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Abstract: Coverage-guided greybox fuzzing aims at generating random test inputs to trigger
vulnerabilities in target programs while achieving high code coverage. In the process, the scale of
testing gradually becomes larger and more complex, and eventually, the fuzzer runs into a saturation
state where new vulnerabilities are hard to find. In this paper, we propose a fuzzer, REFUZZ, that acts
as a complement to existing coverage-guided fuzzers and a remedy for saturation. This approach
facilitates the generation of inputs that lead only to covered paths by omitting all other inputs, which
is exactly the opposite of what existing fuzzers do. REFUZZ takes the test inputs generated from
the regular saturated fuzzing process and continue to explore the target program with the goal of
preserving the code coverage. The insight is that coverage-guided fuzzers tend to underplay already
covered execution paths during fuzzing when seeking to reach new paths, causing covered paths to
be examined insufficiently. In our experiments, REFUZZ discovered tens of new unique crashes that
AFL failed to find, of which nine vulnerabilities were submitted and accepted to the CVE database.

Keywords: remedial testing; greybox fuzzing; vulnerability detection; enhanced security

1. Introduction

Software vulnerabilities are regarded as a significant threat in information security.
Programming languages without a memory reclamation mechanism (such as C/C++) have
the risk of memory leaks, which may expose irreparable risks [1]. With the increase in
software complexity, it is impractical to reveal all abnormal software behaviors manually.
Fuzz testing, or fuzzing, is a (semi-) automated technology to facilitate software testing. A
fuzzing tool, or fuzzer, feeds random inputs to a target program and, meanwhile, monitors
unexpected behaviors during software execution to detect vulnerabilities [2]. Among all
fuzzers, coverage-guided greybox fuzzers (CGF) have become one of the most popular
ones due to their high deployability and scalability, e.g., AFL [3] and LibFuzzer [4]. They
have been successfully applied in practice to detect thousands of security vulnerabilities in
open-source projects [5].

Coverage-guided greybox fuzzing relies on the assumption that more run-time bugs
could be revealed if more program code is executed. To find bugs as quickly as possible, AFL
and other CGFs try to maximize the code coverage. This is because a bug at a specific
program location can only be triggered unless that location is covered by some test inputs.
A CGF utilizes light-weight program transformation and dynamic program profiling to
collect run-time coverage information. For example, AFL instruments the target program
to record transitions at the basic block level. The actual fuzzing process starts with an
initial corpus of seed inputs provided by users. AFL generates a new set of test inputs by
randomly mutating the seeds (such as bit flipping). It then executes the program using the
mutated inputs and records those that cover new execution paths. AFL continually repeats
this process, but starts with the mutated inputs instead of user-provided seed inputs. If
there are any program crashes and hangs, for example, caused by memory errors, AFL
would also report the corresponding inputs for further analysis.
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When a CGF is applied, the fuzzing process does not terminate automatically. Prac-
tically, users need to decide when to end this process. In a typical scenario, a user sets a
timer for each CGF run and the CGF stops right away when the timer expires. However,
researchers have discovered empirically that, within a fixed time budget, exponentially
more machines are needed to discover each new vulnerability [6]. With a limited number
of machines, the CGF could rapidly reach a saturation state in which, by continuing the
fuzzing, it is difficult to find new unique crashes (where exponentially more time is needed).
Then, what can we do to improve the capability of CGF to find bugs with constraints on time and
CPU power? In this work, we try to provide one solution to this question.

Existing CGFs are biased toward test inputs that can explore new program execution
paths. These inputs are prioritized in subsequent mutations. Inputs that do not discover
new coverage are considered unimportant and are not selected for mutation. However,
in practice, this extensive coverage-guided path exploration may hinder the discovery of or
even overlook potential vulnerabilities on specific paths. The rationale is that an execution path
in one successful run may not be bug-free in all runs. Simply dumping “bad” inputs may
cause insufficient testing of their corresponding execution paths. Rather, special attention
should be paid to such inputs and paths. Intuitively, an input covering a path is more likely
to cover the same path after mutation than any other arbitrary inputs. Although an input
cannot trigger, in one execution, the bug in its path, it is possible that the input can do so
after a few fine-grained mutations. In short, by focusing on the new execution paths, the
CGFs can discover an amount of vulnerabilities in a fixed time, but they also omit some
vulnerabilities, which need to be repeatedly tested on the specific execution path multiple
times to be found.

Based on this, we propose a lightweight extension of CGF, REFUZZ, that can effectively
find tens of new crashes within a fixed amount of time on the same machines. The goal of
REFUZZ is not to achieve as high code coverage as possible. Instead, it aims to detect new
unique crashes on already-covered execution paths in a limited time. In REFUZZ, test inputs that
do not explore new paths are regarded as favored. They are prioritized and mutated often
to examine the same set of paths repeatedly. All other mutated inputs are omitted from
execution. As a prototype, we implement REFUZZ on top of AFL. In our experiments, it
successfully triggered 37, 59, and 54 new crashes in our benchmarks that were not found
by AFL, using three different experimental settings, respectively. Finally, we discovered
nine vulnerabilities accepted to the CVE database.

In particular, REFUZZ incorporates two stages. Firstly, in the initial stage, AFL is
applied as usual to test the target program. The output of this stage is a set of crash reports
and a corpus of mutated inputs used during fuzzing. In addition, we record the code
coverage of this corpus. Secondly, in the exploration stage, we use the corpus and coverage
from the previous stage as seed inputs and initial coverage, respectively. During the testing
process, instead of rewarding inputs that cover new paths, REFUZZ only records and
mutates those that converge to the initial coverage, i.e., they contribute no new coverage.
To further improve the performance, we also review the validity of each mutated input
before execution and promote non-deterministic mutations, if necessary. In practice, the
second stage may last until the fuzzing process becomes saturated.

Note that REFUZZ is not designed to replace CGF but as a complement and a remedy
for saturation during fuzzing. In fact, the original unmodified AFL is used in the initial
stage. The objective of the exploration stage is to verify whether new crashes can be
found on execution paths that have already been covered by AFL and whether AFL and
CGFs, in general, miss potential vulnerabilities on these paths while seeking to maximize
code coverage.

We make the following contributions.

• We propose an innovative idea in which, though the input cannot trigger a bug
over one execution time, it is possible that the input can do so after a few fine-
grained mutations.
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• We propose a lightweight extension of CGF, REFUZZ, that can effectively find tens of
new crashes within a fixed amount of time on the same machines.

• We develop various supporting techniques, such as reviewing the validity of each
mutated input before execution, and promote non-deterministic mutations if necessary
to further improve the performance.

• We propose a new mutation strategy on top of AFL. If the input does not cover a new
execution path, it is regarded as valuable, which will help to cover a specific execution
path over multiple times.

• We evaluate REFUZZon four real-world programs collected from prior related work [7].
It successfully triggered 37, 59 and 54 new unique crashes in the three different
experimental configurations and discovered nine vulnerabilities accepted to the
CVE database.

The rest of the paper is organized as follows. Section 2 introduces fuzzing and AFL,
as well as a motivating example to illustrate CGFs mutating strategy limitations. Section 3
describes the design details of REFUZZ. We report the experimental results and discussion
in Sections 4 and 5. Section 6 discusses the related work, and finally, Section 7 concludes
our work.

2. Background
2.1. Fuzzing and AFL

Fuzzing is a process of automatic test generation and execution with the goal of find-
ing bugs. Over the past two decades, security researchers and engineers have proposed a
variety of fuzzing techniques and developed a rich set of tools that helped to find thou-
sands of vulnerabilities (or more) [8]. Blackbox fuzzing randomly mutates test inputs and
examines target programs with these inputs. Whitebox fuzzing, on the other hand, utilizes
advanced, sophisticated program analyses, e.g., symbolic execution [9], to systematically
exercise all possible program execution paths. Greybox fuzzing sits in between the former
two techniques. The testing is guided by run-time information gathered from program
execution. Due to its high scalability and ease of deployment, coverage-guided greybox
fuzzing gains popularity in both the research community and industry. Specifically, AFL [3]
and its derivations [10–14] have received plenty of attention.

Algorithm 1 shows the skeleton of the original AFL algorithm. (The algorithm does
not distinguish between deterministic and non-deterministic—totally random mutations
for simplicity.) Given a program under test and a set of initial test inputs (i.e., the seeds),
AFL instruments each basic block of the program to collect block transitions during the
program execution and runs the program with mutated inputs derived from the seeds.
The generation of new test inputs is guided by the collected run-time information. More
specifically, if an input contributes no crash or new coverage, it is regarded as useless
and is discarded. On the other hand, if it covers new state transitions, it is added as
a new entry in the queue to produce new inputs since the likelihood of these resulting
inputs achieving new coverage is heuristically higher, compared to other arbitrary inputs.
However, this coverage-based exploration strategy leads to strong bias toward such inputs,
making already explored paths probabilistically less inspected. In our experiments, we
found that these paths actually contained a substantial number of vulnerabilities, causing
programs to crash.

AFL mutates an input at both a coarse-grained level, which incorporates the changing
bulks of bytes, and a fine-grained level, which involves byte-level modifications, insertions
and deletions [15]. In addition, AFL adopts two strategies to apply the mutation, i.e.,
deterministic mutation and random mutation. In fuzzing, AFL maintains a seed queue that
stores the initial test seeds provided by users and new test cases screened by the fuzzer. For
one input in the seed queue, which has applied deterministic mutations, it will no longer
be mutated through deterministic mutation in subsequent fuzzing. The deterministic
mutation, including bitflip, arithmetic, interest, and dictionary methods, is one in which a
new input is obtained by modifying the content of the input at a specific byte position and
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every input is mutated in the same way. In particular, during the interest and dictionary
mutation stages, some special contents and tokens automatically generated or provided by
users are replaced or inserted into the original input. On the contrary, the havoc and splice
called random mutations would always be applied until the fuzzing stops. In the havoc
stage, a random number is generated as the mutation combination number. According to
the number, one random mutation method is selected each time, and then applied to the
file in turn. In the next stage, called splice, a new input is produced by splicing two seed
inputs, and the havoc mutation is continued on the file.

Algorithm 1: ORIGINALAFL
Input: The target program P; the initial set of seed inputs initSeeds.

1 queue← initSeeds
2 crashes← ∅
3 while in fuzzing loop do
4 foreach input ∈ queue do
5 foreach mutation ∈ allMutations do
6 newInput← MUTATE(input, mutation)
7 result← RUN(P, newInput)
8 if CRASH(result) then
9 crashes← crashes∪ {result}

10 else if NEWCOVERAGE(result) then
11 queue← queue∪ {newInput}
12 end
13 end
14 end
15 end
16 return queue, crashes

Note that AFL is unaware of the structure of inputs. For example, it is possible that a
MP3 file is generated from a PDF file because the magic number is changed by AFL. It is
inefficient to test a PDF reader with a MP3 file since the execution will presumably terminate
early, as the PDF parser does not accept non-PDF files, causing the major components not
to be tested. Our implementation of REFUZZ tackles this problem by adding an extra check
of validness of newly generated test inputs, as discussed in Section 3.

2.2. Motivating Example

Figure 1a shows a code snippet derived from the pdffonts program, which analyzes
and lists the fonts used in a Portable Document Format (PDF) file. Class Dict defined at
line 1–10 stores an array of entries. Developers can call the find function defined at line 12
to retrieve the corresponding entry by a key. In the experiments, we test this program by
running both AFL and REFUZZ with the AddressSanitizer [16] to detect memory errors.
Figure 1b shows the crashing trace caused by a heap buffer overflow error found only by
REFUZZ. The crash is caused by accessing the entries array during the iteration at line
14–17 in Figure 1a. The root cause of this error is inappropriate destruction of the dictionary
in the XRef and Object classes when pdffonts attempts to reconstruct the cross-reference
table (xref for short, which internally uses a dictionary) for locating objects in the PDF
file, e.g., bookmarks and annotations. The crash is triggered when the xref table of the
test input is mostly valid (including the most important entries, such as “Root”, “size”,
“Info”, and “ID”) but cannot pass the extra check to investigate whether the PDF file is
encrypted. When the program issues a search of key “Encrypt”, the dictionary has already
been destructed by a previous query that checks for the validness of the xref table. A correct
implementation should make a copy of the dictionary after the initial check.
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1 class Dict {
2 public:
3 ...
4 private:
5 XRef *xref; // the xref table for this PDF file
6 DictEntry *entries; // array of entries
7 int length; // number of entries in dictionary
8 ...
9 DictEntry *find(char *key);

10 };
11 ...
12 inline DictEntry *Dict::find(char *key){
13 int i;
14 for (i = 0; i < length; ++i) {
15 if (! strcmp(key , entries[i].key))
16 return &entries[i];
17 }
18 return NULL;
19 }
20 ...

(a) Code derived from pdffonts

Function File and Line

main /Xpdf/pdffonts.cc:117
PDFDoc::PDFDoc /Xpdf/PDFDoc.cc:96
PDFDoc::setup /Xpdf/PDFDoc.cc:120
XRef::XRef /Xpdf/XRef.cc:107
XRef::checkEncrypted /Xpdf/XRef.cc:459
Object::dictLookup /Xpdf/Object.h:252
Dict::lookup /Xpdf/Dict.cc:72
Dict::find /Xpdf/Dict.cc:56

(b) The crashing trace caused by a heap buffer overflow

Figure 1. The motivating example.

It is relatively expensive to find this vulnerability using AFL, compared to REFUZZ.
In our experiments, by running AFL for 80 h, AFL failed to trigger this bug, even with
the help of the AddressSanitizer tool. The major reason is that the check for validness of
xref and the check for encryption of the PDF file are the first step when pdffonts parses an
arbitrary file—that is, they are presumably regarded as “old” paths for most cases. When
using AFL, if a test input does not cover a new execution path, the chance of mutating this
input is low. In other words, the execution path covered by the input is less likely to be
covered again (or is covered but by less “interesting” inputs) and the examination of the
the two checks might not be enough to reveal subtle bugs, such as the one in Figure 1b.

To tackle this problem, REFUZZ does not aim at high code coverage. On the contrary,
we want to detect new vulnerabilities residing in covered paths and to verify that AFL
ignores possible crashes in such paths while paying attention to coverage. REFUZZ utilizes
the corpus obtained in the initial stage (which runs the original AFL) as the seeds for the
exploration stage. It only generates test inputs that linger on the execution paths that are
covered in the first stage but not investigated sufficiently. In the next section, we provide
more details about the design of REFUZZ.

3. Design of REFUZZ

3.1. Overview

We propose REFUZZ to further test the program under test with inputs generated by
AFL to trigger unique crashes that were missed by AFL. REFUZZ consists of two stages,
i.e., the initial stage and the exploration stage. In the initial stage, the original AFL is applied.
The initial seed inputs are provided by the user. The output is an updated seed queue,
including both the seed inputs and the test inputs covered new execution paths during
fuzzing. In the exploration stage, REFUZZ uses this queue as the initial seed input, applying
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a novel mutation strategy designed for investigating previously executed paths to generate
new test inputs. Moreover, only inputs that passed the extra format check are added to
the seed queue and participate in subsequent mutations and testing. Figure 2 shows the
workflow of REFUZZ.

AFL

Initial Seeds Seed Queue

AFL+ Updated 

Mutation Strategy
New Seeds

Format Check

Target Program

Initial Stage Exploration  Stage

Seed Queue

Crash Reports

Figure 2. REFUZZ overview.

Algorithm 2 depicts the algorithmic sketch of REFUZZ. (Our implementation skips
duplicate deterministic mutations of inputs in the MUTATE function.) The highlighted
lines are new, compared to the original AFL algorithm. The REFUZZ algorithm takes two
additional parameters besides P and initSeeds: et, the time allowed for the initial stage,
and ct, the time limit for performing deterministic mutations. We discuss ct in the next
subsection. At line 6 in Algorithm 2, when the elapsed time is less than et, REFUZZ is in the
initial stage, and the original AFL algorithm is applied. When the elapsed time is greater
than or equal to et ( line 8–24), the testing enters the exploration stage. REFUZZ uses in this
stage the input corpus queue obtained in the initial stage and applies a novel mutation
strategy to generate new test inputs. If a new input passes the format check, it would be
fed to the target program. The input that preserved the code coverage (i.e., did not trigger
new paths) would be added to the queue. In the experiments, we set et to various values to
evaluate the effectiveness of REFUZZ under different settings.

3.2. Mutation Strategy in Exploration Stage

REFUZZ adopts the same set of mutation operators as in AFL, including bitflip, arith-
metic, value overwrite, injection of dictionary terms, havoc, and splice. The first four
methods are deterministic because of their slight destructiveness to the seed inputs. The
latter two methods will significantly damage the structure of an input, which are totally
random. To facilitate the discovery of crashes, as shown in Algorithm 2, we introduce a
parameter ct to limit the time since the last crash during the fuzzing process for determin-
istic mutations. If an input is undergoing deterministic mutation operations and no new
crashes are found for a long time (>ct), REFUZZ will skip the current mutation operation
and perform the next random mutation (line 11 of Algorithm 2). In the experiments, we
initialize ct to 60 min and set it incrementally for each deterministic mutation. Specifically,
the n-th deterministic mutation is skipped if there no crash is triggered in the past n hours
by mutating an input. REFUZZ will try other more destructive mutations to facilitate the
efficiency of fuzzing.

As introduced in Section 1, REFUZZ does not aim at high code coverage. Instead, it
generates inputs that converge to the existing execution paths. During the initial stage,
AFL saves the test inputs that have explored new execution paths in the input queue.
An execution path consists of a series of tuples, where each tuple records the run-time
transition between two basic blocks in the program code. A path is new when the input
results in (1) the generation of new tuples or (2) changing of the hit count (i.e., the frequency)
of an existing tuple. Instead, the PRESERVECOVERAGE function in Algorithm 2 checks
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whether new tuples are covered and returns false if this is the case. It returns true if any
hit count along a path is updated. We add test inputs that preserves the coverage into
the queue to participate in the next round of mutation as seeds. Using this mutation
strategy, REFUZZ can effectively attack specific code areas that have been covered but are
not well-tested and find vulnerabilities.

Algorithm 2: REFUZZ

Input: The target program P; the initial set of seed inputs initSeeds; the time to
enter the exploration stage et; the time limit for performing deterministic
mutations ct.

1 queue← initSeeds
2 crashes← ∅
3 lastCrash← 0
4 while in fuzzing loop do
5 if elapsedTime < et then // Initial stage
6 queue, crashes← ORIGINALAFL(P, queue)
7 else // Exploration stage
8 foreach input ∈ queue do
9 foreach mut ∈ allMutations do

10 if ct < elapsedTime− lastCrash∧ ISDETERMINISTIC(mut) then
11 continue
12 end
13 newInput← MUTATE(input, mut)
14 if FORMATCHECK(newInput) then
15 result← RUN(P, newInput)
16 if CRASH(result) then
17 crashes← crashes∪ {result}
18 lastCrash← elapsedTime
19 else if PRESERVECOVERAGE(result) then
20 queue← queue∪ {newInput}
21 end
22 end
23 end
24 end
25 end
26 end
27 return queue, crashes

3.3. Input Format Checking

Blindly feeding random test inputs to the target program leads to low performance
of the fuzzer since they are likely to fail the initial input validation [8]. For instance,
it is better to run a audio processing program with a MP3 file instead of an arbitrary
file. Since AFL is unaware of the expected input format for each program under test, it
is usual that the structure of an input is changed by random mutation operations. We
propose to add an extra, light-weight format check before each program run to reduce the
unnecessary overhead caused by invalid test inputs. As an exemplar, in the experiments,
we check whether each input is a PDF file when testing a PDF reader and discard those
that do not conform to the PDF format during testing. Specifically, in our implementation,
REFUZZ takes an extra command-line argument, indicating the expected format of inputs.
For each mutated input, REFUZZ checks the magic number of each input file and only adds
it to the queue for further mutation if it passes the check.
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4. Evaluation
4.1. Experimental Setup

To empirically evaluate the REFUZZ and its performance in finding vulnerabilities,
we implement REFUZZ on top of AFL and conduct experiments on a Ubuntu V16.04.6
LTS machine with 16-core Xeon E7 2.10 GHz CPU and 32 GB RAM, using 4 programs that
were also used by prior, related work [7] . Table 1 shows the details of the subjects used
in our experiments. Columns “Program” and “Version” show the program names and
versions. Columns “#Files” and “#LOC” list the number of files and lines of code in each
program, respectively.

Table 1. Experimental subjects.

Program Version #Files #LOC

pdftotext xpdf-2.00 133 51,399
pdftopbm xpdf-2.00 133 51,399
pdffonts xpdf-2.00 133 51,399
MP3Gain 1.5.2 39 8701

4.2. Vulnerability Discovery

A crucial factor in evaluating a fuzzer’s performance is its ability to detect vulnera-
bilities. We configure REFUZZ to run three different experiments for 80 h with identical
initial corpus by modifying et al. Table 2 describes the time for the initial stage and the
exploration stage. In the first stage, the original AFL is applied without the additional test
input format checking. Then, REFUZZ takes the input queue as the initial corpus for the
second stage and uses an extra parameter to pass the expected input type to the target
program, e.g., PDF.

Table 2. Experimental setup.

# Init Time Expl Time Total

1 60 h 20 h 80 h
2 50 h 30 h 80 h
3 40 h 40 h 80 h
4 80 h 0 h 80 h

During the fuzzing process, the fuzzer records the information of each program crash
along with the input that caused the crash. To avoid duplicates in the results, we use the
afl-cmin [17] tool in the AFL toolset to minimize the final reports by eliminating redundant
crashes and inputs. Tables 3–5 show the statistics of unique crashes triggered by REFUZZ.
Note that the numbers in column “Init+Expl” are not exactly the sum of the numbers in
columns “Init” and “Expl”. This is because REFUZZ discovers duplicate crashes in the
initial stage and the exploration stage. Additionally, the numbers in column “New“ are
discovered by REFUZZ but not AFL. After applying afl-cmin, only the unique crashes
are reported.

We also run AFL for 80 h and report the number of crashes in Table 6. The total
number in column “Init“ is less than the number in column “Init+Expl“ in Tables 3 and 5.
This indicates that REFUZZ can find more unique crashes within 80 h. In Table 4, the data
in column “Init“ are much fewer than the other two experimental configurations, so they
are fewer than the total number of crashes in Table 6. As described in Table 7, we compare
the average and variance data of the unique crashes obtained though the four programs
under three different experimental configurations. The data in column “Variance“ have a
large deviation, which reflects the randomness of the fuzzing.

From the Tables 3–5, we can see that new unique crashes are detected during the
exploration stage in all three experimental settings, except for pdftopbm, which has 0 new
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crashes, shown in Table 4. By applying the novel mutation strategy in the exploration stage
and input format checking, REFUZZ discovers 37, 59, and 54 new unique crashes that are
not discovered by AFL. These crashes are hard to find if we simply focus on achieving
high code coverage since they reside in already covered paths and are not examined
sufficiently with various inputs in that some vulnerabilities are detected by relying on
plenty of special-type inputs.

Table 3. Number of unique crashes (60 + 20).

Program
REFUZZ

New
Init Expl Init+Expl

pdftotext 29 4 30 1
pdftopbm 33 14 40 7
pdffonts 154 74 164 10
MP3Gain 92 55 111 19

Total 308 147 345 37

Table 4. Number of unique crashes (50 + 30).

Program
REFUZZ

New
Init Expl Init+Expl

pdftotext 11 9 18 7
pdftopbm 8 1 8 0
pdffonts 153 81 164 11
MP3Gain 74 76 115 41

Total 246 167 305 59

Table 5. Number of unique crashes (40 + 40).

Program
REFUZZ

New
Init Expl Init+Expl

pdftotext 22 6 25 3
pdftopbm 32 25 41 9
pdffonts 148 88 164 16
MP3Gain 101 61 127 26

Total 303 180 357 54

Table 6. Number of unique crashes (80 + 0).

Program Init

pdftotext 35
pdftopbm 39
pdffonts 171
MP3Gain 96

Total 341

Table 7. Average and variance of unique crashes.

Program 60 + 20 50 + 30 40 + 40 Average Variance

pdftotext 30 18 25 24.3 24.2
pdftopbm 40 8 41 29.7 234.9
pdffonts 164 164 164 164 0
MP3Gain 111 115 127 117.7 46.2
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Figure 3 shows the proportion of newly discovered unique crashes among all crashes
that are triggered by REFUZZ in the exploration stage. For example, for pdftotext, the num-
ber of new unique crashes is greater than half of the total number of unique crashes (in the
“40 + 40” setting). We can see that by preserving the code coverage and examining covered
execution paths more, we can discover a relatively large number of new vulnerabilities that
might be neglected by regular CGF, such as AFL. Note that this does not mean that AFL
and others cannot find such vulnerabilities. It just implies that they have a lower chance of
finding the vulnerabilities within a fixed amount of time, while REFUZZ is more likely to
trigger these vulnerabilities, given the same amount of time.

In addition, we set up 12 extra experiments. The corpus obtained by running AFL
for 80 h is used as the initial input of the exploration stage; then, the target programs are
tested by REFUZZ for 16 h. The purpose is to verify whether REFUZZ can always find new
unique crashes when AFL is saturated. The experimental data are recorded in Table 8. The
column “Number of experiments“ records the number of new unique crashes found by
REFUZZ in 12 experiments. It can be proved that when the same initial inputs are provided,
REFUZZ can always find new crashes that are not repeated with AFL, even though the
fuzzing is random.

pdftotext pdftopbm pdffonts MP3Gain
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 60+20
50+30
40+40

Figure 3. Proportion of newly discovered unique crashes in the exploration stage of REFUZZ.

Table 8. Number of new unique crashes (80 + 16).

Program
Number of Experiments

Average
1 2 3 4 5 6 7 8 9 10 11 12

pdftotext 1 7 3 2 4 4 0 0 3 5 7 4 3.3
pdftopbm 3 6 9 2 2 5 5 2 3 4 8 3 4.3
pdffonts 18 15 19 11 8 13 11 18 19 19 7 22 15
MP3Gain 1 6 15 8 7 13 7 7 8 22 14 8 9.7

We have submitted our findings in the target programs to the CVE database. Table 9
shows a summary of nine new vulnerabilities that were found by REFUZZ in our exper-
iments. We are working on analyzing the rest crashes and will release more details in
the future.

4.3. Code Coverage

As described earlier, the goal of REFUZZ is to test whether new and unique crashes
can be discovered on covered paths after regular fuzzing in a limited time, instead of
aiming at high code coverage. We collected the code coverage information during the
execution of REFUZZ and found that the coverage for each target program remained the
same during the exploration stage, which is to be expected. The results also show that
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AFL only achieved slightly higher coverage compared to REFUZZ in the exploration stage,
which implies that AFL ran into a saturation state, which signifies a demand for new
strategies to circumvent such scenarios. REFUZZ is one such remedy, and our experimental
results show its effectiveness in finding new crashes.

Table 9. Submitted vulnerabilities.

ID Description

CVE-2020-25007 double-free vulnerability that may allow an attacker to execute arbitrary
code

CVE-2020-27803 double-free on a certain position in thread
CVE-2020-27805 heap buffer access overflow in XRef::constructXRef() in XRef.cc
CVE-2020-27806 SIGSEGV in function scanFont in pdffonts.cc
CVE-2020-27807 heap-buffer-overflow in function Dict::find(char *) in Dict.cc
CVE-2020-27808 heap-buffer-overflow in function Object::fetch(XRef *, Object *) in Object.cc

CVE-2020-27809 SIGSEGV in function XRef::getStreamEnd(unsigned int, unsigned int *) in
XRef.cc

CVE-2020-27810 heap-buffer-overflow in function Dict::find(char *) in Dict.cc
CVE-2020-27811 SIGSEGV in function XRef::readXRef(unsigned int *) in XRef.cc

5. Discussion

REFUZZ is effective at finding new unique crashes that are hard to discover using AFL.
This is because some execution paths need to be examined multiple times with different
inputs to find hidden vulnerabilities. The coverage-first strategy in AFL and other CGFs
tends to overlook executed paths, which may hinder further investigation of such paths.
However, such questions as “when should we stop the initial stage in REFUZZ and enter
the exploration stage to start the examination of these paths”, and “how long should we
spend in the exploration stage of REFUZZ” remain unanswered.

How long should the initial stage take? As described in Section 4, we performed
three different experiments with et set to 60, 50, and 40 h to gather empirical results. The
intuition is that the effect of using the original AFL to find bugs would be the best when et
is 60 h since it is to be expected that more paths could be covered and more unique crashes
could be triggered if we apply the fuzzer for a longer time in the initial stage. However, our
experimental results in Tables 3–5 show that the fuzzing process is unpredictable. The total
number of unique crashes triggered in the initial stage of 60 h is close to 40 h (308 vs. 303),
while the number obtained in 50 h is less than that of 40 h (246 vs. 303). In Algorithm 2, as
well as our implementation of the algorithm, we allow the user to decide when to stop the
initial stage and set et based on their experience and experiments. Generally, regarding the
appropriate length of the initial stage, we suggest that users should pay attention to the
dynamic data in the fuzzer dashboard. The code coverage remains stable, the color of the
cycle numbers (cycles done) transforms from purple to green, or the last discovered unique
crashes (last uniq crash time) have passed a long time, which indicates that continuing to
test will not bring new discoveries. The best rigorous method is to combine these pieces of
reference information to determine whether the initial stage should be paused.

How long should the exploration stage take? We conducted an extra experiment
using REFUZZ with the corpus obtained from the 80-h run of AFL. We ran REFUZZ for 16 h
and recorded the number of unique crashes per hour. In the experiment, each program was
executed with REFUZZ for 12 trials. The raw results are shown in Figure 4 and the mean of
the 12 trials are shown in Figure 5. In both figures, the x-axes show the number of bugs
(i.e., unique crashes) and the y-axes show the execution time in hours. We can see that
given a fixed corpus of seed inputs, the performance of REFUZZ in the exploration stage
varies a lot in the 12 trials. This is due to the nature of random mutations. Overall, we can
see from the figures that in the exploration stage, REFUZZ follows the empirical rule that
finding a new vulnerability requires exponentially more time [6]. However, this does not
negate the effectiveness of REFUZZ in finding new crashes. We suggest that the best test



Electronics 2021, 10, 1921 12 of 15

time to terminate the remedial testing is still when the exploration reaches saturation, and
the relevant guidelines at the initial stage can be considered here.

Is REFUZZ effective as remedy for CGF? Many researchers have proposed remedial
measures to CGFs. Driller [18] combines fuzzing and symbolic execution. When a fuzzer
becomes stuck, symbolic execution can calculate the valid input to explore deeper bugs.
T-Fuzz [19] detects whenever a baseline mutational fuzzer becomes stuck and no longer
produces inputs that extend the coverage. Then, it produces inputs that trigger deep
program paths and, therefore, find vulnerabilities (hidden bugs) in the program. The main
cause of the saturation is due to the fact that AFL and other CGFs strongly rely on random
mutation to generate new inputs to reach more execution paths. Our experimental results
suggest that new unique crashes can actually be discovered if we leave code coverage aside
and continue to examine the already covered execution paths by applying mutations (as
shown in Tables 3–5). They also show that it is feasible and effective to use our approach
as a remedy and an extension to AFL, which can easily be applied to other existing CGFs.
While this conclusion may not hold for programs that we did not use in the experiments, our
evaluation shows the potential of remedial testing based on re-evaluation of covered paths.

Figure 4. Number of bugs and execution time in exploration stage.

Figure 5. Average number of bugs and execution time in exploration stage.

6. Related Work

The mutation-based fuzzer uses actual inputs to continuously mutate the test cases in
the corpus during the fuzzing process, and continuously feeds the target program. The code
coverage is used as the key to measure the performance of the fuzzer. AFL [3] uses compile-
time instrumentation and genetic algorithms to find interesting test cases, and can find new
edge coverage based on these inputs. VUzzer [20] uses the “intelligent” mutation strategy
based on data flow and control flow to generate high-quality inputs through the result
feedback and by optimizing the input generation process. The experiments show that it can
effectively speed up the mining efficiency and increase the depth of mining. FairFuzz [21]
increases the coverage of AFL by identifying branches (rare branches) performed by a
small amount of input generated by AFL and by using mutation mask creation algorithms
to make mutations that tend to generate inputs that hit specific rare branches. AFLFast [12]
proposes a strategy to make AFL geared toward the low-frequency path, providing more
opportunities to the low-frequency path, which can effectively increase the coverage of
AFL. LibFuzzer [4] uses SanitizerCoverage [22] to track basic block coverage information in
order to generate more test cases that can cover new basic blocks. Sun et al. [23] proposed
to use the ant colony algorithm to control seed inputs screening in greybox fuzzing. By
estimating the transition rate between basic blocks, we can determine which the seed
input is more likely to be mutated. PerfFuzz [24] generates inputs through feedback-
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oriented mutation fuzzing generation, can find various inputs with different hot spots in
the program, and escapes local maximums to have higher execution path length inputs.
SPFuzzs [25] implement three mutation strategies, namely, head, content and sequence
mutation strategies. They cover more paths by driving the fuzzing process, and provide a
method of randomly assigning weights through messages and strategies. By continuously
updating and improving the mutation strategy, the above research effectively improves the
efficiency of fuzzing. As far as we know, in our experiment, if there are no new crashes for
a long time (>ct), and it is undergoing the deterministic mutation operations at present,
then it performs the next deterministic mutation or to enter the random mutation stage
directly, which reduces unnecessary time consumption to a certain extent.

The generation-based fuzzer is significant for having a good understanding of the
file format and interface specification of the target program. By establishing the model
of the file format and interface specification, the fuzzer generates test cases according
to the model. Dam et al. [26] established the Long Short-Term memory model based on
deep learning, which automatically learns the semantic and grammatical features in the
code, and proves that its predictive ability is better than the state-of-the-art vulnerability
prediction models. Reddy et al. [27] proposed a reinforcement learning method to solve
the diversification guidance problem, and used the most advanced testing tools to evaluate
the ability of RLCheck. Godefroid et al. [28] proposed a machine learning technology
based on neural networks to automatically generate grammatically test cases. AFL++ [29]
provides a variety of novel functions that can extend the blurring process over multiple
stages. With it, variants of specific targets can also be written by experienced security
testers. Fioraldi et al. [30] proposed a new technique that can generate and mutate inputs
automatically for the binary format of unknown basic blocks. This technique enables the
input to meet the characteristics of certain formats during the initial analysis phase and
enables deeper path access. You et al. [31] proposed a new fuzzy technology, which can
generate effective seed inputs based on AFL to detect the validity of the input and record
the input corresponding to this type of inspection. PMFuzz [32] automatically generates
high-value test cases to detect crash consistency bugs in persistent memory (PM) programs.
These efforts use syntax or semantic learning techniques to generate legitimate inputs.
However, our work is not limited to using input format checking to screen legitimate
inputs during the testing process, and we can obtain high coverage in a short time by using
the corpus obtained by AFL test as the initial corpus in the exploration phase. Symbolic
execution is an extremely effective software testing method that can generate inputs [33–35].
Symbolic execution can analyze the program to obtain input for the execution of a specific
code area. In other words, when using symbolic execution to analyze a program, the
program uses symbolic values as input instead of the specific values used in the general
program execution. Symbolic execution is a heavyweight software testing method because
the possible input of the analysis program needs to be able to obtain the support of the
target source code. SAFL [36] is augmented with qualified seed generation and efficient
coverage-directed mutation. Symbolic execution is used in a lightweight approach to
generate qualified initial seeds. Valuable exploration directions are learned from the seeds
to reach deep paths in program state space earlier and easier. However, for large software
projects, it takes a lot of time to analyze the target source code. As REFUZZ is a lightweight
extension of AFL, in order to be able to repeatedly reach the existing execution path, we
choose to add the test that fails to generate a new path to the execution corpus to participate
in subsequent mutations.

7. Conclusions

This paper designs and implements a remedy for saturation during greybox fuzzing,
called REFUZZ. Using the corpus of the initial stage as the seed test inputs of the exploration
stage, REFUZZ can explore the same set of execution paths extensively to find new and
unique crashes along those paths within a limited time. The AFL directly feeds the input
obtained by the mutation into the target program for running, which causes many non-
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compliant seeds to be unable to explore deeper paths. In this paper, we proposed an input
format checking algorithm that can filter the file conformed to the input format, which
is beneficial to enhance the coverage depth of the execution path. At the same time, the
mutation strategy we proposed can transition to the random mutation stage to continue
testing when the deterministic mutation stage is stuck, which significantly accelerates the
testing efficiency of fuzzing. We evaluated REFUZZ , using programs from prior related
work. The experimental results show that REFUZZ can find new unique crashes that
account for a large portion among the total unique crashes. Specifically, we discovered and
submitted nine new vulnerabilities in the experimental subjects to the CVE database. We
are in the process of analyzing and reporting more bugs to the developers.

In the future, in order to make our prototype tool better serviced in the real world,
we will study how to combine machine learning to improve the efficiency of input format
checking and design more complex automatic saturation strategies to strengthen the
linkability of the tool. We will continue to improve REFUZZ to help increase the efficiency
of fuzzers in the saturation state using parallel mode and deep reinforcement learning.
We are planning to develop more corresponding interfaces and drivers to explore more
vulnerabilities of IoT terminals for enhanced security of critical infrastructures.
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