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Abstract: In the development of artificial intelligence (AI), games have often served as benchmarks
to promote remarkable breakthroughs in models and algorithms. No-limit Texas Hold’em (NLTH)
is one of the most popular and challenging poker games. Despite numerous studies having been
conducted on this subject, there are still some important problems that remain to be solved, such as
opponent exploitation, which means to adaptively and effectively exploit specific opponent strategies;
this is acknowledged as a vital issue especially in NLTH and many real-world scenarios. Previous
researchers tried to use an off-policy reinforcement learning (RL) method to train agents that directly
learn from historical strategy interactions but suffered from challenges of sparse rewards. Other
researchers instead adopted neuroevolutionary (NE) method to replace RL for policy parameter
updates but suffered from high sample complexity due to the large-scale problem of NLTH. In this
work, we propose NE_RL, a novel method combing NE with RL for opponent exploitation in NLTH.
Our method contains a hybrid framework that uses NE’s advantage of evolutionary computation
with a long-term fitness metric to address the sparse rewards feedback in NLTH and retains RL’s
gradient-based method for higher learning efficiency. Experimental results against multiple baseline
opponents have proved the feasibility of our method with significant improvement compared to
previous methods. We hope this paper provides an effective new approach for opponent exploitation
in NLTH and other large-scale imperfect information games.

Keywords: opponent exploitation; no-limit Texas hold’em; neuroevolution; reinforcement learning

1. Introduction

Poker is often regarded as a representative problem for the branch of imperfect
information games in game theory. It naturally and elegantly captures the challenges
of hidden information for each private player [1]. The complexity of its solving method
is much higher compared with perfect information games, such as Go [2]. As the most
strategic and popular variation of poker, Texas Hold’em poker has been widely studied
for years. AI researchers are working to find its solving method just as in AlphaGo or
AlphaZero. However, Texas Hold’em poker contains additional challenges of imperfect
information, dynamic decision-making, and misleading deceptions, as well as multistage
chip and risk management, etc., which restrict it from being solved perfectly by AI. Most
researchers are firmly convinced that the related technology behind the Texas Hold’em
Poker’s solution can be extended to multiple real-word applications, such as strategic
portfolio, auction, finance, cybersecurity, and military applications [3], and the promising
application prospect motivates continuous study until now.

Texas Hold ’em is an interactive decision poker game consisting of four stages: preflop,
flop, turn, and river. At each stage players can bet different amounts of money based on
private hands and public cards. They can only obtain rewards after taking a series of
sequential actions until there is only one player remaining or the end of the last river
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stage. According to the limitation of betting amount, Texas Hold’em poker can be divided
into either a limited game or a no-limit game. The number of their information sets are
about 1014 and 10162, respectively [4]. It is obvious that solving no-limit Texas Hold’em
(NLTH) is much more complex and resource-consuming, which makes NLTH an important
benchmark in the domain of large-scale imperfect information games. The most recent and
advanced progress of NLTH was achieved by two research teams from the University of
Alberta (UoA), and Carnegie Mellon University (CMU). They have almost simultaneously
put forward AI programs—Libratus (from CMU) [5] and DeepStack (from UoA) [6]—to
solve two-player NLTH in 2017, as well as a Superhuman AI—Pluribus (from CMU) for
multiplayer NLTH in 2019 [1].

Despite the above equilibrium-based solutions achieving highlight performances,
their lack of adaptability to opponents seems to be a problem. That is, no matter what kind
of opponents are there, these AIs always play the same way in order to ensure equilibrium.
This is usually not the exact solution we want.

Another approach to deal with this problem is opponent exploitation . Simply put,
opponent exploitation is a class of methods that specially design agents to target specific
opponents. Sometimes, this approach can achieve greater rewards from the opponents
than the equilibrium-based solutions, as it pursues the maximum individual utility against
current opponent strategy rather than equalize all possible opponent strategies indiscrimi-
nately. Related research for opponent exploitation in NLTH can be seen in several previ-
ously published studies [7–12], using advanced techniques including deep reinforcement
learning, neuroevolution, etc. While methods in these works show practical effectiveness,
there still exist some disadvantages that need to be improved. For example, due to the
multi-stage sequential decision process and high dimensional action/state space in NLTH,
the reinforcement learning (RL) method typically confronts the challenge of sparse rewards
that only obtain non-zero values at the final steps [9,10], whereas the neuroevolution (NE)
method typically suffers from high sample complexity and struggles to optimize a large
number of parameters [11,12]. Generally speaking, these problems can be summed up as
ineffective and inefficient learning. For opponent exploitation in a large-scale problem such
as NLTH, what we most want to achieve is not merely learning to exploit our opponents
as much as possible (effectiveness). We also want to make the learning process as fast as
possible (efficiency), which can greatly reduce the consumption of computing resources
and time. Thus, developing an effective as well as efficient learning method for opponent
exploitation in NLTH is the main motivation of our work.

In this paper, we propose a novel method combining neuroevolution (NE) with
reinforcement learning (RL) for opponent exploitation in NLTH. The key insight of our
method (NE_RL) is to incorporate NE’s ability to address the challenge of sparse action
reward in the RL framework by evaluating returns of entire game episodes (the amount
of chips you win/lose) to form a fitness metric. Additionally, RL’s ability to leverage
powerful gradient descent methods can in turn help improve the learning efficiency in
NE, which will greatly benefit the training process. In addition, NE_RL extends NE’s
population-based approach to build two separate populations that evolved by NE and
RL seperately. Synchronous interactions within and between the populations can make
the learning process more stable and robust. These improvements together make NE_RL
a more effective and efficient opponent exploitation method compared to the previous
NE- or RL-only methods. It should be noted that the NE method in this work refers to
using evolutionary computation to optimize the weights of neural networks with fixed
network topologies. The topologies or architectures are manually designed and improved,
as discussed in Section 3.2.

2. Background

How AI can solve Texas Hold ’em poker has been a major challenge in recent years.
One popular approach to achieve this goal is equilibrium-based solutions, which include
the most part of state-of-the-art algorithms [2,5,6,13]. However, these leading “game-
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solving” paradigms still have some deficiencies in some aspects. For example, they need a
large amount of computing resources to obtain so-called equilibrium solutions, and these
equilibrium solutions do not take into account any advantage of opponents’ weakness that
can be exploited, which corresponds to poor dynamic adaptiveness [14]. More importantly,
the theoretical guarantees of the equilibrium no longer stand in multiplayer settings [15].

Basically speaking, the equilibrium solutions work under the assumption that the
opponent is perfectly rational and then conduct a no-regret search or fictitious self-play
along the entire (or compressed) game tree so as not to lose in expectation, no matter what
the opponent does [16]. However, the assumption is makes it difficult to win often against
specific opponents (either weak or skilled). Alternatively, we can consider one’s goal as
learning to play and maximizing one’s rewards against some specific opponent groups
through repeated strategic interactions (which is exactly the core of NLTH). In such a case,
an equilibrium strategy is perhaps not so optimal and this is the problem that opponent
exploitation mainly deals with. To illustrate at a high level, opponent exploitation means
to win over one’s opponents as much as possible [17]. One possible approach to achieve
this goal is to explicitly identify opponents’ hand beliefs [8] or strategy styles [18] and
then make decisions accordingly. Similar methods can be collectively called “explicit
exploitation” and are quite easy to understand. However, these types of methods rely very
much on the accuracy of identification, which is as difficult (if not more) as solving the
game itself and requires either sufficient domain knowledge or a mass of labeled data.
Another possible approach called “implicit exploitation” seems to be more feasible [19].
Its main idea is to improve the rewards directly against the opponents through repeated
interactions and a policy optimization function, which is similar to the idea of reinforcement
learning. The biggest difference compared to “explicit exploitation” is that it does not
explicitly reason about exploitable information about the opponents but instead implicitly
learns to win through end-to-end training. Generally speaking, “implicit exploitation” is a
more effective and straightforward class of opponent exploitation methods. The opponent
exploitation methods mainly discussed in this paper all fall into this class.

In 2009, Nicolai and Hilderman first put forward the idea to use a neuroevolutionary
(NE) method in NLTH [12]. Their NE agent was composed of 35-20-5 feed-forward neural
networks, with a sigmoidal function applied at each level. However, their experimental
results showed that the skill level of the evolved agents is limited, even though evolutionary
heuristics such as co-evolution and halls of fame were used. In 2017’s AAAI conference,
Xun Li presents a NE method to evolve adaptive LSTM (Long Short Term Memory Network)
poker players featuring effective opponent exploitation [11]. His main contribution lies
in the introduction of the LSTM to extract useful features and learn adaptive behaviors in
NLTH. However, the use of the NE method needs a huge number of training episodes and
a large amount of computing resources to update generation by generation, mainly due
to high sample complexity facing a large-scale problem such as NLTH. Some researchers
instead tried to use more sample-efficient reinforcement learning (RL) methods to train
NLTH agents [9,10]. However, the multi-stage sequential decision process in NLTH with
sparse rewards imposes restrictions on the policy gradients optimization function in many
RL methods. As a result, efficient opponent exploitation in NLTH still remained a problem
to be solved in recent years. Combining the NE method with the RL method is a general
idea to complement each method’s flaws and use the strengths of both. In 1991, Ackley
and Littman first showed the combination of evolutionary and gradient operators to be
significantly more effective for agent survival in an uncertain environment [20]. In 1997,
Chowdhury and Li used “messy genetic algorithms” to overcome the disadvantages of
traditional RL techniques for fuzzy controllers [21]. In 2007, Lin et al. proposed R-HELA,
a “reinforcement hybrid evolutionary learning algorithm”, for solving various control
problems with uncertainty [22]. Later, in 2011, Koppejan and Whiteson presented the
“neuroevolutionary reinforcement learning” method for generalized control of simulated
helicopters and demonstrated that neuroevolution can be an effective tool for complex,
online RL tasks [23]. More recently, similar ideas have been applied to some small-scale
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video games [24,25]. Nevertheless, applying such ideas in large-scale games such as NLTH
has not been studied yet to the best of our knowledge.

In this work, we focus on the two-player and no-limit version of Texas Hold’em Poker,
i.e., Heads-Up No-Limit Hold’em (HUNL). In HUNL, two players compete for money or
chips contributed by both of them, i.e., the pot. At the beginning of each game, both players
are forced to post a bet into the pot, i.e., the blinds. Then each player is dealt two cards,
i.e., the hole cards, from a standard 52-card poker deck. The hole cards are private for the
receiver, thus making the states of the game partially observable. The game is divided
into four betting rounds: preflop, flop, turn, and river. The players act alternately in each
betting round. Players must choose one of the following actions when it is their turn to
act: call, check, raise, or fold. If a player chooses to call, that player will need to increase
his/her bet until both players have the same number of chips. If one player raises, that
player must first make up the chip difference and then place an additional bet. Check
means that a player does not choose any action on the round but can only check if both
players have the same chips. If a player chooses to fold, the game ends, and the other
player wins the game. When all players have equal chips for the round, the game moves on
to the next round. As the game proceeds, five cards are dealt face up on the table. Each of
them is a community card, and the set of community cards is called the board. Specifically,
the board is empty in preflop; three community cards are dealt at the beginning of the flop,
a fourth community card is dealt at the beginning of the turn, and the last community card
is dealt at the beginning of the river. The board is observable to both players throughout the
game. If neither player has folded by the end of the river, the game goes into a showdown.
In addition, at any point of the game, if a player who has moved all-in contributes no more
chips to the pot than the other, the game also goes into a showdown. In this case, unfinished
betting rounds are skipped, and the board is completed immediately. In a showdown, each
player combines the hole cards with the board and chooses five out of the seven cards (two
hole cards plus five community cards) to form the best possible hand. The player with the
better hand wins the pot. If the two hands are equally strong, the players split the pot.

3. Methods

This paper introduces a new method, NE_RL, for opponent exploitation in NLTH. It
incorporates NE’s indifference to the sparsity of reward distribution and RL’s gradient-
based method to improve learning efficiency. Figure 1 illustrates the hybrid framework
of NE_RL. It is divided into two parts by a dotted line. The left part shows a standard
off-policy RL agents’ training process and the right part is a standard neuroevolutionary
agents’ training process. The opponent pool contains a set of baseline opponent strategies
for training. At the beginning, two populations of agents are initialized with different
parameter distributions. Then, the individuals from the populations play full NLTH games
against one (or more) specific opponent(s) sampled from the opponent pool separately.
The populations are continuously updated by NE and RL respectively. The interactions be-
tween these two parts are arranged in the following ways (as shown by the red arrow): On
the one hand, the trajectories generated by the NE agents can provide diverse experiences
for the replay buffer to train the RL agents. On the other hand, we periodically use the
RL agents to replace the worst performing NE agents to inject gradient information into
the NE population (this process is abbreviated as transfer). There are several advantages
to these interactions. First, the recycling of the NE agents’ training data makes full use of
information from each agent’s experiences. Most samples can be used for further training
rather than simply being discarded. As a result, the learning efficiency is improved with
less game samples. Second, the gradient information provided by the RL agents can help
guide the evolving directions for the NE population, which leads to faster learning com-
pared to the NE-only method. Additionally, both the NE agents and the RL agents conduct
population-based training, which aims to produce moderate diversity and redundancy.
With diversity and redundancy, our method can explore the strategy space on a larger scale
during the learning process. We argue that these two properties respond well in practice to
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the challenges of large-scale and high-complexity problems such as NLTH. Experimental
results against multiple baseline opponents have proven the feasibility of our method with
a significant improvement compared to the previous NE and RL methods.

Opponent Pool

Experience
Buffer

Table

RL Populoation

Register

NE Population

M Agents

Selection

Register

Fitnesses

Mutation
Next

generation

Trajectories

Transfer

Trajectories

Policy
gradient

N Agents

Figure 1. High-level illustration of the NE_RL method for opponent exploitation in NLTH.

Further details are described in the following subsections on two levels: learning
methods and architectures. Section 3.1 separately introduces the learning methods (NE
and RL) used in our work. Section 3.2 mainly describes how to organically combine these
two learning methods together and then introduce the fundamental network architectures
that the learning methods can apply to.

3.1. Introductions of NE and RL

NE is a class of black box optimization algorithms typically used for neural network
(NN)-based modules [26]. Inspired by natural evolution, the general flow of NE is as
follows: At every iteration, a population of NN’s parameter vectors is perturbed by muta-
tion or a crossover operator and their objective function values (“fitness”) are evaluated.
The highest scoring parameter vectors are then recombined to form the population for the
next iteration. There are various implementations of NE depending on the specific problem
and context. In our method, in order to incorporate with RL we adopted a standard NE
algorithm that proceeds as follows: A population of NE agents is initialized with random
weights. They are then evaluated in interactions with the same opponent concurrently and
independently. Each agent’s cumulative rewards in the current generation are averaged
to serve as its fitness. A selection operator then selects a portion of the population for
survival with a probability commensurate with their relative fitness scores. The agents
in the population are then probabilistically perturbed through mutation and crossover
operations to create the next generation of agents. A select portion of agents with the
highest relative fitness are preserved as elites and are shielded from the mutation step.

The RL population composed of multiple agents is initialized with different parameter
distributions and updated independently by the same RL method. The RL method in this
work typically refers to any off-policy reinforcement learner that utilizes a cyclic replay
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buffer R maintained by both the RL agents and the NE agents. Trajectories in R come
from separate game episodes that contain a tuple (st,at,rt,st+1), which refers to the current
state, action, observed reward, and the next state, respectively. Here we take a Deep Q-
learning Network (DQN) method as example to illustrate a representative learning process
of RL. First, compute the current state’s estimated Q-value via Q(s, a; θi) (θi refers to the
parameters of the Q-networks). The corresponding loss function is:

Li(θi) = Es,a ∼ρ(·)

[
(yi −Q(s, a ; θi))

2
]

where:

yi = Es′∼E [r + γ maxa′ Q(s′, a′; θi−1) | s, a]

Then, use an optimizer such as Adam to minimize the loss function and perform a
gradient descent update. Usually the policy of the DQN agent during training is a noisy
version of the learned policy: πb(st) = π(st) + Noise(t), where π(st) = argmaxQ(st, at) is
a greedy policy over the estimated Q-value at time step t and the value of Noise(t) decays
with t. The additional noise is for the purpose of exploration in the RL agents’ action space.

3.2. Combination of NE and RL

The main idea of our method, NE_RL, is using the advantages of the combination of
NE and RL. Algorithm 1 provides a detailed pseudocode as well as the complete procedure
of NE_RL. The size of the NE population (N), the size of the RL population (M), and the
size of the replay buffer R are important hyperparameters of the algorithm. Genmax refers
to the max generations of algorithm updates. fNE and fRL are computed as each agent’s
fitness value via a Tournament function, which conducts ξ full game episodes and returns
averaged game results. The action–reward tuples of (si, ai, ri, si+1) are extracted from the
game episodes and restored in the replay buffer so that the RL agents can continually learn
from them. The RL agents use DQN to update their action-value function Q with weights
θ and yi represent the q-target value, which is then used along with the predicted q-eval
value Q(s, a ; θ) to compute the mean square loss function Li(θi). At first sight, one may
find it similar to a standard NE method. Compared to NE, which just uses episodes to
compute a fitness score, NE_RL also looks into the episodes to extract experience to learn.
It stores both the NE agents’ and the RL agents’ experiences in its replay buffer R rather
than disregard them immediately. The RL agent can then sample a small batch from R and
use it to update its parameters by gradient descent. It is obvious that with this mechanism
we can extract maximal information from each individual experience and improve the
method’s sample efficiency.

As the fitness score captures an individual’s episode-wide return, the selection op-
erator imposes strong pressure in favor of individuals with higher episode-wide returns.
Since the replay buffer consists of the experiences gathered by these individuals, this
process skews the state distribution towards regions with higher episode-wide returns.
This is a form of implicit prioritization that favors an experience with a higher long-term
return, and is effective for NLTH with long time horizons and sparse rewards. RL agents
using this state distribution tend to learn strategies to achieve higher episode-wide returns.
In addition, a noisy version of the RL agent is used to generate an additional experience
for the replay buffer. In contrast to the population of agents that explore by noise in their
parameter space (neural weights), the RL agents explore through noise in their action space.
These two processes complement each other and form an effective exploration strategy to
better explore the policy space.

The final procedure of NE_RL involves contributions from RL agents to NE population.
Periodically, the RL agents’ parameters are duplicated into the NE population; we define
this process as transfer. It is the key process in which the NE population can directly receive
the information learned through gradient descent. If the information from the RL agents
is good, it will survive the selection operator and pass on to the NE population via the
crossover operator. Otherwise, it will simply be discarded. Such a mechanism only allows
constructive information to flow from the RL agents to the NE population.
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Algorithm 1 Main procedure of NE_RL

1: Initialize a population of N NE agents popn and an empty cyclic replay buffer R
2: Initialize a RL agent Arl with weights θπ and make M copies to form a RL population

popm
3: Define a noise generator O
4: for generation from 1 to Genmax do
5: for agent A ∈ popn do
6: fNE, R = Tournament(A, ξ, noise = None, R)
7: end for
8: Rank the population based on fitness scores and conduct the selection, crossover,

mutation operators respectively
9: fRL, R = Tournament(Arl , R, noise = O, ξ)

10: Sample a random minibatch of T transitions (si, ai, ri, si+1) from R

11: Set yi =

{
ri, for terminalsi+1;
ri + γ maxa′ Q(si+1, a′; θ), for non-terminalsi+1

12: Update Arl by minimizing the loss: Li(θi) = Es,a ∼ρ(·)

[
(yi −Q(s, a ; θ))2

]
13: Copy popm into popn: for the M weakest set AM ∈ popn : AM ⇐ popm
14: end for
15:
16: function TOURNAMENT(A, ξ, noise = None, R)
17: Sample an agent Aopp from the opponent pool
18: Reset and register A, Aopp into the table
19: f itness = 0
20: for i = 1:ξ do
21: Choose action from policy at = A(st) + noiset
22: Send action at to game engine and receive reward rt as well as new state st+1
23: Store transition (st, at, rt, st+1) into R
24: f itness← f itness + rt and st = st+1
25: end for
26: Return f itness

ξ , R
27: end function

Up to now, we have provided a complete introduction of our NE_RL method. How-
ever, these introductions are all about the agents’ learning method, that is, how to combine
NE with RL at the method design level. In order to make such a hybrid learning method
possible to implement, the fundamental network architecture of the RL agents and the NE
agents should be the same. As shown in Figures 2 and 3, we introduce two architectures
that are used in our work.

Figure 2 is a prototype architecture mainly designed for early experiments on the
combination of the NE and RL methods (henceforth referred to Arc_pro). As seen in
Arc_pro, it receives inputs containing two sets of domain-specific features. One (game
feature encoding) is made up of detailed information about the current game in which the
agent is playing, and the other (opponent feature encoding) is a global vector that tracks
the overall performance (simply represented by frequency of actions) of the opponent
against which the agent is playing. They are concatenated to form the input tensor and
then transferred into hidden layers that consist of fully connected neural networks with the
size 512-1024-2048-1024-512. Additionally, the output tensor is mapped to the size of the
action space and transformed into an action-value vector. The action space is continuous
and infinite in NLTH; however, we observed that it could encourage more exploration by
discretizing the actions. This forced the actions to be non-smooth with respect to input
observations and parameter perturbations, and thereby encouraged a wide variety of
behaviors to be played out. Similar conclusions can be found in Salimans’s work [27].
This architecture is quite straightforward and easily compatible with both the NE and RL
methods. It is mainly used to carry out preliminary experiments to verify the feasibility
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of our method. In the next section we will show the experimental results obtained with
Arc_pro to effectively train NLTH agents to exploit weak opponents, such a random agents
(RA). Further introductions of game feature encoding rules are as follows:

• Current stage: The current street (preflop, flop, turn, or river) as a one-hot encoding.
It costs four features. It has to be a one-hot encoding as there is no continuity between
the streets and each has to be considered separately.

• Hand equity: The equity is the probability of winning the hand if all active players
went to the showdown. It is the only information about the cards that the player
gets. It is calculated by Monte-Carlo simulations. In each simulation a random hand
is given to the opponent, and random community cards are added to have a full
board. The winner of the hand is then determined. These results are then averaged to
estimate the equity. The simulations are repeated until a satisfying standard deviation
on the estimated equity is achieved. The tolerance is set to 0.1%. Note that the hand
range of the opponent is not explicitly modeled here, as random cards are distributed
to him. The equity calculation is the most time-consuming operation in the agent’s
decision making, and thus also the generation of game data is time-consuming. In the
implementation used it took approximately 10 ms. The repeated estimation and
comparison of hand strength is the reason for this relatively long computation.

• My investment: The investment of the player in the hand, normalized by the initial
stack.

• Opp’s investment: The investment of the opponent in the hand, normalized by the
initial stack. The investments summarize the importance of the current hand and may
describe the strength of the hand the opponent is representing.

• Pot odds: The pot odds are the amount of chips necessary to call divided by the total
pot. It is an important measure often used by professional players.

fc:512

concatenate

game feature encoding

opponent feature encoding

current stage

size: 4

pot odds

size: 1

opp's investment

size: 1

hand equity

size: 1

my investment

size: 1

fc:1024

opp's action freq

size: num_actions

fc:2048

fc:1024

fc:512

input

fc:num_actions

action-value vector

output

hidden layers
backward update by
gradient descent or

evolutionary operator

Figure 2. Arc_pro, a prototype architecture for the NE and RL agents. It receives domain-specific
inputs and transfers to output action values with several layers of full-connected (fc) neural networks.

Figure 3 shows an improved architecture compared to Arc_pro. The biggest difference
is the addition of an LSTM layer, a special class of recurrent neural networks that has
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been proven to be effective for dealing with sequential decision problems like NLTH.
Since strategies in NLTH are essentially based on sequences of actions from different
players, LSTM is directly applicable to extracting useful temporal features and learning
adaptive behaviors. When we use this architecture (henceforth referred to as Arc_lstm)
to train agents, the input features should be managed into episodic sequences. That
means that the game trajectories are no longer considered independent but as interrelated
within each episode. If an input feature implies the beginning of a game, the LSTM layer
will reset to the initialization state in preparation for processing new episodic sequences.
Therefore, the main advantage of Arc_lstm is that it captures the sequential nature of
NLTH and makes decisions depending on the context of the current game stage as well
as the opponent’s overall performance (see the opponent feature set introduced above).
It should be noted that in order to generate episodic continuous experiences, the replay
buffer must be managed in sequence and the random minibatch sampled from it must
contain full episodes rather than independent trajectories. This is another aspect that
differs from Arc_pro. Experimental results show that these additional settings can help
Arc_lstm achieve better performance against opponents whose strategy is relatively strong
and harder to exploit.

A single LSTM layer with size 50

fc:512

concatenate

game feature encoding

opponent feature encoding

fc:512

input

fc:num_actions

action-value vector

output

current stage

size: 4

pot odds

size: 1

opp's investment

size: 1

hand equity

size: 1

my investment

size: 1

opp's action freq

size: num_actions

new game clock

Bool value reset

Figure 3. Arc_lstm, an improved architecture compared to Arc_pro. The biggest difference is
the addition of an LSTM layer, which helps to extract useful temporal features and learning
adaptive behaviors.

4. Experiments

In this section, we present experiments conducted to evaluate the proposed NE_RL
method for NLTH. We first compared the performance of NE_RL with the NE- or RL-only
methods when training NLTH agents against weak opponents, such as random agents.
More specifically, these NLTH agents share the same architecture as Arc_pro but differ in
their learning methods (respectively including an evolutionary method, a policy gradient,
and the combination of both). With the feasibility of NE_RL validated, we stepped forward
to train agents to exploit relatively strong opponents but encountered the problem that
the NE method fails to learn anything after tens of thousands of episodes played, which
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also leads to a poor learning process for NE_RL. Then we used an improved architecture,
Arc_lstm, leading to a significant performance boost, thus further validating the role of
the additional LSTM in Arc_lstm. We then evaluated the performance of NE_RL with
Arc_lstm under a constrained situation in which training episodes were limited to 40,000.
Such a limitation is necessary to evaluate the efficiency of all of the learning methods from
a practical point of view, because the computational resource consumption grows linearly
with the total training episodes. Finally, we conducted ablation experiments to demonstrate
the effectiveness of the transfer process, which is the core mechanism within NE_RL for
incorporating evolutionary methods and policy gradient methods to achieve the best of
both methods.

In all experiments, we chose the two-player NLTH setting in order to focus more on
the method itself and leave the extension to multiplayer settings for future research. In
addition, we used an open-source toolkit—Rlcard [4]—to carry out all experiments, so as
to ensure reproduction of our results. All of the algorithms are based on PyTorch [28] and
run through a cloud server with 80 CPUs. The duration of the experiments ranged from
hours to tens of hours with multiple threads. The hyper-parameters of each algorithm and
related experimental details are as follows:

• NE population size N = 8
• RL population size M = 4
• Size of replay buffer R = 5× 104

• Learning rate in DQN = 5× 10−5

• Discount rate in DQN = 0.99
• Training batch size in DQN = 32
• Elite fraction in NE = 0.25
• Mutation rate in NE = 0.3–0.05, mutation strength in NE = 0.5–0.1

The mutation rate is set to linearly decrease from 0.3 to 0.05 while the mutation
strength linearly is set to decrease from 0.5 to 0.1.

• Number of game episodes in tournament function ξ = 2000
Since NLTH is a stochastic game with much uncertainty, 2000 independent full
episodes were tested to compute an averaged fitness score.

4.1. Preliminary Evaluation of NE_RL

The first experiment is a motivating example that validates the effectiveness of our
method. In it we used a chump opponent random agent (RA) to train NLTH agents with the
same architecture (Arc_pro) but different learning methods, and their performances were
evaluated periodically after a certain number of episodes played. Figure 4 (Left) shows the
comparative performances of methods in previous works (DQN, NE) and our proposed
method, NE_RL, which combines the mechanisms within DQN and NE. The rewards of
the agents were measured by the average winning big blinds per hand (bb/h for short,
each player was initialized with 50 bb for the beginning of each hand). Higher rewards
represent higher exploitation of the opponent. Specifically, the evaluation process ran every
100 training episodes for DQN and every evolutionary generation for NE and NE_RL.
During the evaluation process, another 2000 episodes were played against the RA for each
agent to compute an average reward, which was necessary in order to reduce the impact
of luck and uncertainty in NLTH. This experiment was conducted fivr times to compute
averaged performance with the standard error band. From the experimental result we
can see that the DQN agent learned faster with much less episodes and converged at
an exploitation level of about 8.5 bb/h, while the NE population typically needed many
more interactions against their opponent but could converge to the exploitability bound
computed by the local best response [29], owing to the population-based exploration.
We were also excited to see that the NE_RL agents inherited the advantages from both
methods and achieved better overall performance on sample efficiency as well as maximum
exploitation. Maximum exploitation means the largest amount of money one can win from
the opponent and sample efficiency means that the lowest number of training episodes
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needed to achieve converged performance. These together constitute the goal of our work
and the motivation to propose the NE_RL method.
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Figure 4. (Left) Comparative performance of NE_RL, NE, and DQN in training against the RA
opponent. (Right) Average selection rate of the transferred RL agents changes during the course of
evolution and plot with error bars.

This result validates the feasibility of NE_RL. It outperformed NE and RL by com-
bining the advantages of both methods. The interactions between NE and RL include
two types: the training episodes of the NE population are reused to provide diverse ex-
perience for the RL agents to train, while the trained RL agents periodically transfer to
the NE population to inject gradient information into the NE agents. In order to examine
whether such interactions truly help achieve improved performance, we ran additional
experiments logging how the transferred RL agents performed among the NE popula-
tion. Three evaluation indexes were used to log the frequency of these agents chosen as
elites, selected, or discarded during selection: elite_rate, selected_rate, and discard_rate,
respectively. As shown in Figure 4 (Right), during the course of evolution, the chosen rate
of the transferred RL agents remained stable. elite_rate and selected_rate indicate that
the gradient information played a role among the NE population and contributes to the
evolutionary direction. In other words, the NE population may spend fewer generations
to find its way to evolve with the help of gradient information, and the performance of
the population continually improves though the discard_rate of transferred RL agents is
high. This is due to built-in redundancies and diversities of population-based exploration
and exploitation.

In conclusion, the first experiment successfully validated our NE_RL method’s effec-
tiveness for opponent exploitation in NLTH and achieved significant improved perfor-
mance compared to previous NE- or RL-only methods. However, in this phase we only
chose a weak opponent that plays randomly for testing purposes. Further experiments
against stronger opponents will be introduced in the following subsection.

4.2. Learning to Exploit Baseline Opponents

The goal of our work is proposing a general method for opponent exploitation in
NLTH. The first experiment proved our method’s feasibility in NLTH games against a
weak opponent. In the next experiment, we introduced four stronger agents adopted
from an open-source NLTH platform [30]. They were designed according to specific rules
and characterized by human-like styles, namely Tight Aggressive (TA), Tight Passive
(TP), Loose Aggressive (LA), and Loose Passive (LP). Unlike the RA opponent that plays
randomly, these baseline opponents take actions based on their hand-strength whose
strategies are relatively strong. “Tight” means an opponent only plays a small range of
strong hands and “Loose” means the opposite. “Aggressive” means an offensive play
style while “Passive” means a defensive play style. Moreover, the TA opponent’s decision-
making mechanism also mimics human bluffing behavior and probabilistically takes
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deceptive actions, which makes it even harder to exploit. When we tried to do the same
thing to train agents against these baseline opponents as before, problems began to arise.
We observed that the NE method seems to make no progress even after tens of thousands of
training episodes. This led us to reflect on what went wrong, such as whether the network
architecture Arc_pro needs improvements to adapt to stronger opponents. The main reason
may be that the prototype structure of the neural network originally designed in Arc_pro
is not available for generating strategies against more complex opponents.

Inspired by previous works that highlighted a special class of recurrent neural net-
works, LSTM (Long Short Term Memory), as an effective and scalable model for NLTH,
we modified Arc_pro by adding a single LSTM layer between the input game feature
set and the hidden layers. The main purpose was to extract the temporal features from
opponents’ actions, which were simply neglected in the first experiment, since the RA
opponent just plays randomly and there is no temporal feature to extract at all. However,
if we want to exploit more experienced opponents, these extra features seem to become
critical. Figure 5 shows the comparative performance when we replace Arc_pro with
the improved architecture Arc_lstm and use the same NE method to train agents against
the baseline opponents (take TP for example). From the results we can see that the NE
method recovered to optimize its performance once equipped with Arc_lstm. We can now
conclude that Arc_lstm is a more suitable architecture to train NLTH agents. This is a
crucial improvement not only for the NE method itself but also for our NE_RL method,
since the NE method is the most important component of our NE_RL method. In the
following experiments we continued testing the feasibility of our NE_RL method with
Arc_lstm.
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Figure 5. Comparative performance between Arc_pro and Arc_lstm with the same NE method in
training against the TP opponent.

As we have emphasized in this work and validated in the first experiment, the NE_RL
method is supposed to be superior to the previous NE- and RL-only methods for opponent
exploitation in NLTH. With Arc_lstm we can now compare the performance between these
methods against the four baseline opponents to show more evidence of the superiority
of our method. As shown in Figure 6, we conducted four independent experiments
against each of the baseline opponents (TA, TP, LA, LP) to evaluate the performance of
opponent exploitation under different methods. Additionally, we set the maximum number
of training episodes to 40,000 to reflect both the sample efficiency and the exploitation
performance for each method. Together, these results suggest that our NE_RL method can
achieve maximum exploitation of the baseline opponents under limited training episodes.
By contrast, the NE method suffered from a lack of samples and the RL method could only
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converge to a sub-optimal performance under the same conditions. Similarly to the first
experiment, we further studied the role of interactions between the RL and NE methods
by tracking the elite_rate, selected_rate, and discard_rate of the transferred RL agents
within the NE population. Table 1 shows the averaged selection rate during the training
process for each baseline opponent. A high level of average discard_rate means that the
transferred RL agents were mostly discarded and the NE population is still the mainstream
of the NE_RL. The contributions of transferred RL agents are represented by elite_rate
and selected_rate. Though it was only a small fraction, it indeed made a big difference for
NE_RL, which outperformed both the NE and RL methods.
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Figure 6. Learning curves of different methods in training against the four baseline opponents: (a) TA, (b) TP, (c) LA, (d) LP.

Table 1. Selection rate for transferred RL agents within the NE population.

Elite Selected Discarded

TA 27.8± 2.7% 28.1± 3.3% 71.9± 2.5%
TP 4.0± 2.8% 5.7± 3.4% 94.3± 3.2%
LA 13.2± 6.0% 26.2± 6.9% 73.8± 10.3%
LP 14.9± 8.7% 24.4± 14.1% 75.6± 13.3%
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4.3. Ablation Experiments

Next, we used an ablation experiment to test how the strength of the transfer process
affects NE_RL’s performance. During the transfer process, the RL agents reinsert into the
NE population to provide learned gradient information. We define the strength of this
process as m, which represents the number of RL agents relative to the size of the NE
population. Suppose the size of the NE population is fixed; then, a higher m means a
stronger impact imposed on the NE population by the RL agents. Here we represented
m as a fraction of the size of the NE population and conducted contrast experiments with
different m values. Figure 7 shows the experimental results in training against all four
baseline opponents, with m ranging from 0 to 0.5, which means the the strength of the
transfer process changes from weak to strong. Typically, m = 0 represents the original NE
method and m = 0.5 represents a rather strong NE_RL method, which was commonly used
in the previous experiments. From those results, we can conclude that in general, different
m values may lead to visible performance differences, which indicates that the value of
m may be one of the most important hyper-parameters for NE_RL. In this experiment, it
seems that a higher value of m achieved better converging performance after a limited
number of 40,000 training episodes. However, this may not be true in all cases. It depends
on the specific experimental settings and we cannot draw a definite conclusion in this
paper. It may be a good topic to study further in future work.
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Figure 7. Ablation experiments on different RL population sizes, m, in training against the four baseline opponents: (a) TA,
(b) TP, (c) LA, (d) LP.
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5. Discussion

In this paper, we proposed a novel method for opponent exploitation in imperfect
information games such as NLTH. Since a NLTH-like game typically contains challenges of
sparse rewards and high complexity, the previous RL- or NE-only methods for opponent
exploitation struggle with poor optimal performance or low sample efficiency. Our NE_RL
method uses NE’s advantage of evolutionary computation with a long-term fitness metric to
address the sparse rewards feedback in NLTH and retains RL’s gradient-based method for
higher learning efficiency. Additionally, NE_RL recycles data generated by both NE and RL
populations and uses an experience replay mechanism for the off-policy RL method to learn
from them more than once, which can greatly help improve sample efficiency. Experimental
results against various opponents show that NE_RL outperforms the previous NE- and
RL-only methods with advantages of maximum exploitation and sample-efficient learning.

Apart from NLTH, we believe that our method can also be extended to other domain
problems with challenges of adversarial sequential decision-making processes and imper-
fect information. Future work based on this paper includes incorporating more complex
evolutionary sub-mechanisms to improve the standard NE operators used in NE_RL, or
incorporating more advanced off-policy reinforcement learning methods and techniques to
replace the currently used DQN in NE_RL. In addition, extending NE_RL to multiplayer
NLTH will be another exciting thread of research leading to wider application prospects.
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