that MVO-KELM may be less effective in predicting soil
erosion than the other comparative methods. Furthermore, WOA-KELM produced better
means than BA-KELM, MFO-KELM, GSA-KELM, GOA-KELM, and MVO-KELM, in terms
of ACC, MCC, and specificity.

Figure 7 shows the performance of SMFO-KELM against four other advanced and
improved algorithmic classifiers in four metrics. It can be observed, very clearly, that
SMFO-KELM performs better than the other competitors in all four metrics. Except
for SMFO-KELM, HGWO-KELM outperformed the other ACC, MCC, and sensitivity
competitors, followed by OBLGWO-KELM, IGWO-KELM, and CLOFOA-KELM, who
achieved average values, in terms of ACC, MCC, sensitivity, and specificity, which were
lower than the other classifiers. This shows that the CLOFOA-ELM classifier is not a good
choice for soil erosion classification problems.
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It is clear from Figures 6–8 that the SMFO-KELM classifier generally outperforms the
other competing models in comparing classical optimized and advanced algorithmic classi-
fiers, since the SMFO optimizer that was used has the highest optimization power. All the
experimental results can be viewed in Appendix A Table A2. The improved KELM using
HGWO does not achieve champion classification performance; nevertheless, it is a second-
top optimizer in the competition. As per the features of the proposed model, the efficacy
of the proposed MFO method can be further investigated in dealing with more complex
problems, such as social recommendation and QOS-aware service composition [108–110],
energy storage planning and scheduling [111], image editing [112–114], service ecosys-
tem [115,116], epidemic prevention and control [117,118], active surveillance [119], large
scale network analysis [120], pedestrian dead reckoning [121], and evaluation of human
lower limb motions [122].
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4. Conclusions

The use of swarm intelligence optimization algorithms to optimize machine learning
parameters is becoming more widely used in the study of classification problems. These
types of machine learning algorithms perform better than the original machine learning
models. This paper proposes a robust and accurate machine learning method, SMFO-
KELM, effectively solving the soil erosion prediction problem. The model’s main idea is to
apply a new and improved MFO algorithm, SMFO, by optimizing the penalty parameter
c of the KELM and the generalization capability of the kernel parameter γ classifier. The
improved SMFO is proposed after integrating the positive cosine mechanism in the original
MFO. This approach provides higher performance, in terms of consistency in global
optimization, improves the balance between exploration and exploitation, and increases
the convergence speed.

From the results of the experiments in this paper, it can be concluded that, for the
discrete soil data classification problem, the SMFO-KELM model is significantly superior
compared to the MFO-KELM model. It can be observed that the positive cosine strategy
that was used by SMFO in the improvement strategy, has a positive effect on optimizing
the kernel limit learning machine parameter optimization; comparing this with other
algorithms, such as BA-KELM, CLOFOA-KELM, IGWO-KELM, and OBLGWO-KELM
models, it can be observed that SMFO-KELM outperforms several other classifier models
in solving soil erosion classification problems in four commonly used performance metrics.
Therefore, it can be derived that the usability of SMFO-KELM has been extended, and
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the proposed method can be considered as a valuable early warning tool for soil erosion
prediction systems, helping land management agencies to make scientifically accurate
decisions.

In addition, soil erosion prediction models can be combined with other optimization
algorithms, and the SMFO used can also be used for parameter tuning of other machine
learning models, such as KNN, support vector machine, and convolutional neural networks,
and can also be applied to deal with pest and disease image segmentation, feature selection
problems. Other potential applications, such as fertilizer effect function optimization,
reservoir regulation optimization, and combined irrigation and groundwater optimal
allocation, are also exciting topics for green sustainability in agricultural engineering.
More agricultural engineering optimization problems will continue to be investigated in
the future.
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Appendix A

Table A1. Soil erosion data.

No. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 Type

1 2044.01 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 42.09 1
2 975.56 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 25.91 1
3 2044.01 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 60.19 1
4 975.56 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 8.98 1
5 2044.01 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 54.96 1
6 1138.37 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 29.74 1
7 975.56 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 18.01 1
8 2044.01 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 51.12 1
9 2044.01 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 44.35 1

10 1138.37 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 23.59 1
11 975.56 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 9.65 1
12 976.92 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 5.99 1
13 975.56 34.77 1.42 6.72 1.37 51.87 32.73 24.33 42.93 29.9 1
14 975.56 29.8 1.53 7.06 1.58 59.48 36.31 18.61 45.08 30.56 1
15 3008.93 28.63 2.39 5.2 1.44 54.49 34.73 28.89 36.37 53.9 1
16 1270.46 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 10.54 1
17 1472.5 26.27 2.41 5.23 1.32 49.92 32.41 31.09 36.49 4.85 1
18 2044.01 34.77 1.42 6.72 1.37 51.87 32.73 24.33 42.93 47.03 1
19 1138.37 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 31.98 1
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20 1270.46 28.47 2.08 5.36 1.25 47.09 31.47 34.59 33.93 12.33 1
21 2044.01 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 59.98 1
22 975.56 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 26.91 1
23 975.56 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 7.65 1
24 3008.93 26.27 2.18 5.23 1.32 49.92 32.41 31.09 36.49 60.88 1
25 1138.37 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 27.69 1
26 2044.01 29.8 1.53 7.06 1.58 59.48 36.31 18.61 45.08 65.48 1
27 3008.93 28.03 2.27 5.54 1.3 49.07 33.93 30.15 35.92 44.96 1
28 1270.46 26.27 2.41 5.23 1.32 49.92 32.41 31.09 36.49 13.13 1
29 975.56 34.17 0.99 5.89 1.34 50.62 34.31 35.33 30.35 22.07 1
30 1138.37 34.77 1.42 6.72 1.37 51.87 32.73 24.33 42.93 44.29 1
31 685.09 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 14.97 1
32 1138.37 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 21.1 1
33 3008.93 28.47 2.35 5.36 1.25 47.09 31.47 34.59 33.93 58.07 1
34 685.09 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 12.75 1
35 263.04 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 6.74 1
36 550.22 28.47 2.08 5.36 1.25 47.09 31.47 34.59 33.93 24.66 1
37 2044.01 34.17 0.99 5.89 1.34 50.62 34.31 35.33 30.35 65.79 1
38 1472.5 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 3.69 1
39 973.58 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 9.73 1
40 192.8 26.27 2.41 5.23 1.32 49.92 32.41 31.09 36.49 18.75 1
41 2503.7 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 86.7 1
42 685.09 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 19 1
43 1138.37 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 35.06 1
44 88 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 12.06 1
45 550.22 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 21.08 1
46 2044.01 33.73 1.06 6.95 1.57 59.38 37.71 19.51 42.77 61.2 1
47 976.92 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 6.43 1
48 1138.37 34.17 0.99 5.89 1.34 50.62 34.31 35.33 30.35 26.56 1
49 1138.37 29.8 1.53 7.06 1.58 59.48 36.31 18.61 45.08 27.73 1
50 2503.7 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 82.31 1
51 973.58 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 18.13 1
52 973.58 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 8.29 1
53 976.92 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 17.52 1
54 2503.7 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 86.5 1
55 3008.93 28.37 1.95 5.15 1.23 46.34 33.07 32.09 34.84 66.18 1
56 550.22 26.27 2.41 5.23 1.32 49.92 32.41 31.09 36.49 26.25 1
57 976.92 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 5.1 1
58 2503.7 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 82.9 1
59 263.04 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 5.74 1
60 306.15 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 11.06 1
61 180.82 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 16.56 1
62 1969.39 28.63 2.39 5.2 1.44 54.49 34.73 28.89 36.37 87.25 1
63 685.09 29.8 1.53 7.06 1.58 59.48 36.31 18.61 45.08 29.65 1
64 3008.93 24.83 2.2 5.97 1.37 51.79 34.35 34.25 31.4 59.03 1
65 976.92 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 24.94 1
66 263.04 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 7.23 1
67 973.58 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 10.45 1
68 152.99 27.57 2.07 5.13 1.48 55.87 33.29 32.17 34.54 70.78 1
69 2503.7 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 89.3 1
70 89.52 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 6.37 1
71 3008.93 28 1.95 5.13 1.37 51.53 33.07 31.51 35.42 64.44 1
72 192.8 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 15.06 1
73 973.58 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 26.16 1
74 3008.93 27.9 2.34 5.5 1.34 50.69 35.81 29.23 34.95 61.5 1
75 685.09 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 16.08 1
76 184.93 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 18.07 1
77 89.52 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 8.04 1
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78 973.58 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 27.24 1
79 263.04 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 17.64 1
80 2503.7 34.77 1.42 6.72 1.37 51.87 32.73 24.33 42.93 87 1
81 685.09 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 29.52 1
82 976.92 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 25.61 1
83 973.58 29.8 1.53 7.06 1.58 59.48 36.31 18.61 45.08 30.44 1
84 3008.93 27.57 2.07 5.13 1.48 55.87 33.29 32.17 34.54 58.33 1
85 550.22 24.83 2.66 5.97 1.37 51.79 34.35 34.25 31.4 38.42 1
86 973.58 34.17 0.99 5.89 1.34 50.62 34.31 35.33 30.35 22.25 1
87 1270.46 28.03 2.38 5.54 1.3 49.07 33.93 30.15 35.92 30.71 1
88 682.46 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 52.7 1
89 685.09 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 27.86 1
90 85.74 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 13.55 1
91 1472.5 28.47 2.08 5.36 1.25 47.09 31.47 34.59 33.93 8.73 1
92 685.09 34.77 1.42 6.72 1.37 51.87 32.73 24.33 42.93 34.51 1
93 82.99 27.57 2.08 5.13 1.48 55.87 33.29 32.17 34.54 41.51 1
94 75.09 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 2.63 1
95 976.92 34.17 0.99 5.89 1.34 50.62 34.31 35.33 30.35 21.36 1
96 88 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 9.56 1
97 550.22 28.03 2.38 5.54 1.3 49.07 33.93 30.15 35.92 38.42 1
98 3008.93 26.33 2.79 5.91 1.37 51.75 34.69 34.29 31.01 66.21 1
99 184.93 26.27 2.41 5.23 1.32 49.92 32.41 31.09 36.49 22.5 1

100 89.52 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 7.48 1
101 192.8 28.03 2.38 5.54 1.3 49.07 33.93 30.15 35.92 34.01 1
102 550.22 28 2.14 5.13 1.37 51.53 33.07 31.51 35.42 29.34 1
103 82.99 28.47 2.15 5.36 1.25 47.09 31.47 34.59 33.93 30.78 1
104 973.58 34.77 1.42 6.72 1.37 51.87 32.73 24.33 42.93 30.48 1
105 88 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 27.89 1
106 88 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 11.23 1
107 270.98 28.47 2.35 5.36 1.25 47.09 31.47 34.59 33.93 54.14 1
108 88 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 26.64 1
109 862.96 28.63 2.39 5.2 1.44 54.49 34.73 28.89 36.37 41.05 1
110 388.7 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 86.91 1
111 263.04 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 25.93 1
112 89.52 34.77 1.42 6.72 1.37 51.87 32.73 24.33 42.93 28.75 1
113 88 34.77 1.42 6.72 1.37 51.87 32.73 24.33 42.93 31.63 1
114 685.09 34.17 0.99 5.89 1.34 50.62 34.31 35.33 30.35 23.51 1
115 263.04 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 25.19 1
116 862.96 28.47 2.35 5.36 1.25 47.09 31.47 34.59 33.93 46.59 1
117 85.74 26.27 2.41 5.23 1.32 49.92 32.41 31.09 36.49 16.88 1
118 388.7 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 86.43 1
119 136.44 33.73 1.06 6.95 1.57 59.38 37.71 19.51 42.77 59.12 2
120 0.13 33.73 1.06 6.95 1.57 59.38 37.71 19.51 42.77 66.79 2
121 0.07 26.27 2.39 5.23 1.32 49.92 32.41 31.09 36.49 92.23 2
122 51.22 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 32.17 2
123 152.99 32.33 2.64 5.6 1.41 53.11 33.21 35.47 31.32 78.9 2
124 0.01 26.5 2.3 5.39 1.38 52.05 32.65 29.37 37.98 76.61 2
125 248.37 28.03 2.38 5.54 1.3 49.07 33.93 30.15 35.92 67.52 2
126 0.07 26.5 2.3 5.39 1.38 52.05 32.65 29.37 37.98 89.2 2
127 0.01 29.8 1.13 5.7 1.34 50.58 31.99 38.35 29.66 78.39 2
128 0.06 27.9 2.34 5.5 1.34 50.69 35.81 29.23 34.95 78.29 2
129 1.59 28.03 2.25 5.54 1.3 49.07 33.93 30.15 35.92 42.49 2
130 0.02 26.27 2.41 5.23 1.32 49.92 32.41 31.09 36.49 12.47 2
131 2.09 29.8 1.13 5.7 1.34 50.58 31.99 38.35 29.66 78.27 2
132 6.82 28.63 2.39 5.2 1.44 54.49 34.73 28.89 36.37 88.05 2
133 0.01 27.57 2.08 5.13 1.48 55.87 33.29 32.17 34.54 54.61 2
134 4.61 29.8 1.13 5.7 1.34 50.58 31.99 38.35 29.66 74.21 2
135 41.92 27.9 2.34 5.5 1.34 50.69 35.81 29.23 34.95 94.48 2
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136 0.13 34.17 0.99 5.89 1.34 50.62 34.31 35.33 30.35 68.43 2
137 0.53 27.9 2.36 5.5 1.34 50.69 35.81 29.23 34.95 22.47 2
138 0.13 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 13.56 2
139 0.01 28.47 2.08 5.36 1.25 47.09 31.47 34.59 33.93 1.76 2
140 299.78 33.73 1.06 6.95 1.57 59.38 37.71 19.51 42.77 87.63 2
141 0.01 29.8 1.53 7.06 1.58 59.48 36.31 18.61 45.08 60.71 2
142 6.79 26.33 2.36 5.91 1.37 51.75 34.69 34.29 31.01 68.94 2
143 46.34 34.77 1.42 6.72 1.37 51.87 32.73 24.33 42.93 29.89 2
144 0.01 26.5 2.33 5.39 1.38 52.05 32.65 29.37 37.98 17.34 2
145 0.27 28.47 2.15 5.36 1.25 47.09 31.47 34.59 33.93 50.56 2
146 10.42 32.33 2.29 5.6 1.41 53.11 33.21 35.47 31.32 12.61 2
147 0.27 28.63 2.39 5.2 1.44 54.49 34.73 28.89 36.37 79.4 2
148 0.36 29.8 1.53 7.06 1.58 59.48 36.31 18.61 45.08 31.35 2
149 6.67 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 45.21 2
150 299.78 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 85.91 2
151 9.59 28.03 2.38 5.54 1.3 49.07 33.93 30.15 35.92 33.71 2
152 2.59 24.83 2.2 5.97 1.37 51.79 34.35 34.25 31.4 90.72 2
153 6.42 29.8 1.53 7.06 1.58 59.48 36.31 18.61 45.08 69.61 2
154 25.4 30.27 1.24 5.72 1.45 54.87 33.43 27.21 39.36 68.61 2
155 3.38 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 49.22 2
156 12.41 28.63 2.39 5.2 1.44 54.49 34.73 28.89 36.37 28.42 2
157 89.52 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 26.26 2
158 152.99 27.9 2.34 5.5 1.34 50.69 35.81 29.23 34.95 73.49 2
159 15.22 26.33 2.79 5.91 1.37 51.75 34.69 34.29 31.01 94.25 2
160 202.32 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 25.35 2
161 115.94 30.27 1.24 5.72 1.45 54.87 33.43 27.21 39.36 64.78 2
162 3.91 28.03 2.25 5.54 1.3 49.07 33.93 30.15 35.92 66.79 2
163 61.6 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 40.05 2
164 0.24 28.47 2.08 5.36 1.25 47.09 31.47 34.59 33.93 28.69 2
165 0 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 24.7 2
166 0.07 28.63 2.36 5.2 1.44 54.49 34.73 28.89 36.37 80.3 2
167 0.03 24.83 2.2 5.97 1.37 51.79 34.35 34.25 31.4 95.27 2
168 21.94 28.47 2.08 5.36 1.25 47.09 31.47 34.59 33.93 63.41 2
169 51.22 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 28.54 2
170 550.22 28.37 2.05 5.15 1.23 46.34 33.07 32.09 34.84 40.79 2
171 4.21 33.73 1.06 6.95 1.57 59.38 37.71 19.51 42.77 19.05 2
172 64.15 30.27 1.24 5.72 1.45 54.87 33.43 27.21 39.36 70.53 2
173 54.17 34.17 0.99 5.89 1.34 50.62 34.31 35.33 30.35 59.86 2
174 385.11 27.57 2.11 5.13 1.48 55.87 33.29 32.17 34.54 71.11 2
175 0.01 28 1.95 5.13 1.37 51.53 33.07 31.51 35.42 48.2 2
176 0.03 27.57 2.11 5.13 1.48 55.87 33.29 32.17 34.54 28.77 2
177 0.01 29.8 1.13 5.7 1.34 50.58 31.99 38.35 29.66 80.55 2
178 6.42 29.57 1 5.8 1.46 55.26 31.35 30.43 38.21 47.99 2
179 0.01 28.47 2.35 5.36 1.25 47.09 31.47 34.59 33.93 86.16 2
180 0.02 27.93 0.89 5.83 1.47 55.47 33.47 30.69 35.84 22.84 2
181 248.37 24.83 2.66 5.97 1.37 51.79 34.35 34.25 31.4 68.24 2
182 0.13 33.73 1.06 6.95 1.57 59.38 37.71 19.51 42.77 47.47 2
183 1.96 28.63 2.39 5.2 1.44 54.49 34.73 28.89 36.37 10.46 2
184 295.82 26.33 2.79 5.91 1.37 51.75 34.69 34.29 31.01 89.38 2
185 22.45 28.03 2.27 5.54 1.3 49.07 33.93 30.15 35.92 57.02 2
186 0.01 26.5 2.33 5.39 1.38 52.05 32.65 29.37 37.98 45.64 2
187 131.01 32.33 2.64 5.6 1.41 53.11 33.21 35.47 31.32 62.69 2
188 25.82 26.33 2.38 5.91 1.37 51.75 34.69 34.29 31.01 43.64 2
189 0.13 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 48.41 2
190 0.01 32.33 2.3 5.6 1.41 53.11 33.21 35.47 31.32 57.92 2
191 0.03 27.57 2.07 5.13 1.48 55.87 33.29 32.17 34.54 81.94 2
192 0.14 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 47.9 2
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193 0.72 26.27 2.41 5.23 1.32 49.92 32.41 31.09 36.49 24.38 2
194 0.01 28.03 2.27 5.54 1.3 49.07 33.93 30.15 35.92 70.92 2
195 0.01 32.33 2.29 5.6 1.41 53.11 33.21 35.47 31.32 80.56 2
196 0.38 27.9 2.18 5.5 1.34 50.69 35.81 29.23 34.95 66.79 2
197 0.01 26.33 2.36 5.91 1.37 51.75 34.69 34.29 31.01 63.38 2
198 57.23 29.8 1.13 5.7 1.34 50.58 31.99 38.35 29.66 82.15 2
199 0.53 26.5 2.33 5.39 1.38 52.05 32.65 29.37 37.98 25.72 2
200 6.74 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 17.21 2
201 1.36 26.33 2.79 5.91 1.37 51.75 34.69 34.29 31.01 41.61 2
202 0.01 28.37 2.05 5.15 1.23 46.34 33.07 32.09 34.84 83.99 2
203 0.03 30.27 1.24 5.72 1.45 54.87 33.43 27.21 39.36 81.04 2
204 0.42 32.33 2.64 5.6 1.41 53.11 33.21 35.47 31.32 52.59 2
205 6.82 26.33 2.79 5.91 1.37 51.75 34.69 34.29 31.01 95.3 2
206 180.82 28.03 2.38 5.54 1.3 49.07 33.93 30.15 35.92 35.11 2
207 131.01 26.33 2.79 5.91 1.37 51.75 34.69 34.29 31.01 58.84 2
208 0.01 28.37 2.05 5.15 1.23 46.34 33.07 32.09 34.84 17.44 2
209 0.79 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 19.32 2
210 766.63 26.5 2.3 5.39 1.38 52.05 32.65 29.37 37.98 74.62 2
211 34.74 24.83 2.66 5.97 1.37 51.79 34.35 34.25 31.4 31.81 2
212 17.58 28.63 2.39 5.2 1.44 54.49 34.73 28.89 36.37 11.52 2
213 3.32 28.37 1.95 5.15 1.23 46.34 33.07 32.09 34.84 67.05 2
214 14.81 28 2.14 5.13 1.37 51.53 33.07 31.51 35.42 33.43 2
215 152.99 28.63 2.39 5.2 1.44 54.49 34.73 28.89 36.37 65.34 2
216 0.03 28.17 1.33 6.38 1.48 55.8 34.99 24.95 40.05 63.29 2
217 0.1 34.17 0.99 5.89 1.34 50.62 34.31 35.33 30.35 94.6 2
218 6.16 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 21.81 2
219 4.35 29.6 1.46 6.68 1.41 53.12 33.19 20.29 46.51 76.4 2
220 0.01 28.17 1.2 6.59 1.37 51.75 34.93 27.57 37.5 14.91 2
221 230.39 26.5 2.3 5.39 1.38 52.05 32.65 29.37 37.98 81.91 2
222 0.01 24.83 2.66 5.97 1.37 51.79 34.35 34.25 31.4 59.49 2
223 0.03 24.83 2.2 5.97 1.37 51.79 34.35 34.25 31.4 84.78 2
224 0.03 26.5 2.07 5.39 1.38 52.05 32.65 29.37 37.98 96.62 2
225 6.82 32.33 2.64 5.6 1.41 53.11 33.21 35.47 31.32 97.64 2
226 61.6 34.77 1.42 6.72 1.37 51.87 32.73 24.33 42.93 36.87 2
227 6.16 34.17 0.99 5.89 1.34 50.62 34.31 35.33 30.35 68.71 2
228 9.8 30.2 1.28 5.85 1.4 52.69 36.19 27.95 35.86 39.13 2
229 1.79 28.03 2.25 5.54 1.3 49.07 33.93 30.15 35.92 44.54 2
230 10.42 28.63 2.32 5.2 1.44 54.49 34.73 28.89 36.37 1.05 2
231 15.87 28.37 2.07 5.15 1.23 46.34 33.07 32.09 34.84 65.08 2
232 0.42 28 1.95 5.13 1.37 51.53 33.07 31.51 35.42 48.18 2
233 25.4 29.8 1.53 7.06 1.58 59.48 36.31 18.61 45.08 66.82 2
234 21.94 28 2.14 5.13 1.37 51.53 33.07 31.51 35.42 64.13 2
235 682.46 26.33 2.38 5.91 1.37 51.75 34.69 34.29 31.01 61.97 2
236 0.38 28 2.17 5.13 1.37 51.53 33.07 31.51 35.42 39.53 2

Table A2. SMFO and other comparison algorithms 10-fold cross-validation results.

Algorithm Index Max Min Mean Std #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

SMFO accs 0.958333 0.791667 0.894384 0.056461 0.956522 0.956522 0.958333 0.875 0.916667 0.869565 0.916667 0.869565 0.833333 0.791667
SMFO sens 1 0.75 0.874073 0.099287 1 0.916667 0.941176 0.8 0.909091 0.909091 1 0.75 0.764706 0.75
SMFO spes 1 0.833333 0.923187 0.06527 0.923077 1 1 0.928571 0.923077 0.833333 0.857143 0.933333 1 0.833333
SMFO mccs 0.916667 0.585369 0.789217 0.111741 0.916057 0.916667 0.907485 0.741941 0.832168 0.742424 0.845154 0.707317 0.697589 0.585369

MFO accs 0.958333 0.695652 0.850906 0.069384 0.695652 0.875 0.869565 0.826087 0.916667 0.826087 0.875 0.833333 0.958333 0.833333
MFO sens 1 0.545455 0.805058 0.129786 0.545455 0.916667 0.8 0.833333 0.916667 0.75 0.75 0.846154 1 0.692308
MFO spes 1 0.818182 0.900335 0.070731 0.833333 0.833333 0.923077 0.818182 0.916667 1 0.9375 0.818182 0.923077 1
MFO mccs 0.919866 0.397276 0.706981 0.135508 0.397276 0.752618 0.734465 0.651515 0.833333 0.690849 0.713024 0.664336 0.919866 0.712525
BA accs 1 0.375 0.7875 0.213497 0.791667 0.833333 1 0.913043 0.958333 0.956522 0.608696 0.916667 0.375 0.521739
BA sens 1 0.375 0.775332 0.230311 0.769231 0.8 1 0.8 1 0.909091 0.7 1 0.4 0.375
BA spes 1 0.333333 0.794077 0.228935 0.818182 0.888889 1 1 0.928571 1 0.538462 0.833333 0.333333 0.6
BA mccs 1 −0.2582 0.572323 0.438456 0.585369 0.669342 1 0.832666 0.91878 0.916057 0.238462 0.845154 −0.2582 −0.0244

GSA accs 0.958333 0.695652 0.855435 0.081639 0.826087 0.791667 0.958333 0.869565 0.958333 0.791667 0.695652 0.913043 0.875 0.875
GSA sens 1 0.6 0.842946 0.118463 0.818182 0.866667 1 0.818182 0.888889 0.6 0.692308 0.916667 0.9 0.928571
GSA spes 1 0.666667 0.852056 0.10488 0.833333 0.666667 0.909091 0.916667 1 0.928571 0.7 0.909091 0.857143 0.8
GSA mccs 0.91878 0.389324 0.705087 0.16755 0.651515 0.547723 0.91878 0.74048 0.912871 0.573316 0.389324 0.825758 0.749159 0.741941
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Table A2. Cont.

Algorithm Index Max Min Mean Std #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

MVO accs 0.958333 0.695652 0.842572 0.083615 0.826087 0.75 0.958333 0.869565 0.958333 0.791667 0.695652 0.826087 0.875 0.875
MVO sens 1 0.6 0.83628 0.118855 0.818182 0.8 1 0.818182 0.888889 0.6 0.692308 0.916667 0.9 0.928571
MVO spes 1 0.666667 0.833874 0.10955 0.833333 0.666667 0.909091 0.916667 1 0.928571 0.7 0.727273 0.857143 0.8
MVO mccs 0.91878 0.389324 0.680314 0.171967 0.651515 0.466667 0.91878 0.74048 0.912871 0.573316 0.389324 0.659093 0.749159 0.741941

WOA accs 1 0.75 0.860145 0.071755 0.75 1 0.913043 0.833333 0.875 0.826087 0.875 0.833333 0.782609 0.913043
WOA sens 1 0.625 0.823689 0.128234 0.625 1 0.9 0.923077 1 0.769231 0.8 0.727273 0.692308 0.8
WOA spes 1 0.727273 0.893593 0.100358 0.8125 1 0.923077 0.727273 0.75 0.9 1 0.923077 0.9 1
WOA mccs 1 0.4375 0.723757 0.153443 0.4375 1 0.823077 0.669342 0.774597 0.664141 0.774597 0.669342 0.592308 0.832666

GOA accs 0.958333 0.695652 0.855435 0.081639 0.826087 0.791667 0.958333 0.869565 0.958333 0.791667 0.695652 0.913043 0.875 0.875
GOA sens 1 0.6 0.842946 0.118463 0.818182 0.866667 1 0.818182 0.888889 0.6 0.692308 0.916667 0.9 0.928571
GOA spes 1 0.666667 0.852056 0.10488 0.833333 0.666667 0.909091 0.916667 1 0.928571 0.7 0.909091 0.857143 0.8
GOA mccs 0.91878 0.389324 0.705087 0.16755 0.651515 0.547723 0.91878 0.74048 0.912871 0.573316 0.389324 0.825758 0.749159 0.741941

CLOFOA accs 0.958333 0.666667 0.830797 0.080856 0.782609 0.826087 0.666667 0.875 0.913043 0.791667 0.869565 0.791667 0.958333 0.833333
CLOFOA sens 1 0.714286 0.844316 0.099605 0.769231 0.75 0.8 0.846154 1 0.785714 0.888889 0.714286 1 0.888889
CLOFOA spes 1 0.571429 0.8421 0.114379 0.8 1 0.571429 0.909091 0.866667 0.8 0.857143 0.9 0.916667 0.8
CLOFOA mccs 0.919866 0.371429 0.672348 0.153658 0.564902 0.690849 0.371429 0.752618 0.832666 0.579538 0.734465 0.607808 0.919866 0.669342

HGWO accs 0.958333 0.695652 0.855254 0.074398 0.869565 0.833333 0.916667 0.869565 0.958333 0.791667 0.695652 0.826087 0.916667 0.875
HGWO sens 1 0.6 0.83283 0.139342 0.727273 0.933333 1 0.818182 0.888889 0.6 0.615385 0.916667 0.9 0.928571
HGWO spes 1 0.666667 0.858593 0.113401 1 0.666667 0.818182 0.916667 1 0.928571 0.8 0.727273 0.928571 0.8
HGWO mccs 0.912871 0.415385 0.711557 0.145478 0.76277 0.639064 0.842075 0.74048 0.912871 0.573316 0.415385 0.659093 0.828571 0.741941

IGWO accs 0.958333 0.695652 0.842572 0.083615 0.826087 0.75 0.958333 0.869565 0.958333 0.791667 0.695652 0.826087 0.875 0.875
IGWO sens 1 0.6 0.819497 0.134967 0.727273 0.8 1 0.818182 0.888889 0.6 0.615385 0.916667 0.9 0.928571
IGWO spes 1 0.666667 0.852208 0.102594 0.916667 0.666667 0.909091 0.916667 1 0.928571 0.8 0.727273 0.857143 0.8
IGWO mccs 0.91878 0.415385 0.683678 0.167058 0.659093 0.466667 0.91878 0.74048 0.912871 0.573316 0.415385 0.659093 0.749159 0.741941

OBLGWO accs 0.916667 0.782609 0.847101 0.046862 0.916667 0.869565 0.782609 0.782609 0.791667 0.875 0.875 0.833333 0.869565 0.875
OBLGWO sens 0.916667 0.666667 0.807326 0.078075 0.833333 0.875 0.666667 0.916667 0.764706 0.785714 0.818182 0.785714 0.727273 0.9
OBLGWO spes 1 0.636364 0.889754 0.108325 1 0.866667 0.857143 0.636364 0.857143 1 0.923077 0.9 1 0.857143
OBLGWO mccs 0.845154 0.536745 0.697367 0.102198 0.845154 0.723793 0.536745 0.580023 0.573316 0.777429 0.749159 0.676123 0.76277 0.749159
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