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Abstract: This paper develops a data-driven remaining useful life prediction model for solenoid pumps.
The model extracts high-level features using stacked autoencoders from decomposed
pressure signals (using complementary ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) algorithm). These high-level features are then received by a recurrent neural network-gated
recurrent units (GRUs) for the RUL estimation. The case study presented demonstrates the robustness
of the proposed RUL estimation model with extensive empirical validations. Results support the
validity of using the CEEMDAN for non-stationary signal decomposition and the accuracy, ease-of-use,
and superiority of the proposed DL-based model for solenoid pump failure prognostics.

Keywords: empirical mode decomposition; CEEMDAN; deep feature learning; stacked autoencoders;
gated recurrent units; remaining useful life estimation

1. Introduction

Modern engineering practice is showing a strong dependence on artificial intelligence
(AI) for virtually all state-of-the-art solutions. Among these solutions is the use of bio-
inspired mathematical models with deep architecture machine learning (ML) and deep
learning (DL) methods for diagnostic and prognostic purposes [1,2]. Beyond the limitations
of traditional ML techniques, DL techniques come with diverse advantages including big
data compatibility, automated feature engineering, and ease-of-use; however, traditional
ML techniques like support vector machines, decision tress, logistic regression, etc. retain
their superiority on small data and low-end hardware. Basically, the success of state-of-the-
art data-driven predictive maintenance frameworks rely greatly on the effectiveness of the
DL-based diagnostic and/or prognostic algorithm at its core. This presents ample opportu-
nities for developing (and improving) high-performing generalized models for accurate
failure diagnostics and prognostics, even for unseen equipment working conditions [3].
Particularly for the remaining useful life estimation of equipment/components, several
articles have recorded various successes in the use of DL methods regardless of the types
and architecture of the artificial neural network (ANN) employed [4].

Generally, the success of DL methods for enhanced high-level transient and spectral
feature extraction from non-stationary signals and automated feature learning cannot be
overemphasized, particularly in this era of increasing demand for optimum reliability
from predictive maintenance algorithms on one hand and the availability of computational
resources on another hand. Their superior capabilities against the numerous traditional
statistical approaches for hand-crafted feature extraction are quite commendable since
they are capable of extracting both discriminative and prognosible features at multiple
levels [5,6]. For instance, with the aid of convolving filters and deep multi-layers, con-
volutional neural networks (CNNs) are capable of deep feature learning in supervised
cases—image recognition [7], fault diagnostics [8], anomaly detection, etc. [9]. This makes
them reliable stand-alone fault diagnostic tools. On the other hand, sparse autoencoders are
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robust for deep feature learning in unsupervised cases as presented in this study. More so, re-
current neural networks (RNNs) are also popular for learning transient dependencies, and
with the recent advancement in their traditional designs, state-of-the art RNN variants—
long short term memory (LSTM) and GRU neural networks are capable of long–range
memorization for accurate posterior estimations, with the latter more efficient than the
former [10]. Stacked autoencoders (SAE) provide automated feature representation (learn-
ing) capabilities from inputs; however, their efficiencies for identifying transient inputs are
limited [11]. This deficiency in capturing transient dependencies can be compensated by
employing a GRU which although similar to LSTMs, are less computationally expensive.

Generally, data-driven predictive maintenance relies significantly on the availability
and prognosibility of sensor data. This usually demands the use of multiple sensors and/or
multiple sensor-extracted features (in the case of a single-sensor situation) [4]. Because
most sensor measurements are non-stationary (with some background noise), signal de-
noising is almost a necessary pre-processing step to ensure that noise and/or insignificant
spectral components of the signals are excluded from the feature extraction and dynamic
modelling process. Interestingly, several sparsity-based and Bayessian filter-based de-
noising techniques have been developed over the years with remarkable efficiencies across
diverse applications. Among these is the empirical mode decomposition (EMD) which
decomposes signals into a series of complete orthogonal intrinsic mode functions (IMFs)
based on the local characteristic transient information in the signal [12]. Through the
Hilbert Huang transform (HHT), these finite IMFs produce instantaneous frequencies with
practical significance.

As a result, integrating a de-noising module for a more reliable feature learning does
not only ensure better prognostic results, but it also provides a verifiable standpoint from
which empirical validations can be drawn. To better understand this study, this paper is
structure thus: Section 2 discusses recent related works on DL-based prognostics and the
motivation for our proposed study while Section 3 introduces the proposed CEEMDAN-
assisted SAE-GRU prognostics model (and its dependencies). Section 4 presents the
experimental case study and results while the paper is concluded in Section 5.

2. Related Works

Sudden equipment failure remains a major challenge on profitability in industries. In
the quest for preventing this, the costly routine-based maintenance schemes seem outdated
and has motivated the development and integration of predictive maintenance modules
into production activities [2]. Ongoing research on reliability studies suggests that hy-
draulic components are some of the most complex systems to accurately monitor and has
motivated diverse prognostic and health management (PHM) methodologies for these
components—pumps, valves, actuators, etc. This complexity is a result of the thermody-
namic, fluid dynamic, mechanical, and electrical processes (not to mention uncertainties)
which simultaneously occur as the components are in operation [13]; nonetheless, vibration
monitoring, acoustic emission monitoring, and pressure monitoring are among the most
popular methods for pumps [4,14].

Solenoid pumps function by magnetization of the solenoids when electrical current
passes through the coil which causes the electromagnetic core to move against a spring
to slide a diaphragm into the discharge position. Consequently, the delivery (through
a nozzle) and suction pressures/flow-rates better reflect its operational performance so
a deviation from the ideal operating condition would be captured in the pressure mea-
surements. Notwithstanding the durability of pressure monitoring for solenoid pumps,
issues associated with sensor installation, calibration and signal conditioning result in the
inevitable corruption of sensor measurements by background noise. This prompts the
need for de-noising as a pre-processing step for accurate diagnostics/prognostics. Against
the limitations of envelope analysis which relies on the assumption of signal stationarity
and incognizance of transient information [15], and the discrete wavelet decomposition
technique which is limited by the choice of base wavelet [16], the EMD technique reserves
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its robustness for signal decomposition from which the IMFs provide reliable instantaneous
frequencies with practical significance [12]; however, in the quest for solving the resulting
mode-mixing problem caused by intermittent signals and minimizing the computational
costs, several variations have been proposed including the ensemble EMD (EEMD) by Wu
and Huang [17], the Complementary EEMD (CEEMD) developed by Yeh et al. [18], and
the most efficient of the varants—CEEMDAN developed by Torres et al. [19]. The CEEM-
DAN further improves the decomposition efficiency of the EMD and the other variants by
eliminating useless IMFs which are otherwise generated by the EMD and EEMD; thereby,
improving the computation efficiency.

At incipient failure stages, pressure fluctuations start to develop rhythmic behaviours
which typically contain several frequency components that vary across equipment compo-
nents. This only further validates the need for unsupervised deep feature learning/extraction.
For supervised feature extraction, CNNs are by far, the more reliable choice; however, the
case presented in this study in an unsupervised case which is implied by the multiple unla-
belled IMFs from the pressure signals. This presents an opportunity for the SAE to flourish
since they are efficient for learning deep feature representations from multiple inputs [20].
The deep feature learning capabilities of SAEs have been recorded for many purposes
including epileptic seizure detection [21], rotating machinery prognostics [6], anomaly
detection [14], and a host of many other applications. In [21], the authors used SAEs to
learn feature representations from multiple patient-specific scalp electroencephalograms
(EEGs) which were fed into logistic classifiers for epileptic seizure detection in humans.
Although the functionality of the SAEs for learning patient-specific seizure patters were
well reported, a more robust diagnostic tool may have further minimized the false detection
rate. Similarly, the authors of [6] proposed an explainable DL-based prognostic model in
which a sparse autoencoder model was employed for high-level feature extraction from
the Fourier transform of vibration signals which then constituted inputs for a feed-forward
neural network for the RUL prediction of rotating machinery. On the other hand, an
SAE-LSTM model was developed by the authors of [14] for detecting anomaly (fault) in
mechanical equipment in cases whereby knowledge about anomaly is absent. The SAE
feature learner accepts the outputs from a wavelet packet decomposition (WPD) process
and provides the learned features to the LSTM predictor for anomaly detection. Results
showed a 99% detection accuracy. Against the costs of these methods, the SAE-GRU comes
with better computational efficiencies due to the GRU integration.

Undoubtedly, the use of deep hybrid prognostics methods have recently proven
more reliable than traditional ML-based methods. Although the latter comes with strong
theoretical and empirical validations against the former, they are usually associated with
expensive assumptions, strenuous feature engineering procedures, and complex modelling
processes. On the other hand, the availability of super computational resources in recent
times has eased in the use of the more reliable DL methods for state-of-the-art predictive
maintenance practice [22]. On the bright side, findings suggest that GRUs are much more
efficient than the traditional time-series forecasting tools—RNNs and LSTMs with better
advantages including solving vanishing gradient problems, computational advantages,
better temporal modelling, and higher predictive accuracies [23,24].

3. Proposed CEEMDAN-Assisted SAE-GRU Model

The overall process for the RUL estimation is presented in Figure 1. The model receives
pressure signals from the transmitters and is received by the fault detection module which
is comprised by the CEEMDAN-based IMF extraction and SAE-based HI construction
sub-modules, respectively. The output of the fault detection module (when a fault threshold
is reached) is received by the GRU-based prognostics module for RUL estimation.
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Figure 1. Proposed RUL prediction model.

The outputs from the CEEMDAN-based IMF extraction sub-module are fed into the
SAE sub-module for deep feature extraction and health indicator (HI) construction. Fol-
lowing a successful training, a high-level single representation of the features is produced
at the SAE’s bottleneck which is then received by the GRU neural network for condition
assessment/monitoring and RUL estimation. In detail, the following subsections provide
the theoretical background of the constituent modules.

3.1. Fault Detection Module

Conventionally, in a reliable prognostics scheme, RUL estimation is by default, trig-
gered once there is a deviation from normal/healthy state of health in a target system—
when fault occurs. The comprehensive goal of our work is to model a high performing DL-
based framework that can effectively and readily predict RULs of equipment/components
with early automated warning capabilities. Invariably, its success relies on the effectiveness
fault detection module consisted by the CEEMDAN-based IMF extraction, SAE-based HI
construction, and the early warning/fault alarm sub-modules, respectively.

3.1.1. CEEMDAN-Based Decomposition

Over two decades ago, the EMD was proposed by Huang et al. [25] for time-frequency
signal processing. This algorithm outputs IMFs that are narrow-band components as
representation of input signals using the Hilbert transform. Sadly, this traditional tech-
nique results to mode-mixing problems caused by intermittent signals and prompted the
development of improved versions of the algorithm—EEMD and CEEMD—but because
their computational process is dependent on the addition of white noise to the signal, the
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overall cost of the decomposition is increased. Consequently, the CEEMD flourishes by
suppressing the residue of the added white noise in EEMD [18].

Since EEMD and CEEMD both rely on EMD, they both suffer identical frequency
resolution which ultimately results to inseparability problems between the relatively low
frequency and relatively high frequency components even for a reasonable number of
iterations. Fortunately, CEEMDAN offers superior solution by generating fewer IMFs on
the premise of separating different signal components by using the two algorithms. The
EEMD outputs the true modes as the average IMFs extracted from an ensemble of the
original signal plus white noise with different strengths. Given a non-stationary signals
X(t), the CEEMDAN is computed from the EEMD by following the steps below:

1. The mixed signals Xi(t) are obtained as the sum:

Xi(t) = X(t) + βω(i)(t) (1)

where β is the variance of added white noise, and ω(i)(t) (i = 1, ...; i) is a zero-mean,
unit variance white noises N(0, 1)

2. Decompose each Xi(t) using EMD to extract their first IMFs di
k(t) (k = 1, ..., N;) using (2).

d̃1(t) =
1
N

N

∑
i=1

di
1(t) = d1(t) (2)

3. At stage k = 1, calculate the first residue using (3)

r1(t) = f (t)− d̃1(t) (3)

4. decompose the realizations

r1(t) + ε1E1

(
ωi(t)

)
, i = 1, . . . , N

untill their first EMD mode, then compute the next mode using (4):

d̃2(t) =
1
N

N

∑
i=1

E1

(
r1(t) + ε1E1

(
ωi(t)

))
(4)

5. The kth residue (k = 2, ..., K) is generated by:

rk(t) = rk−1(t)− d̃k(t) (5)

6. Decompose realizations

rk(t) + εkEk

(
ωi(t)

)
untill their first EMD mode is reached , and define the (k + 1th) mode as:

d̂(k+1)(t) =
1
N

N

∑
i=1

E1

(
rk(t) + εkEk

(
ωi(t)

))
(6)

7. Repeat steps 4–6 untill the obtained residue does not have at least two extrema.
Consequently, the final residue becomes:

R(t) = f (t)−
K

∑
k=1

d̃k(t) (7)
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while the analysed signal is expressed as:

f (t) =
K

∑
k=1

d̃k(t) + R(t) (8)

One of the limitations of the CEEMDAN is the selection of the amplitudes of the
ω(i)(t); however, experts in the field suggest the use of large-amplitude values for low-
frequency-dominated signals and vice versa [19].

3.1.2. SAE-Based Feature Learning and HI Construction

Like most deep neural networks (DNNs), a typical AE architecture consist of an input
layer, hidden layer, and output layer whereby the hidden and output layers form the
encoder and decoder, respectively. Invariably, the encoder learns how to interpret the input
and compresses it to an internal representation defined by the bottleneck layer while the
decoder takes the output of the encoder (the bottleneck layer) and attempts to recreate
the input.

Supposing the extracted modes d̃k(t)εRd (k = 1, ..., K and d is the dimension) are
provided as inputs, the number of units in the input layer is d and the encoding of the AE
is obtained by a nonlinear transformation function using (9):

y = fe(Wd̃k(t) + b) = fe(X̃) (9)

where yεRh represents the hidden layer’s output—code(feature representation). h is
the number of nodes in the hidden layer while WεRhxd is the input-to-hidden weights.
fe is a nonlinear activation. The ReLu activation function is quite robust for regres-
sion/forecasting problems due to their superior advantage over other popular activation
functions—so f tmax, sigmoid, and tanh, for avoiding vanishing gradient problems. This is
defined in (10) as:

fe(X̃) = max[0, fe(X̃)] (10)

Furthermore, the ReLU activation function ensures a comprehensive learning by
the encoder to achieve a a reliable deep feature extraction for prognostics. As shown in
Figure 1, stacking AEs to create SAEs further provides an avenue for high-level feature
extraction from which a single comprehensive HI can be generated at the SAE’s bottleneck.

Assuming there are M hiden layers in the encoding part, the outputs at the nth
encoding layer is computed using (11):

y(n+1) = fe

(
W(n+1)y(n) + b(n+1)

)
, n = 0, . . . , M− 1 (11)

where y(0) is the input X̃ while y(M) is the output of the last encoding layer—the high-level
features.

For the decoding part, the output of the first decoding layer constitute the input of
the second decoding layer and so on. These decoder outputs at the nth layer is computed
using the fd-activated output shown in (12).

z(n+1) = fd

(
W(L−n)Tz(n) + b′(n+1)

)
, n = 0, . . . , M− 1 (12)

where the input z(0) of the first decoding layer is the output y(M) of the last encoding layer
which in turn, constitutes the reconstructed input—X̃.

To construct the health indicator (HI) for monitoring, the bottleneck’s dimension is set
to a unity dimension thereby producing a single vector—HI—from which different health
states can be monitored via a single comprehensive indicator. Invariably, the SAE serves as
both a deep feature learner and feature fusion tool for comprehensive HI construction.
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3.1.3. Early Warning Threshold/TSP Determination

Early warning ensures that maintenance is scheduled early enough before a com-
plete equipment failure occurs; however, determining the right point in time when such
alarms—time to start prediction (TSP) should be set remains one of the few challenges in
building a reliable prognostics scheme. Ideally, such determination is dependent on the
analysts/engineer’s expertise and knowledge in the domain; however, due to stochasticity,
uncertainties, and complexities associated with unsupervised learning processes and the
need for real-time applicability, such a biased human judgement remains questionable.
On the bright side, statistical principles provide a more reliable solution whereby the
standard deviation proffers an intuitive paradigm for TSP determination. As proposed
in [26], when the HI deviates from 5 times the standard deviation—5σ of the HI at
healthy state, it indicates an incipient fault has occurred thereby triggering the RUL predic-
tion process.

3.2. GRU-Based Prognostics

As a significant improvement on the traditional RNNs and LSTMs, GRUs use fewer
parameters, consume lesser computational resource, and train faster than their counterparts—
traditional RNNs and LSTMs. In addition, their ability for learning temporal long-term de-
pendencies from sequential data make them robust for prognostics and RUL estimation [23].
Similar to LSTMs, GRUs function via a gating mechanism but without an output gate. As
Figure 2 shows, instead of the output gate found in LSTMs, a typical GRU architecture uses
an update gate for information flow control into the memory and a reset gate for information
control out of the memory.

Figure 2. A GRU cell.

In simple terms, the reset gate learns the portion of the input data that needs to be
forgotten while the update gate learns what portion of the input data that needs to be
updated with newer data from the input. These enable for solving vanishing gradient
problems and handling smaller datasets.

Equations (13) and (14) define the reset and update gates, respectively.

zt = σ(Wz ∗ [ht−1, xt]) (13)

rt = σ(Wr ∗ [ht−1, xt]) (14)

where Wz, and Wr are their weight matrices, respectively, while σ is a Sigmoid activa-
tion function.

The current state h(t) is generated from h′t and an element-wise multiplication of the
previous memory h(t− 1) and the update gate where h′t is the Tanh-activated output of the
of prior output h(t− 1). They are defined in (15) and (16) as:

h̃t = tanh(W ∗ [rt ∗ ht−1, xt]) (15)
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ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (16)

In this study, the GRU-based prognostic module is triggered for RUL estimation when
the fault threshold is reached.

4. Experimental Case Study

This section presents a practical case study whereby the proposed CEEMDAN-assisted
RUL estimation technique is employed on a run-to-failure experiment on a VSC63A5
solenoid Pump produced by Korea Control Limited.

4.1. Testbed Description and Data Acquisition

In previous studies on failure diagnostics of electromagnetic pumps [4,27,28], filter
clogging has shown to be one of the high-ranking failure modes. In this study, a natural
running condition (powered by 220 V, 60 Hz) was simulated for a VSC63A5 solenoid Pump
whereby the working fluid—5 Litres of diesel was contaminated with ten(10) grams of
Iron(III) oxide (Fe2O3). Figure 3 shows the experimental setup showing with a picture of
the physical test-bed and an illustration for the for sensor placements and data acquisition.Version August 23, 2021 submitted to Electronics 9 of 19

(a)

(b)

Figure 3. Experimental setup showing (a) A picture of the actual testbed (b) illustrations for sensor
placements and data acquisition

As the pump is powered, the oscillatory motion of the plunger induces a suction process from217

which fluid is transferred from the reservoir and discharged through the pump’s delivery port (via218

a 1.0 GPH nozzle) back to the reservoir. A stirrer is installed for contous brownian movement of219

the contaminants while the pressure measurements are the collected digitally from the suction and220

delivery ports at 20KHz via two WIKA A10 transmitters (powered by a 20V DC adapter) connected to221

an NI 9228 current module. The module was connected to a NI Compact DAQ 9178 data acquisition222

system which provided the digital signals to a PC through a LabView environment and stored in “.csv”223

file format.224

4.2. experimental results and observations225

The experiment lasted for about 2,448 hours (102 days) with a resultant reduction in flow-rate226

from the nozzle. Upon observation, it was revealed that the suction filter had been fully clogged.227

Figure 4 shows the different clog stages throughout the experiment.228

Figure 3. Experimental setup showing (a) A picture of the actual testbed (b) illustrations for sensor
placements and data acquisition.

As the pump is powered, the oscillatory motion of the plunger induces a suction
process from which fluid is transferred from the reservoir and discharged through the
pump’s delivery port (via a 1.0 GPH nozzle) back to the reservoir. A stirrer is installed
for contous brownian movement of the contaminants while the pressure measurements
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are the collected digitally from the suction and delivery ports at 20 KHz via two WIKA
A10 transmitters (powered by a 20 V DC adapter) connected to an NI 9228 current module.
The module was connected to a NI Compact DAQ 9178 data acquisition system which
provided the digital signals to a PC through a LabView environment and stored in “.csv”
file format.

4.2. Experimental Results and Observations

The experiment lasted for about 2448 h (102 days) with a resultant reduction in flow-
rate from the nozzle. Upon observation, it was revealed that the suction filter had been
fully clogged. Figure 4 shows the different clog stages throughout the experiment.

Figure 4. Pictures showing the suction filter at different stages (a) before the experiment, (b) nor-
mal running condition, (c) partial clogging leading to cavitation, and (d) clogged filter at end
of experiment.

For the first 1100 h (first 46 days) of operation, the pump’s suction− delivery process
was observed to be steady/ideal even though some (negligible) sedimentation on the
filter was observed (see Figure 4b). Beyond the 46th day, bubbles were observed in the
transparent pipes with more fluctuations in the pressure signals signalling a drop in
the pump’s performance (see Figure 4c). This behaviour continued till the end of the
experiment, when there was little/no fluid delivery from the pump due to full filter
clogging as shown in Figure 4d.

4.3. CEEMDAN-Based De-Noising

Figure 5 shows the pressure signals acquired from the sensors for the whole run-to-
failure time.
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Figure 4. Pictures showing the suction filter at different stages (a) before the experiment, (b) normal
running condition, (c) partial clogging leading to cavitation, and (d) clogged filter at end of experiment.
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observed to be steady/ideal even though some (negligible) sedimentation on the filter was observed230

(see Figure 4(b)). Beyond the 46th day, bubbles were observed in the transparent pipes with more231

fluctuations in the pressure signals signalling a drop in the pump’s performance (see Figure 4(c)). This232

behaviour continued till the end of the experiment, when there was little/no fluid delivery from the233

pump due to full filter clogging as shown in Figure 4(d).234

4.3. CEEMDAN-based de-noising235

Figure 5 shows the pressure signals acquired from the sensors for the whole run-to-failure time.236

(a)

(b)

Figure 5. Pressure signals for the whole run-to-failure test (a) Suction, (b) Delivery.

As observed in Figure 5, the time-series signals contain high frequency components which are237

most probably from noise and uncertain sources. The CEEMDAN algorithm was employed respectively238

on the suction and delivery pressure measurements to produce the IMFs shown in Figure 6 whereby239

the IMFs in red are from the suction pressure signal whereas the IMFs in blue are from the delivery240

pressure signal.241

Figure 5. Pressure signals for the whole run-to-failure test (a) Suction, (b) Delivery.

As observed in Figure 5, the time-series signals contain high frequency components
which are most probably from noise and uncertain sources. The CEEMDAN algorithm was
employed, respectively, on the suction and delivery pressure measurements to produce
the IMFs shown in Figure 6 whereby the IMFs in red are from the suction pressure signal
whereas the IMFs in blue are from the delivery pressure signal.

Version August 23, 2021 submitted to Electronics 11 of 19

(a) (b)

Figure 6. Extracted IMFs from the pressure signals from the whole run-to-failure test (a) Suction, (b)
Delivery.

An ensemble value of 100 was set while the shifting iterations ranged between 15 to 20 to compute242

one IMF. The added white Gaussian noise was set to have a maximum amplitude of 0.25 of the original243

signals’ standard deviation. Consequently, 20 IMFs were extracted from the suction and delivery244

pressure measurements respectively (10 from each sensor measurements) and concatenated as inputs245

for feature learning. As observed in the differences between the IMFs and the raw signals (in green),246

the CEEMDAN algorithm efficiently output the relevant finite IMFs with practical significance for247

feature learning and RUL estimation.248

4.4. HI construction and TSP determination249

Using the 20 IMFs as inputs, the SAE-GRU prognostics model whose architecture is summarised250

in Table 1 was employed. First, the SAE accepts the inputs via the input layer of Encoder 1 which then251

extracts the low-level features from the inputs. From these low-level features, Encoder 2 further extracts252

the high-level features which are received via a ReLU activation function at the bottleneck for efficient253

learning. Being that the SAE’s goal is to fuse the 20 IMFs to a single comprehensive HI, our chosen254

SAE architecture was motivated by implementing a two-step dimensionality reduction process via the255

encoders in a realistic fashion— {20→ 10→ 5→ 1}. On the other hand, the GRU parameters were256

chosen based on multiple trials on different parameter architectures and experience in the domain.257

As observed in Figure 1 and Table 1, the output dimension at the bottleneck is set to 1. This258

implies that at this level in the SAE model, a single vector— comprehensive HI is returned, from which259

different health states can be identified along the time-series.260

Figure 6. Extracted IMFs from the pressure signals from the whole run-to-failure test (a) Suction, (b) Delivery.
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An ensemble value of 100 was set while the shifting iterations ranged between 15
to 20 to compute one IMF. The added white Gaussian noise was set to have a maximum
amplitude of 0.25 of the original signals’ standard deviation. Consequently, 20 IMFs were
extracted from the suction and delivery pressure measurements, respectively (10 from each
sensor measurements), and concatenated as inputs for feature learning. As observed in the
differences between the IMFs and the raw signals (in green), the CEEMDAN algorithm
efficiently output the relevant finite IMFs with practical significance for feature learning
and RUL estimation.

4.4. HI Construction and TSP Determination

Using the 20 IMFs as inputs, the SAE-GRU prognostics model whose architecture
is summarised in Table 1 was employed. First, the SAE accepts the inputs via the input
layer of Encoder 1 which then extracts the low-level features from the inputs. From these
low-level features, Encoder 2 further extracts the high-level features which are received via
a ReLU activation function at the bottleneck for efficient learning. Being that the SAE’s
goal is to fuse the 20 IMFs to a single comprehensive HI, our chosen SAE architecture was
motivated by implementing a two-step dimensionality reduction process via the encoders
in a realistic fashion—{20→ 10→ 5→ 1}. On the other hand, the GRU parameters were
chosen based on multiple trials on different parameter architectures and experience in
the domain.

As observed in Figure 1 and Table 1, the output dimension at the bottleneck is set to
1. This implies that at this level in the SAE model, a single vector—comprehensive HI is
returned, from which different health states can be identified along the time-series.

Table 1. Configuration of the proposed SAE-GRU architecture.

Layer Architecture Description

Input 20 The dimension of the IMFs

Encoder 1 10, B_norm
Number of output nodes: 10,

Batch Normalization,
Activation: ReLU

Encoder 2 5, B_norm
Number of output nodes: 5,

Batch Normalization,
Activation: ReLU

Bottleneck 1 Number of nodes: 1

Decoder 1 5, B_norm
Number of output nodes: 5,

Batch Normalization,
Activation: ReLU

Decoder 2 10, B_norm
Number of output nodes: 10,

Batch Normalization,
Activation: ReLU

Output 20 Number of nodes: 20,
Activation: Linear

GRU 1 50 Number units: 50,
Activation: ReLu

Gaussian Dropout 0.2 0.2 dropout

GRU 2 20 Number units: 20,
Activation: ReLu

Gaussian Dropout 0.2 0.2 dropout threshold

Dense 1 Number of output nodes: 1,
Activation: Linear

Because the feature learning process of the SAE is unsupervised, its efficiency to
produce a reliable HI depends on its efficiency to accurately produce the original inputs
(IMFs) at Decoder 2’s output. This can be monitored/assessed via the error convergence of
the training with the validation set from which a zero-convergence implies a reliable learning.
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The results of the SAE learning process is shown in Figure 7 over 100 iterations which
produced the HI shown in Figure 8.

Figure 7. Training process of SAE over 100 iterations.

Figure 8. HI produced by the SAE for the whole run-to-failure experiment.

As shown, the error convergence of the SAE feature learner is quite impressive. This
in return validates the reliability of the HI extracted from the SAE’s bottleneck shown in
Figure 8.

To determine the TSP using the 5σ technique, first the standard deviation (σ) of the
signals healthy state was computed for the first 5000 samples of the time-series—HI in
Figure 9. It is assumed that the early-life sensor measurements (i.e., for the first few days)
reflect the healthiest state of the pump.

Consequently, an averaged σ value of 0.01 was obtained from the samples at healthy
state. Figure 9 also shows the windowed output of the σ technique across the HI from left
(healthy) to right (fault/failure) (in green lines). As shown in the red dotted horizontal
lines, the TSP falls at about day 68 whereby the σ value of 0.05 (5 × 0.01) was first returned.
This was actually within the period where bubbles were observed in the transparent fluid
lines (cavitation) signalling an incipient fault stage due to partial filter clogging. A closer
look at Figure 9 would also reveal the early warning efficiency of the 5σ technique for
improved real-time monitoring. After day 68, it is shown that the standard deviation of the
HI returned to an acceptable range til day 73 where an even higher increase in the standard
deviation is observed. By human observation of the HI, one may assume the pump is still
in its normal running state at day 68 without realising that in just a few more days—from
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day 73 (marked by a red circle), the pump’s running condition would become even worse
and it may be reaching much closer to its end of life. This validates the need for the 5σ as
an early warning metric for reliable condition monitoring.

Figure 9. HI illustrating the TSP from the 5σ technique.

4.5. GRU-Based RUL Estimation

The developed model returns RUL estimates as outputs when provided the processed
data. Since the anomalous behaviour was detected on day 68, the actual RUL (34 days)
decreases from this point to end-of-life (EOL) (day 102) and forms the ground truth data
for assessing the proposed model’s performance. As shown in Figure 9, it is assumed that
the failure threshold is at minimum HI value (HI = 0).

4.5.1. GRU Initialization and Training, and Validation

When a fault alarm is triggered at TSP (when the 5σ threshold is reached), the GRU
predictor accepts the HI from healthy state to the TSP as input for training for making
posterior RUL estimates based on the learned input data. The RUL till this point is assumed
to be at 100% (no fault witnessed); beyond which the equipment fails gradually to 0% RUL
(end-of-life). The training process is supervised with the HI from day 0–day 68 mapped
to the constant 100% as output for training. This trained model is then deployed for
making RUL predictions based on the new (fault) data. Consequently, considering the
stochastic nature of the GRU and the need for optimal minimal false alarm rate, a 3-layer
GRU network with ReLU activation function between layers was designed for improved
learning whereas at the output node, a linear activation function was selected (with adam)
optimization for model stability.

The hardware used has the specification summarised in Table 2 while the computation
process was done in Keras with Tensor f low back-end. The batch size for each iteration
was set to 1024 and was run over 500 iterations with mean square error (MSE) as the
loss function. Figure 10 shows the result from the training process over the 500 iterations
with minimal training/validation error convergence (towards zero) using the architecture
summarised in Table 1.

Table 2. Specification of computational hardware used.

Manufacturer Processor Speed RAM size

Advanced Micro
Devices (AMD)

Ryzen 7, 2700
Eight-core 3.20 GHz 16 GB



Electronics 2021, 10, 2054 14 of 18

Figure 10. HI illustrating the TSP from the 5σ technique.

The validation convergence in Figure 10 over the iterations provides a reliable insight
on the successful learning by the model and more invariably, the predictive capacity of
the trained model for posterior (RUL) estimations in an unsupervised manner. At TSP, the
trained GRU model predicts the RUL till EOL from which the estimated RUL values are
compared with the ground truth data for performance evaluation; however, to ascertain
the predictive capabilities of the model for RUL estimation, we first tested the model’s
self-learning efficiencies by predicting the HI input values from TSP to EOL. Next, the
self-learning efficiency of the model further provides reliable insights on its effectiveness for
making RUL estimates given these test HI values (from TSP to EOL). Figure 11 shows the
one-step ahead prediction result by the GRU estimator for from TSP to EOL whereby the
actual HI degradation trend is represented in blue lines while the predicted HI degradation
trend is represented in the red lines.

Figure 11. One-step ahead prediction by GRU estimator.

As shown, the model returned an identical degradation trend confidently (within 95%
confidence interval) bounded by the light blue area. As expected, the estimator was less
confident towards the EOL since there was a sharp degradation trend towards the EOL.
The authors are confident that this sharp drop towards the EOL of the pump is associated
with the power surge experienced during the experiment and may have impacted on the
actual degradation trend of the pump; nevertheless, the confidence of the GRU predictor
remains reliable for real-time applications where little/no abrupt changes in operating
conditions are controlled/prevented.
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4.5.2. RUL Estimation Results and Discussions

With the trained model, the RUL estimation from TSP to EOL was predicted and visualized
using the α− λ metric—a reliable offline prognostic evaluation tool that outputs either 1 or 0
for predictions within a cone of accuracy–α bounds, at a specific time index–λ [29]. The easy
representability, comprehensibility, and visual-friendly features of the α− λ metric it not
only popular, but also very reliable for visualizing, evaluating, and reporting the RUL
estimation performance of a prognostic model. Equation (17) provides the mathematical
definition of the α− λ metric.

α− λ Accuracy =

{
1 if π[r(iλ)]

+α
−α ≥ β

0 otherwise
(17)

where tλ is a fraction of time between TSP and the actual EOL, λ is the time window
modifier such that tλ = tP + λ(tEoL − tP), β is the minimum acceptable probability for β

criterion, r(iλ) is the predicted RUL at time index iλ, and π[r(iλ)]
α+

α− is the probability mass
of the prediction PDF within the α-bounds that are given by α+ = r∗(iλ) + α · r(iλ) and
α− = r∗(iλ)− α · r(iλ)

The RUL estimation result by the proposed model (visualized using the α− λ metric
with α = 0.3) is presented in Figure 12.

Figure 12. RUL prediction results by GRU at TSP (68th day).

As shown, the model’s predictive accuracy for the actual RUL (34 days) falls within
acceptable α bounds until about the last 8 days where the prediction falls outside the α
bounds. As earlier seen in Figure 11 where the prediction for the last few days are observed
to be less confident due to the sharp degradation trend, the RUL prediction results in
Figure 12 better reflects this error/anomaly towards the EOL.

4.6. Performance Evaluation

Apart from sensor line malfunction, some sources of error that could be associated
with a PHM system include data noise, observer faults, etc. These factors play vital roles on
choosing the appropriate prognostic metrics to adopt for evaluations which may include
logistics, saftey, reliability, mission criticality, and economic viability; however, to better
assess the accuracy-based prognostic performance of a model, it is often wiser to explore
metrics like the root mean square error (RMSE), mean absolute error(MAE), relative error
(RE), etc. especially for uniformly comparing certain aptitudes or measures across several
algorithms. Comprehensively, these metrics when incorporated into decision making
processes better provide reliable standpoints for developing trust in a a prognostic model.

The complexity and predictive performance of the developed model was evaluated
with the earlier listed prognostics evaluation metrics in comparison with other ML-based
estimators—multi-objective genetic algorithm-optimized long short term memory (MOGA–
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LSTM) [4], deep belief network (DBN) [22], and a 3-layer deep neural network (DNN) which
had been earlier deployed/developed for the same purpose in our past study. It is worth
noting that these algorithms shared a similar architecture like the proposed method for fair
comparison since it would be futile to explore/optimize different variants/architectures for
the respective models. Each of these models, like the developed model, receives the HI from
the SAE’s bottleneck to estimate RULs followed by a comparison in their performance. Due
to the random weight initialization process of the algorithms, their respective performances
were evaluated by retraining each of the models five times and computing their respective
averaged errors. Their respective RUL predictive performances at TSP are compared in
Figure 13.

Figure 13. Performance comparison for RUL estimators at TSP.

As shown, the difference in the RMSEs, MAEs, and REs between the proposed model
and the other estimators are quite significant. The MOGA-LSTM estimator reveals a
strong competitive ability (and may perform even much better in some applications). This
is associated with the MOGA optimizer in its architecture which optimizes the LSTM
predictor. With continuous-valued stochastic units, the MOGA-LSTM retains a strong
efficiency in handling the input variables (HI) with complex non-linear characteristics;
however, due to the computational costs associated with its use, the proposed model
presents itself as a cost-efficient option. On the other hand, the DBN and DNN estimators;
although reliable, performed the least across the evaluation criteria presented. It is projected
that the DBN and DNN may be unreliable under different unseen operating conditions
and/or poor parameterization which can be traced to the vanishing gradient problems
that they are popularly prone to. In essence, the proposed model comes with a much more
reliable architecture, cost-efficiency, ease-of-use, better generalization capabilities (due to
automated feature learning), fewer parameterization, durability, and real-time applicability.

5. Concluding Remarks

Data-driven predictive maintenance relies significantly on the availability and prog-
nosibility of sensor data from which the linear and nonlinear characteristics of the target
system are identified for a comprehensive dynamic modelling. Signal de-noising is almost
a necessary pre-processing step to ensure that noise and/or insignificant spectral compo-
nents of the signals are excluded from in the feature extraction and dynamic modelling
process. The EMD variant—CEEMDAN offers a solution by generating fewer IMFs on the
premise of separating different signal components which provide reliable inputs for health
indicator construction by SAEs. GRUs, on the other hand, whose prowess for learning
long-term dependencies ensures a highly reliable RUL estimation. The CEEMDAN-assisted
prognostics model proposed in this study relies on the SAE for feature learning and HI
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construction and the GRU for RUL estimation. This was tested on a run-to-failure opera-
tional data from a VSC63A5 Solenoid pump produced by Korea Control Limited under an
ideal operating condition with an Fe2O3-contaminated diesel as the operational fluid and
its performance compared with other effective RUL estimators. Results are supported by
extensive empirical validations with the proposed method revealing better cost-efficiency,
minimal false alarm rate, and ease-of-use.

The developed model can be deployed on any system that utilizes pressure (or non-
stationary) signal analysis; however, its efficiency may be limited for much more complex
systems which may require a more exhaustive search for the right SAE configuration for
reliable HI construction. As the overall neural network architecture deepens, the non-
linearity/complexity between inputs and target variables increase and this may have
inhibiting effects on predictive accuracies. Continued research shall be aimed at obtaining
more experimental data to cover other failure modes for a more comprehensive prognostic
scheme with the hopes of validating the efficacy of the proposed model.
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