# Design and Optimization of Compact Printed Log-Periodic Dipole Array Antennas with Extended Low-Frequency Response

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Miniaturization Techniques for Size-Reduction of PLPDAs

#### 2.1. Top-Loading Techniques

#### 2.2. Fractal-Iterative Technique

#### 2.3. Truncated Boom Technique

#### 2.4. Reflector Ground Plane Technique for Gain Enhancement

#### 2.5. Dielectric Loading Technique

#### 2.6. Folded-Planar Helix (FPH) Dipole

## 3. Conventional PLPDA Design for 0.7 GHz–8 GHz

_{n}and d

_{n}are, respectively, the length and the diameter of the nth dipole. Additionally, the parameter σ shown in (1) is called the “spacing factor” and is defined as:

_{n}is the spacing between the nth dipole and its consecutive (n + 1)th dipole. The overall physical dimensions of the antenna significantly depend on the above two factors (τ and σ).

- L
_{n}= length of n^{th}dipole; - s
_{n}= spacing between n^{th}and (n+1)^{th}dipole; - d
_{n}= width of n^{th}dipole; - L-boom = length of the boom;
- W-boom = width of the boom;
- H-boom = thickness of the boom (equivalent to copper clad thickness in this case).

## 4. Extended Low-Frequency Response PLPDA Design for 0.4 GHz–8 GHz

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- FCC. FCC First Report and Order on Ultra-Wideband Technology. Available online: https://transition.fcc.gov/Bureaus/Engineering_Technology/Orders/2002/fcc02048.pdf (accessed on 25 June 2021).
- ECC Std. ECC Decision of 24 March 2006 on the Harmonised Conditions for Devices Using Ultra-Wideband (UWB) Technology in Bands Below 10.6 GHz. 2006. Available online: http://www.ero.dk/ (accessed on 25 June 2021).
- Liang, J.; Chiau, C.C.; Chen, X.; Parini, C.G. Study of a printed circular disc monopole antenna for UWB systems. IEEE Trans. Antennas Propag.
**2005**, 53, 3500–3504. [Google Scholar] [CrossRef] - Mohamadzade, B.; Simorangkir, R.B.V.B.; Hashmi, R.M.; Lalbakhsh, A. A Conformal Ultrawideband Antenna with Monopole-Like Radiation Patterns. IEEE Trans. Antennas Propag.
**2020**, 68, 6383–6388. [Google Scholar] [CrossRef] - Das, P.; Mandal, K.; Lalbakhsh, A. Single-layer polarization-insensitive frequency selective surface for beam reconfigu-rability of monopole antennas. J. Electromagn. Waves Appl.
**2019**, 34, 86–102. [Google Scholar] [CrossRef] - Azim, R.; Islam, M.T.; Misran, N. Compact Tapered-Shape Slot Antenna for UWB Applications. IEEE Antennas Wirel. Propag. Lett.
**2011**, 10, 1190–1193. [Google Scholar] [CrossRef] - Tsai, C.-L.; Yang, C.-L. Novel Compact Eye-Shaped UWB Antennas. IEEE Antennas Wirel. Propag. Lett.
**2012**, 11, 184–187. [Google Scholar] [CrossRef] - Gautam, A.K.; Yadav, S.; Kanaujia, B. A CPW-Fed Compact UWB Microstrip Antenna. IEEE Antennas Wirel. Propag. Lett.
**2013**, 12, 151–154. [Google Scholar] [CrossRef] - Mistry, K.K.; Lazaridis, P.I.; Zaharis, Z.D.; Chochliouros, I.P.; Loh, T.H.; Gravas, I.P.; Cheadle, D. Optimization of Log-Periodic TV Reception Antenna with UHF Mobile Communications Band Rejection. Electronics
**2020**, 9, 1830. [Google Scholar] [CrossRef] - Mistry, K.; Lazaridis, P.; Zaharis, Z.; Xenos, T.; Glover, I. Optimization of log-periodic dipole antenna with LTE band-rejection. In Proceedings of the Loughborough Antennas & Propagation Conference (LAPC 2017), Loughborough, UK, 13–14 November 2017; Institution of Engineering and Technology (IET): Stevenage, UK, 2017; p. 84. [Google Scholar]
- Lazaridis, P. Log-Periodic Antenna with a Passband and a Stopband. US Patent GB2568280A, 15 May 2019. [Google Scholar]
- Yeo, J.; Lee, J.I. Miniaturized LPDA antenna for portable direction-finding applications. ETRI J.
**2012**, 34, 118–121. [Google Scholar] [CrossRef] - Harrison, R.W.; Jessup, M. A novel log periodic implementation of a 700 MHz–6 GHz slant polarised fixed-beam an-tenna array for direction finding applications. In Proceedings of the 2012 42nd European Microwave Conference, Amsterdam, The Netherlands, 29 October–1 November 2012; pp. 727–730. [Google Scholar]
- Liang, X.; Chia, Y.; Chia, M.Y.W. New precision wideband direction finding antenna. IEE Proc. Microw. Antennas Propag.
**2001**, 148, 363. [Google Scholar] [CrossRef] - Huang, Y.; Boyle, K. Antennas: From Theory to Practice; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Isbell, D. Log periodic dipole arrays. IRE Trans. Antennas Propag.
**1960**, 8, 260–267. [Google Scholar] [CrossRef] - Rumsey, V. Frequency independent antennas. In Proceedings of the 1958 IRE International Convention Record, New York, NY, USA, 21–25 March 1966; Volume 5, pp. 114–118. [Google Scholar]
- Duhamel, R.; Ore, F. Logarithmically periodic antenna designs. IRE Int. Conv. Rec.
**2005**, 6, 139–151. [Google Scholar] [CrossRef] - Carrel, R.L. Analysis and Design of the Log-Periodic Dipole Antenna; Illinois Univ. at Urbana, Electrical Engineering Re-Search Lab: Champaign, IL, USA, 1961. [Google Scholar]
- Carrel, R. The design of log-periodic dipole antennas. In Proceedings of the 1958 IRE International Convention Record, New York, NY, USA, 21–25 March 1966; Volume 9, pp. 61–75. [Google Scholar]
- Duhamel, R.; Isbell, D. Broadband logarithmically periodic antenna structures. In Proceedings of the 1958 IRE International Convention Record, New York, NY, USA, 21–25 March 1966; Volume 5, pp. 119–128. [Google Scholar]
- Campbell, C.; Traboulay, I.; Suthers, M.; Kneve, H.; Campbell, C.; Traboulay, I.; Suthers, M.; Kneve, H. Design of a stripline log-periodic dipole antenna. IRE Trans. Antennas Propag.
**1977**, 25, 718–721. [Google Scholar] [CrossRef] - Paul, A.; Gupta, I. An Analysis of Log Periodic Antenna with Printed Dipoles. IEEE Trans. Microw. Theory Tech.
**1981**, 29, 114–117. [Google Scholar] [CrossRef] - Pantoja, R.; Sapienza, A.; Filho, F. A microwave printed planar log-periodic dipole array antenna. IRE Trans. Antennas Propag.
**1987**, 35, 1176–1178. [Google Scholar] [CrossRef] - Kyei, A.; Sim, D.; Jung, Y. Compact log-periodic dipole array antenna with bandwidth-enhancement techniques for the low frequency band. IET Microw. Antennas Propag.
**2017**, 11, 711–717. [Google Scholar] [CrossRef] - Sun, Q.; Wang, J.; Cui, J.; Fu, J.; Zhou, C.; Wang, E. A compact printed log-periodic antenna with loaded stub. In Proceedings of the 2014 3rd Asia-Pacific Conference on Antennas and Propagation, Harbin, China, 26–29 July 2014; pp. 593–595. [Google Scholar]
- Chen, J.; Ludwig, J.; Lim, S. Design of a Compact Log-Periodic Dipole Array Using T-Shaped Top Loadings. IEEE Antennas Wirel. Propag. Lett.
**2017**, 16, 1585–1588. [Google Scholar] [CrossRef] - Pirai, M.; RH, H. Size reduction of microstrip LPDA antenna with top loading. IEICE Electron. Express
**2009**, 6, 1528–1534. [Google Scholar] [CrossRef] [Green Version] - Anguera, J.; Puente, C.; Borja, C.; Soler, J. Fractal Shaped Antennas: A Review. In Encyclopedia of RF and Microwave Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Lalbakhsh, A.; Neyestanak, A.L.; Naser-Moghaddasi, M. Microstrip Hairpin Bandpass Filter Using Modified Min-kowski Fractal-Shape for Suppression of Second Harmonic. IEICE Trans. Electron.
**2012**, 95, 378–381. [Google Scholar] [CrossRef] - Lotfi-Neyestanak, A.; Lalbakhsh, A. Improved microstrip hairpin-line bandpass filters for spurious response suppression. Electron. Lett.
**2012**, 48, 858. [Google Scholar] [CrossRef] - Tripathi, S.; Mohan, A.; Yadav, S. A Compact UWB Koch Fractal Antenna for UWB Antenna Array Applications. Wirel. Pers. Commun.
**2017**, 92, 1423–1442. [Google Scholar] [CrossRef] - Oraizi, H.; Amini, A.; Mehr, M.K. Design of miniaturised UWB log-periodic end-fire antenna using several fractals with WLAN band-rejection. IET Microw. Antennas Propag.
**2017**, 11, 193–202. [Google Scholar] [CrossRef] - Gianvittorio, J.; Rahmat-Samii, Y. Fractal antennas: A novel antenna miniaturization technique, and applications. IEEE Antennas Propag. Mag.
**2002**, 44, 20–36. [Google Scholar] [CrossRef] - Anguera, J.; Puente, C.; Martínez, E.; Rozan, E. The fractal Hilbert monopole: A two-dimensional wire. Microw. Opt. Technol. Lett.
**2002**, 36, 102–104. [Google Scholar] [CrossRef] - Moallemizadeh, A.; Hassani, H.R.; Nezhad, S.M.A. Wide bandwidth and small size LPDA antenna. In Proceedings of the 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 26–30 March 2012; pp. 1–3. [Google Scholar]
- Almalkawi, M.J.; Cross, L.W.; Alshamaileh, K.A. A transmission line circuit-oriented approach for miniaturization of a log-periodic dipole array (LPDA) antenna. In Proceedings of the 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS), College Station, TX, USA, 3–6 August 2014; pp. 73–76. [Google Scholar] [CrossRef]
- Gooran, P.R.; Lalbakhsh, A.; Moradi, H.; Jamshidi, M. (Behdad) Compact and wideband printed log-periodic dipole array antenna using multi-sigma and multi-Tau techniques. J. Electromagn. Waves Appl.
**2019**, 33, 697–706. [Google Scholar] [CrossRef] - Anagnostou, D.; Papapolymerou, J.; Tentzeris, M.M.; Christodoulou, C.G. A Printed Log-Periodic Koch-Dipole Array (LPKDA). IEEE Antennas Wirel. Propag. Lett.
**2008**, 7, 456–460. [Google Scholar] [CrossRef] - Rahman, N.; Jamlos, M. Miniaturized Log Periodic Fractal Koch Antenna with C-Shaped Stub. In Proceedings of the 2016 International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia, 26–27 July 2016; pp. 53–56. [Google Scholar]
- Jain, S.K.; Shrivastava, A.; Shrivas, G. Miniaturization of microstrip patch antenna using metamaterial loaded with SRR. In Proceedings of the 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA), Turin, Italy, 7–11 September 2015; pp. 1224–1227. [Google Scholar]
- Anim, K.; Jung, Y.-B. Shortened Log-Periodic Dipole Antenna Using Printed Dual-Band Dipole Elements. IEEE Trans. Antennas Propag.
**2018**, 66, 6762–6771. [Google Scholar] [CrossRef] - Khandelwal, M.K.; Kanaujia, B.; Gautam, A.K. Low Profile UWB Log-Periodic Dipole Antenna for Wireless Communication with Notched Band. Microw. Opt. Technol. Lett.
**2013**, 55, 2901–2906. [Google Scholar] [CrossRef] - Li, X.-R.; Ye, M.; Chu, Q.-X. Novel high gain printed log-periodic dipole antenna. In Proceedings of the 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, PR, USA, 26 June–1 July 2016; pp. 1647–1648. [Google Scholar]
- Chang, L.; He, S.; Zhang, J.Q.; Li, D. A Compact Dielectric-Loaded Log-Periodic Dipole Array (LPDA) Antenna. IEEE Antennas Wirel. Propag. Lett.
**2017**, 16, 2759–2762. [Google Scholar] [CrossRef] - Shin, G.; Kong, M.; Lee, S.-H.; Kim, S.-T.; Yoon, I.-J. Gain Characteristic Maintained, Miniaturized LPDA Antenna Using Partially Applied Folded Planar Helix Dipoles. IEEE Access
**2018**, 6, 25874–25880. [Google Scholar] [CrossRef] - Pantoja, M.F.; Bretones, A.C.R.; Ruiz, F.J.G.; Garcia, S.; Martin, R.G. Particle-Swarm Optimization in Antenna Design: Optimization of Log-Periodic Dipole Arrays. IEEE Antennas Propag. Mag.
**2007**, 49, 34–47. [Google Scholar] [CrossRef] - Golubovic, R.; Olcan, D. Antenna optimization using Particle Swarm Optimization algorithm. J. Autom. Control.
**2006**, 16, 21–24. [Google Scholar] [CrossRef] [Green Version] - Zaharis, Z.D.; Gravas, I.; Yioultsis, T.V.; Lazaridis, P.; Glover, I.A.; Skeberis, C.; Xenos, T.D. Exponential Log-Periodic Antenna Design Using Improved Particle Swarm Optimization With Velocity Mutation. IEEE Trans. Magn.
**2017**, 53, 1–4. [Google Scholar] [CrossRef] - Zaharis, Z.D.; Gravas, I.P.; Lazaridis, P.; Glover, I.A.; Antonopoulos, C.S.; Xenos, T.D. Optimal LTE-Protected LPDA Design for DVB-T Reception Using Particle Swarm Optimization With Velocity Mutation. IEEE Trans. Antennas Propag.
**2018**, 66, 3926–3935. [Google Scholar] [CrossRef] - Li, Y.; Yang, F.; Ouyang, J.; Zhou, H. Yagi-Uda Antenna Optimization Based on Invasive Weed Optimization Method. Electromagnetics
**2011**, 31, 571–577. [Google Scholar] [CrossRef] - Mallahzadeh, A.; Oraizi, H.; Davoodi-Rad, Z. Application of the invasive weed optimization technique for antenna config-urations. Prog. Electromagn. Res.
**2008**, 79, 137–150. [Google Scholar] [CrossRef] [Green Version] - Pal, S.; Basak, A.; Das, S. Linear antenna array synthesis with modified invasive weed optimisation algorithm. Int. J. Bio-Inspired Comput.
**2011**, 3, 238. [Google Scholar] [CrossRef] - Sedighy, S.; Mallahzadeh, A.; Soleimani, M.; Rashed-Mohassel, J. Optimization of printed Yagi antenna using invasive weed optimization (IWO). IEEE Antennas Wirel. Propag. Lett.
**2010**, 9, 1275–1278. [Google Scholar] [CrossRef] - Lazaridis, P.I.; Tziris, E.N.; Zaharis, Z.D.; Xenos, T.D.; Cosmas, J.P.; Gallion, P.B.; Holmes, V.; Glover, I.A. Comparison of evolutionary algorithms for LPDA antenna optimization. Radio Sci.
**2016**, 51, 1377–1384. [Google Scholar] [CrossRef]

**Figure 1.**PLPDA design with implemented hat-loading and T-loading techniques in [25].

**Figure 2.**PLPDA design with implemented C-shaped top-loading technique in [26].

**Figure 3.**PLPDA design with circular-arc T-shaped loading technique implemented in [27].

**Figure 4.**PLPDA design with rhombic dipoles terminated using Peano fractals in [33].

**Figure 5.**Shape of second-order Koch fractals used as dipoles in PLPDA design in [36].

**Figure 6.**PLPDA design with modified dipoles using optimized Fourier coefficients [37].

**Figure 7.**PLPDA design with dual-band dipoles [42].

**Figure 8.**PLPDA design with dielectric-loading technique [45].

**Figure 9.**PLPDA design with two folded-planar helix dipoles [46].

**Figure 13.**Comparison of the simulated and the fabricated realized gain of the conventional PLPDA antenna.

**Figure 18.**Polar plots of the E-plane radiation patterns of the proposed antenna at (

**a**) 0.4 GHz, (

**b**) 0.8 GHz, (

**c**) 2 GHz, (

**d**) 4 GHz, (

**e**) 6 GHz, and (

**f**) 8 GHz.

Reference | Feeding Technique | Fractal Bandwidth | Fractal Shape | Miniaturization |
---|---|---|---|---|

[34] | Microstrip | 47% | Koch fractal | 12% |

[35] | Microstrip | 67% | Meander line | 21% |

[29] | Microstrip | 67% | Non-uniform line | 32% |

[33] | HMSIW | 109% | Triangular Koch fractal | 11.9% |

[33] | HMSIW | 109% | Square Koch fractal | 10.3% |

[33] | HMSIW | 109% | Tree fractal—first iteration | 27.1% |

[33] | HMSIW | 109% | Tree fractal—second iteration | 35.1% |

[33] | HMSIW | 109% | Peano fractal in rhombus LPDA | 11.1% |

Parameters | Values | Parameters | Values | Parameter | Values |
---|---|---|---|---|---|

L1 | 5 mm | L14 | 22 mm | d1 | 0.5 |

L2 | 5.5 mm | L15 | 25 mm | d2 | 0.5 |

L3 | 6 mm | L16 | 28 mm | d3 | 0.5 |

L4 | 7 mm | L17 | 30.5 mm | d4 | 0.5 |

L5 | 8 mm | L18 | 34.5 mm | d5 | 0.5 |

L6 | 9 mm | L19 | 38 mm | d6 | 0.6 |

L7 | 10 mm | L20 | 43 mm | d7 | 0.7 |

L8 | 11 mm | L21 | 48 mm | d8 | 0.8 |

L9 | 12 mm | L22 | 53 mm | d9 | 0.9 |

L10 | 14 mm | L23 | 59 mm | d10 | 1 mm |

L11 | 16 mm | L24 | 66 mm | d11 | 1 mm |

L12 | 18 mm | L25 | 73 mm | d12 | 1 mm |

L13 | 20 mm | s13 | 7 mm | d13 | 1 mm |

s0 | 7 mm | s14 | 7 mm | d14 | 1 mm |

s1 | 2 mm | s15 | 8 mm | d15 | 1 mm |

s2 | 2 mm | s16 | 9 mm | d16 | 1 mm |

s3 | 2 mm | s17 | 10 mm | d17 | 1 mm |

s4 | 2 mm | s18 | 11 mm | d18 | 1 mm |

s5 | 2 mm | s19 | 13 mm | d19 | 1 mm |

s6 | 3 mm | s20 | 14 mm | d20 | 1.5 mm |

s7 | 3 mm | s21 | 16 mm | d21 | 2 mm |

s8 | 3.5 mm | s22 | 18 mm | d22 | 2 mm |

s9 | 4 mm | s23 | 20 mm | d23 | 2 mm |

s10 | 4.5 mm | s24 | 22 mm | d24 | 2.5 mm |

s11 | 5 mm | L-boom | 230 mm | d25 | 3 mm |

s12 | 6 mm | H-boom | 35 μm | W-boom | 3 mm |

Parameters | Goals | Frequency (MHz) | Weight |
---|---|---|---|

S11 | <−12 dB | 0.4 GHz–1.2 GHz. | 5.0 |

Realized gain | >5 dBi | 0.4 GHz–1.2 GHz | 5.0 |

Parameters | Values | Parameters | Values | Parameter | Values |
---|---|---|---|---|---|

L1 | 5 mm | L14 | 22 mm | d1 | 0.5 |

L2 | 5.5 mm | L15 | 25 mm | d2 | 0.5 |

L3 | 6 mm | L16 | 28 mm | d3 | 0.5 |

L4 | 7 mm | L17 | 30.5 mm | d4 | 0.5 |

L5 | 8 mm | L18 | 34.5 mm | d5 | 0.5 |

L6 | 9 mm | L19 | 38 mm | d6 | 0.6 |

L7 | 10 mm | L20 | 43 mm | d7 | 0.7 |

L8 | 11 mm | L21 | 48 mm | d8 | 0.8 |

L9 | 12 mm | L22 | 60.9 mm | d9 | 0.9 |

L10 | 14 mm | L23 | 56.5 mm | d10 | 1 mm |

L11 | 16 mm | L24 | 88.3 mm | d11 | 1 mm |

L12 | 18 mm | L25 | 130 mm | d12 | 1 mm |

L13 | 20 mm | s13 | 7 mm | d13 | 1 mm |

s0 | 7 mm | s14 | 7 mm | d14 | 1 mm |

s1 | 2 mm | s15 | 8 mm | d15 | 1 mm |

s2 | 2 mm | s16 | 9 mm | d16 | 1 mm |

s3 | 2 mm | s17 | 10 mm | d17 | 1 mm |

s4 | 2 mm | s18 | 11 mm | d18 | 1 mm |

s5 | 2 mm | s19 | 13 mm | d19 | 1 mm |

s6 | 3 mm | s20 | 14 mm | d20 | 1.5 mm |

s7 | 3 mm | s21 | 9.5 mm | d21 | 2 mm |

s8 | 3.5 mm | s22 | 21.5 mm | d22 | 12.4 mm |

s9 | 4 mm | s23 | 11 mm | d23 | 6.4 mm |

s10 | 4.5 mm | s24 | 11 mm | d24 | 13.8 mm |

s11 | 5 mm | L-boom | 230 mm | d25 | 32.3 mm |

s12 | 6 mm | H-boom | 35 μm | W-boom | 3 mm |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mistry, K.K.; Lazaridis, P.I.; Zaharis, Z.D.; Loh, T.H.
Design and Optimization of Compact Printed Log-Periodic Dipole Array Antennas with Extended Low-Frequency Response. *Electronics* **2021**, *10*, 2044.
https://doi.org/10.3390/electronics10172044

**AMA Style**

Mistry KK, Lazaridis PI, Zaharis ZD, Loh TH.
Design and Optimization of Compact Printed Log-Periodic Dipole Array Antennas with Extended Low-Frequency Response. *Electronics*. 2021; 10(17):2044.
https://doi.org/10.3390/electronics10172044

**Chicago/Turabian Style**

Mistry, Keyur K., Pavlos I. Lazaridis, Zaharias D. Zaharis, and Tian Hong Loh.
2021. "Design and Optimization of Compact Printed Log-Periodic Dipole Array Antennas with Extended Low-Frequency Response" *Electronics* 10, no. 17: 2044.
https://doi.org/10.3390/electronics10172044