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Abstract: Bearings are widely used in many steam turbine generator sets and other large rotating
equipment. With the rapid development of contemporary industry, there is a great number of
rotating equipment in various large factories, such as nuclear power plants. As the core component of
rotating machinery, the failure of rolling bearings may lead to serious accidents during the industrial
production operation. In order to accurately diagnose the fault status of rolling bearings, a novel long
short-term memory (LSTM) model with discrete wavelet transformation (DWT) for multi-sensor
fault diagnosis is proposed in this paper. The main purpose of this paper is to use the DWT-LSTM
model to diagnose the health of rolling bearings. Firstly, the DWT is used to obtain detailed fault
information in both different frequency and time scales. Then, the LSTM network is employed to
characterize the long-term dependencies hidden in the time series of the fault information. The
proposed DWT-LSTM method makes full use of the advantages of feature extraction based on expert
experience and deep network learning to discover complex patterns from a large amount of data.
Finally, the feasibility and efficiency of the proposed method are illustrated by comparison with the
existing methods.

Keywords: fault diagnosis; rolling bearings; multi-sensors; discrete wavelet transform; LSTM
network

1. Introduction

Modern industry is developing rapidly. Many factories, such as nuclear power plants,
have already used large rotating equipment for industrial production [1]. Rolling bearings
are widely used as main components in the rotating machinery and equipment of these
factories. In practice, the health status of rolling bearings is directly related to the safety of
equipment operation [2]. According to statistics, at least 40% of rotating machinery failures
are caused by the damage of rolling bearings [3]. The inability of rolling bearings will lead
to a severe failure of rotating machinery, which may endanger personal safety and causes
property damage. Therefore, it is of great practical significance to diagnose the rolling
bearing status effectively, promptly, and accurately.

The vibration signal contains important features that reflect the state of rolling bearing.
Therefore, an efficient way of fault diagnosis is to extract features from the vibration signal
generated by the rotating machinery in the running state [4]. In order to obtain useful
information from the vibration signal that can reflect the operating status of mechani-
cal equipment, various signal processing methods have been proposed, such as Fourier
transformation [5], wavelet transformation [6], etc. However, the above traditional signal
processing methods rely heavily on expert experience.

Due to the ability of deep feature self-learning, the deep learning method [7] has
been widely used in fault diagnosis recently, which neither requires manual intervention
nor relies on prior knowledge. Chiefly, auto-encoder (AE), convolutional neural network

Electronics 2021, 10, 2076. https://doi.org/10.3390/electronics10172076 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics10172076
https://doi.org/10.3390/electronics10172076
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10172076
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10172076?type=check_update&version=1


Electronics 2021, 10, 2076 2 of 13

(CNN), and long short-term memory (LSTM) are utilized for fault diagnosis. In [8,9],
AE was used to adaptively extract the fault features and classify the health condition of
the rotating machinery. As an efficient algorithm for deep learning, CNN is also used
for fault diagnosis of bearing [10]. In order to improve the diagnostic accuracy, a CNN
fault diagnosis method with wide first-layer kernels was proposed in [11]. Considering
the timing information of vibration signal, LSTM has been further employed to handle
the long-term dependencies during the fault diagnosis [12,13]. In order to overcome
the shortcomings of the shallow structure, a fault diagnosis algorithm based on stacked
LSTM was proposed [14]. A new bearing fault diagnosis method, dense convolutional
neural networks (ADCNN), was proposed in [15], which considers the temporal coherence
of the data samples by combining dense convolution blocks and attention mechanisms.
Multi-scale analysis of data helps to obtain richer features and improve fault diagnosis
capabilities. In [16], Chen et al. used multi-scale CNN with different core sizes to extract
different frequency features, which were sent to stacked LSTM and softmax to classify
different fault states.

Since the vibration signal obtained from a single sensor may not contain full fault
information, a CNN-based multi-sensor fusion method for the fault diagnosis of rotating
machinery was proposed in [17]. In [18], the features of multiple sensors are extracted
through the deep belief network (DBN), and the softmax classifier results are combined
with the Debster–Shafer evidence theory to obtain accurate fault prediction. Multi-sensor
input methods can get more fault characteristics, which can improve the accuracy of
fault diagnosis.

Although the above end-to-end deep learning fault diagnosis methods have good
performance, the diagnosis model is trained blindly only according to the obtained data,
which leads to poor robustness. Professional knowledge and prior information are very
important in the fault diagnosis process. Combining the advantages of professional ex-
periences and deep learning technology, the complexity of fault diagnosis model can be
effectively reduced, and the diagnosis accuracy can also be improved [19–21].

In this paper, in order to accurately identify different fault states of rolling bearing,
a novel LSTM model with discrete wavelet transformation (DWT) for multi-sensor fault
diagnosis is proposed. Sufficient fault information in different frequency bands on multiple
scales can be obtained through the DWT, which can fully reflect the fault characteristics.
The multi-scale data are fused as the input of the subsequent LSTM model to classify the
health condition of the rolling bearing. The reliability and superiority of the proposed
diagnosis framework are verified by comparison with other deep learning methods. There-
fore, it can be concluded that the proposed algorithm has a higher fault diagnosis accuracy.
The main contributions of the proposed fault diagnosis method are summarized as follows:

1. Multi-scale features from multiple sensors are fused in the proposed method for
improving the model’s performance.

2. The professional knowledge is used in the entire algorithm design process, which
can overcome the disadvantage of the blind training of the deep feature classifica-
tion model.

3. Accurately identifies 10 different fault types by using the proposed DWT-LSTM method.

The rest of this article is structured as follows: Section 2 presents the proposed DWT-
LSTM framework for fault diagnosis. The experimental data of a rolling bearing are
presented in Section 3, where the validation and discussion of the DWT-LSTM model are
also presented. Conclusions are presented in Section 4.

2. DWT-LSTM Fault Diagnosis Framework

The proposed DWT-LSTM framework architecture consists of five parts: multi-sensor
data layer, DWT multi-scale layer, data fusion layer, LSTM layer, and the fault classification
layer, which is shown in Figure 1.
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Figure 1. The architecture of the DWT-LSTM model.

The vibration signals from different sensors are collected first. Then, multi-scale
vibration data are obtained through the DWT. The multi-scale information is fused as the
input of the LSTM neural network for deep fault feature extraction. Finally, the softmax
layer is used to classify the fault type by calculating the probability of different bearing
fault states.

Compared with the LSTM model, the advantage of the proposed fault diagnosis
scheme is that the advantages of professional knowledge and the deep feature extraction
ability of deep learning are both considered. Furthermore, combined with the full fault
information from multi-sensors, the accuracy and robustness of the fault diagnosis model
can be improved significantly.

2.1. Discrete Wavelet Transform

In this section, DWT and multi-scale analysis are performed on the raw bearing fault
data to obtain comprehensive and detailed fault information. DWT can reflect the data
characteristics in both time and frequency. Through a series of expansion and translation
operations, the DWT can gradually refine the signal on multiple scales. It decomposes
the vibration signal into a number of sets, where each set is a time series of coefficients
describing the time evolution of the signal in the corresponding frequency band.

DWT can be used in time–frequency analysis that decomposes a signal in both the time
domain and frequency domain simultaneously [6]. Assuming that the original vibration
signal in the time series collected by the ith sensor is denoted as

{
Xi(t)

}
(i = 1, 2, · · · , N),

the DWT can be defined as:

DWT(j, k) =
1√
2j

∫ +∞

−∞
Xi(t)ψ∗

(
t− 2jk

2j

)
dt, (1)

where 2j and 2jk represent the scale and translation parameters, respectively. j, k are
integers. ψ represents the wavelet function. ψ∗ is the complex conjugate of ψ.

The multi-scale analysis of DWT is to perform multi-level DWT for the raw vibration
signal to obtain the approximate coefficients and detail coefficients under j levels of different
scales. The original signal Xi(t) passes through a set of low-pass and high-pass filters
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to obtain low-frequency bands (approximations) and the high-frequency bands (details),
respectively. Then, Xi(t) can be defined as:

Xi(t) = Aj +
j

∑
l=1

Dl , (2)

where Aj represents the approximate signals, Dj represents the detail signals of the jth
decomposition level. The multi-level analysis structure is shown in Figure 2. Then, the
signal in different frequency intervals, Yi(t), can be obtained.

… …

(t)iX

1D

2D

3D

1A

2A

3A

Figure 2. The tree structure of the multi-scale analysis.

Using the above multi-scale analysis of DWT repeatedly, the multi-level reconstructed
signals of N sensors can be obtained, which is then fused as the input of the subsequent
LSTM neural network by using the early fusion method, such as concat and add. Data
fusion can make full use of the fault characteristics of each frequency band, which may
enhance the performance of the LSTM fault diagnosis model. Here, the concat operation
of early fusion is adopted as the fusion method to directly concatenate data of different
frequency bands.

2.2. LSTM-Based Fault Classification

After the multi-scale analysis of DWT and data fusion, a time series of the signal
with rich fault information is obtained, which is denoted as {Mt}t=1,2,···. Then, the LSTM
neural network is used to establish the fault diagnosis model for rolling bearing, which can
solve the long-term dependence of traditional recurrent neural network (RNN). The LSTM
neural network is composed of multiple cells, and each cell has a forget gate, an input gate
and an output gate. The structure diagram of LSTM is illustrated in Figure 3.
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Figure 3. The basic structure of the LSTM network.

The signal running process can be divided into three steps in LSTM neural network:
Step 1: The processed signal Mt is input into the tth cell of the LSTM neural network.

The forget gate reads the output information ht−1 of the previous cell and the input
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information Mt of the current cell and determines how much of Mt and ht−1 remained
in the current state by using the sigmoid(σ) function to forget part of the information.
The output of the forget gate can describe as:

ft = σ
(

W f [ ht−1, Mt] + b f

)
, (3)

where W f is the weight, b f is the bias value of the forget gate.
Step 2: Determine how much new information is added to the current cell state. This

process includes two parts: (1) determine the information that needs to be updated through
the sigmoid function of the input gate: it = σ(Wi[ ht−1, Mt] + bi); (2) the content that
needs to be updated is generated through the tanh function: C̃t = tanh(Wc[ ht−1, Mt] + bc).
The input gate updates the current unit state by combining the above two parts: Ct =
ft ∗ Ct−1 + it ∗ C̃t.

Step 3: The output gate first uses the sigmoid function to control the degree of filtering
for the current cell state: Ot = σ(Wo[ ht−1, Mt] + bo); then, the output of the model is
ht = ot ∗ tanh(Ct).

The above representative features extracted by LSTM layer are fed into the fully con-
nected layer. Then, the output of the fully connected layer is used as the input of the softmax
classification layer for classification. By using the softmax function f (zc), the output is
mapped into a probability distribution. The softmax function can be defined as:

f (zc) =
ezc

∑n
c=1 ezc

, (4)

where zc is the output of the fully connected layer, n is the number of the classification type.

2.3. Implementation of the Proposed Fault Diagnosis Strategy

The flow chart of the proposed DWT-LSTM diagnosis process is shown in Figure 4,
and the general steps are summarized as follows.

Step 1: Rolling bearing fault vibration data for different loads and health conditions
are collected from several sensors with varying sampling frequencies.

Step 2: After DWT and multi-scale analysis, the vibration data obtained in the first
step are transformed into multi-scale fault data.

Step 3: The multi-scale fault data are fused to obtain rich and comprehensive vibration
information, which is labeled as various types of faults.

Step 4: The labeled dataset is divided into training set, test set and verification set.
Step 5: A LSTM network is trained, and the trained network parameters are used to

build the fault diagnosis model of rolling bearing.
Step 6: Finally, the test set is used to evaluate the performance of the trained DWT-

LSTM fault diagnosis model.
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Figure 4. Flow chart of the proposed diagnosis process.

3. Experimental Verification
3.1. The Description of the Dataset

In order to illustrate the proposed fault diagnosis method, a large number of fault
vibration data should be collected to train the deep neural network. The original experi-
mental verification data come from the drive-end accelerometer data of the Bearing Data
Center of Case Western Reserve University (CWRU) [22]. The test bench is mainly com-
posed of loading motor, drive motor, acceleration sensor and dynamometer. The tested
bearing is SKF 6205-2RS JEM deep groove ball bearing. The tested bearing supports the
drive motor spindle and is installed on the motor drive end and the fan. The acceleration
sensors at the end collects vibration signals, and the sampling frequency is 12 kHz and
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48 kHz, respectively. The bearing experiment platform of Case Western Reserve University
is shown in Figure 5.

Figure 5. The experimental platform of CWRU.

The experimental dataset contains four different fault states of rolling bearings: normal
state, inner raceway fault, outer raceway fault, ball fault. Each fault state has three different
fault damage diameters: 0.007 inches, 0.014 inches, and 0.021 inches. Data are collected at
four different speeds: 1730 r/min, 1750 r/min, 1772 r/min, 1797 r/min, corresponding to
different load conditions: 3 HP, 2 HP, 1 HP, 0 HP. In our simulation validation experiments,
data are collected using sensors with sampling frequencies of 12 kHz and 48 kHz.

3.2. Simulation Results and Analysis
3.2.1. Description of the Experimental Parameters

In the simulation experiment, the fused data are from both the 12 kHz sensor and
48 kHz sensor under four load scenarios. For each bearing condition, 1000 samples with
2048 data points have been collected from the four load conditions. The ten faulty bearing
conditions are included in the dataset, as shown in Table 1. In order to increase the
authenticity and reliability of the experiment, all datasets will be divided into training
sets, test sets, and validation sets at a ratio of 7:2:1 according to the principle of random
sampling. As a result, the training set has 7000 samples, the test set has 2000 samples,
and the validation set has 1000 samples.

LSTM contains 32 cells. The dense function is used as a fully connected layer, and
the dimension of the output layer is 10. The optimization function used is the Adam
optimizer, the learning rate is set as 0.001. The weight and deviation of the LSTM neural
network are updated using mini-batch stochastic gradient descent method with the batch
size of 128, and the epoch is 9. The python programming language based on Tensorflow
and Keras framework is used for simulation. All simulation experiments are run on
workstations with i9-10900K CPU and RTX 2060 SUPER GPU.



Electronics 2021, 10, 2076 8 of 13

Table 1. Conditions of the rolling bearing dataset.

Fault Type Injury Diameters (Inch) Sample Number Label

Normal 0 1000 0

B007 0.007 1000 1

B014 0.014 1000 2

B021 0.021 1000 3

IR007 0.007 1000 4

IR014 0.014 1000 5

IR021 0.021 1000 6

OR007 0.007 1000 7

OR014 0.014 1000 8

OR021 0.021 1000 9

In Table 1, Normal represents a normal state; B007, B014 and B021 respectively indicate
the ball fault with injury diameters of 0.007 inches, 0.014 inches, and 0.021 inches; IR007,
IR014 and IR021 denote the inner raceway fault with injury diameters of 0.007 inches,
0.014 inches and 0.021 inches, respectively; OR007, OR014, and OR021 represent the
outer raceway fault with injury diameters of 0.007 inches, 0.014 inches and 0.021 inches,
respectively.

Figure 6 shows the waveforms of the original vibration signals collected by the two
sensors. Sensor 1 and Sensor 2 are acceleration sensors with sampling frequencies of
12 kHz and 48 kHz, respectively. From Figure 6, it is difficult to directly identify the types
of bearing fault through visual observation. Therefore, it is necessary to extract the fault
characteristics to accurately identify the fault types.

Figure 6. Time-domain waveforms of raw vibration signals collected by two sensors.
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Before training the LSTM fault diagnosis model, the DWT is used to enrich the fault
information of the raw vibration signal by obtaining multi-scale signals with different fre-
quency bands. The vibration signal is the measured acceleration signal. In the experiment,
the db10 wavelet is chosen as the wavelet basis function, and the number of decomposition
layers is 5.

For example, the raw vibration signal collected by sensor 1 (12 kHz) with the fault
type of OR021 under the load condition of 2 HP can be decomposed into signals of different
frequency bands, which is shown in Figure 7. As the DWT decomposition mentioned in
Section 2.1, A5 represent the approximate signals, and Dj(j = 1, 2, · · · , 5) represent the
detail signals of the jth decomposition level.

Figure 7. The waveform of the reconstructed signal.

Since the sampling frequency of the original vibration signal in Figure 7 is 12 kHz,
the maximum frequency of the vibration signal is 6 kHz according to the Nyquist rule.
In addition, the frequency bandwidths of the approximate signals and detail signals in
Figure 7 are shown in Table 2.

Table 2. The frequency bandwidths of approximate signals and detail signals.

Approximate/Detail Signals D1 D2 D3 D4 D5 A5

Frequency band 3–6 kHz 1.5–3 kHz 0.75–1.5 kHz 0.375–0.75 kHz 0.1875–0.375 kHz 0–0.1875 kHz

3.2.2. Single Sensor vs. Multi-Sensor

The real-time monitoring of rolling bearing is a complex process. The data collected
by a single sensor are often accompanied by noise, which makes it difficult to determine
the operating status of the bearing and the type of bearing failure accurately. In order to
solve this problem, multiple sensors are usually used to obtain the variation signal with
rich fault information. Then, it can be used to identify the fault type of bearings accurately
based on the proposed DWT-LSTM model. Table 3 shows the test accuracy of the single
sensor DWT-LSTM algorithm at different load conditions.

Among them, accuracy represents the ratio of the number of correctly classified samples
to the total number of samples.

accuracy =
TP + TN

TP + FN + FP + TN
, (5)

where TP, TN, FP and FN mean correctly classified as positive samples, correctly classi-
fied as negative samples, misclassified as positive samples and misclassified as negative
samples, respectively.
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The cross-entropy loss function is a way to measure the predicted value and actual
value of the neural network model. The loss function of this simulation is the cross-entropy
loss function. The cross-entropy loss function after softmax can be expressed as:

Loss = − 1
n

log( f (zc)), (6)

where f (zc) is softmax funtion, n is the number of the classification type.
It can be seen that the test accuracy of the proposed DWT-LSTM algorithm trained by

the data obtained from sensor 1 is higher than that trained by the data from sensor 2, except
for the load condition 2 HP. When using data from both sensors to train the DWT-LSTM
model, the fault diagnosis accuracy is generally high for all the load conditions. According
to the analysis of Table 3, the proposed multi-sensor-based DWT-LSTM algorithm has
better performance.

Table 3. Test results of the DWT-LSTM algorithm based on a single sensor and multi-sensor.

Load
Test Accuracy Sensor

Sensor 1 (12 kHZ) Sensor 2 (48 kHZ) Multi-Sensor

0 HP 99.70% 98.30% 99.00 ± 0.7%

1 HP 92.40% 90.60% 91.00 ± 0.8%

2 HP 93.10% 96.3% 94.00 ± 0.7%

3 HP 99.90% 93.60% 99.90 ± 0.2%

3.2.3. DWT-LSTM vs. Other Methods

In order to illustrate the superiority of the proposed multi-sensor-based DWT-LSTM
method, other fault diagnosis methods (LSTM, 1DCNN, Bi-LSTM, RNN and GRU) with a
single sensor under two different load conditions are also used to detect the 10 operation
states. Table 4 shows the comparison of the test accuracy, training time, and test loss of
the six different fault diagnosis methods. From Table 4, it can be seen that, under the load
condition of 2 HP, the test accuracy of the proposed method is higher than that of LSTM,
1DCNN, RNN and GRU. For the Bi-LSTM algorithm, although the accuracy is a little higher
(0.2%), the train time is much more than the proposed algorithm (1741.2 s vs. 527.8 s).
Furthermore, under the load condition of 0 HP, the accuracy of the proposed method is the
highest among all six fault diagnosis methods. Therefore, the overall performance of the
proposed multi-sensor-based DWT-LSTM algorithm is much better.

Table 4. Comparison of the accuracy of different algorithms.

Load Condition Sensor Type Algorithm Test Accuracy Train Time(s) Test Loss

Multi-sensor DWT-LSTM 93.30% 527.8 0.1751

LSTM 91.79% 518.1 0.2141
Sensor 1 1DCNN 83.99% 13.5 0.4446

2 HP (12 kHz) Bi-LSTM 93.50% 1741.2 0.2539
RNN 91.39% 125.9 0.2141
GRU 91.79% 793.0 0.2747

Multi-sensor DWT-LSTM 99.00% 520.8 0.0523

LSTM 82.89% 508.4 0.5020
Sensor 2 1DCNN 79.10% 12.5 0.7239

0 HP (48 kHz) Bi-LSTM 97.09% 1735.1 0.0631
RNN 86.59% 129.8 0.3913
GRU 94.80% 776.9 0.1350

By comparing the confusion matrix diagram in Figure 8 below, it can be found that
the accuracy of the proposed DWT-LSTM algorithm is much higher, and the number of
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classification errors is smaller. The reason is that the proposed DWT-LSTM algorithm
considers the multi-scale data of multiple sensors, and it can extract comprehensive fault
information. Comparing the 1DCNN algorithm with the LSTM algorithm, the accuracy of
the LSTM is higher than 1DCNN, which proves that LSTM has advantages in processing
time-series data. The performance of DWT-LSTM shows that it has significant benefits in
the rolling bearing fault diagnosis.

(a) DWT-LSTM (b) RNN

(c) LSTM (d) GRU

(e) 1DCNN (f) Bi-LSTM

Figure 8. Confusion matrix of fault diagnosis results by different algorithms.

4. Conclusions

Since both the advantages of human intelligence and strong adaptive learning ability
are considered, the combination of expert knowledge and the deep learning method could
improve the accuracy of the fault diagnosis of rotating machinery. In this paper, a novel
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DWT-LSTM model is proposed to identify the faults of rolling bearings across different
types and levels of severity. The proposed method is composed of two parts: (1) the DWT
method, which enriches the details of raw fault vibration signal through expert experience
and knowledge; (2) LSTM neural network, which solves the long-term dependence of
time-series data. Thus, the multi-scale data of multiple sensors are fused to enrich the
fault features to improve the accuracy of the DWT-LSTM model. The superiority of the
proposed method is verified through the comparisons against some of the typical existing
methods (1DCNN, RNN, GRU, LSTM and Bi-LSTM). From the simulation results, it can be
seen that the performance of the proposed multi-sensor-based DWT-LSTM algorithm is
generally better than other methods both in accuracy and speed.

The effective operation of the proposed DWT-LSTM fault diagnosis method is based
on the premise that the training set and test set obey the same distribution with plenty of
samples. However, in real engineering scenarios, rolling bearing usually works in normal
conditions, and there are few fault samples. Therefore, an accurate fault diagnosis strategy
should be investigated by using a few fault samples in future work.
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