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Abstract: The demand for a local oscillator (LO) signal of high quality and integrity in local area
network (WLAN) communication is growing with the increasing date rate. The LO signals for high
data rate WLAN applications are desired to not only have proper shape waveforms and adequate
voltage amplitude but also to achieve relatively stable and clean outputs with low phase noise
and low spur. Fractional-N frequency planning is critical for a quadrature LO-generator, which is
achieved by a single-sideband (SSB) mixer and multiple dividers since it can avoid the frequency
pulling and alleviate the self-mixing and DC offset issues, while spur levels are easily increased due
to harmonic mixing, imbalance, and leakage of the SSB mixer. This article proposes a simple and
innovative quadrature LO-generator, which adopts a current-mode-logic (CML) inductive peaking
(IP) circuit to improve phase noise and suppress spurious tones. Four types of LO delivery methods
using IP circuits are proposed and compared. Among four methods, the CML-IP circuit presents the
optimum performance for driving long wires of multi-mm length. Instead of previous digital spur
cancellation, the CML-IP circuit achieves higher spur suppression, lower jitter, and a greater figure of
merit (FoM). The quadrature LO-generator can be configured to either VCO mode or bypass mode
supporting external VCO input. Implemented in 55 nm CMOS technology, the proposed quadrature
LO-generator achieves −52.6 dBc spur suppression, −142 dBc/Hz phase noise at 1 MHz offset at the
4.8 GHz frequency, and −271 FoM. Furthermore, the quadrature LO-generator occupies an active
area of 0.178 mm2 and consumes 23.86 mW.

Keywords: quadrature local oscillator (LO); WLAN; CML; long wires; CML; inductive peaking (IP);
spur suppression

1. Introduction

The architecture of the zero-IF (intermediate frequency) transceiver for wireless local
area network (WLAN) application has attracted wide interest in recent years, which
requires a clean and stable local oscillator (LO) signal [1]. Generally, LO signals are
produced by quadrature LO-generators, and several important circuits of quadrature LO
have been developed to achieve low phase noise and high spur suppression. These circuits
include the passive RC-CR polyphase filter (PPF) [2,3], the quadrature voltage-controlled
oscillator (QVCO) [4,5], the quadrature divide-by-two divider, and the injection-locked
ring oscillator (ILRO) [6,7]. PPF generates quadrature signals at the broadband frequency
range by cascading multiple stages. However, power consumption is increased because
resistive components are also added for cascading more stages. QVCO can achieve low
phase noise and wide tuning range, while naturally two LC cores would add chip area and
power consumption. Quadrature divide-by-two divider uses a fundamental circuit with a
compact area, which has widely been used to generate quadrature LO signals. However,
the quadrature divider requires that the former VCO operates at a twice higher frequency,
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which results in higher consumption. Nevertheless, combinations of multiple methods of
quadrature signals are common in recent literature.

Recently, fractional-N frequency planning has experienced rapid development and
has attracted more attention [4,8–12], since it can avoid the frequency pulling between
power amplifier (PA) and voltage-controlled oscillator (VCO), as well as alleviate the
self-mixing and DC offset issues. In [4,9,13], fractional-N frequency planning was mainly
achieved by three architectures: combining mixers with multipliers, combining mixers
with dividers, and synthesizing digital fractional-N frequency signals. The combination of
mixers and dividers has been widely used in WLAN transceivers since it has a simple and
comprehensive circuit design. However, the drawback of the method is the high spur level.
To reduce the spur level, a single-sideband (SSB) mixer is adopted to generate fractional-N
frequency signals, but the capacity of spur suppression is still poor due to harmonic mixing,
imbalance, leakage, and some other non-idealities. In addition, the SSB mixer outputs are
easily worse when high-speed signals are needed to deliver over the long wires. Thus, one
of the challenges of LO delivery is generating clean and stable LO signals with low spur
levels when driving long wires of the multi-mm length [14,15].

Recent WLAN transceivers have evolved from single-core to multi-cores; thus, LO
signals are desired to deliver over longer wires of the multi-mm length, which is the larger
load for the input stage. Generally, the LO delivery circuit uses inductive peaking (IP) [16–18]
circuit to drive long wires of the multi-mm length. A conventional method of combining
with inverter-based and IP circuits was reported in [17], which achieved wideband delivery
and good capacity of driving long wires. However, the power consumption is significantly
large when it needs to deliver a large swing voltage signal over a long wire. Ref. [19] used
a combination of shunting IP and current-mode-logic (CML) circuits to achieve broadband
clock delivery and suppress spur due to driving a capacitive load, while the bandwidth is
limited as the single-ended topology and large substrate parasitic capacitance of long wires.
The architecture of a combination of splitting wires and shunt IP was proposed in [20],
which can deliver high-speed signals at the wideband frequency, but it suffers from poor
power efficiency. An active negative gm-boosting circuit was added to the clock delivery
to adjust the gain over a wide frequency range [21].

To solve the above issues, we compared four types of LO delivery methods using IP
circuit; a comparison table is presented to conclude the performance of four LO delivery.
Comprehensively, the proposed method of combining the CML-IP circuit with the splitting-
wires technique achieves the optimum performance. The major contributions of this paper
are listed below:

• A fractional-N frequency architecture for WLAN application is presented, and it is
reconfigured to select either VCO mode or bypass mode.

• Four circuits of LO delivery using the IP circuit to suppress spurs from the SSB mixer
are compared.

• The proposed LO delivery using CML-IP circuit exhibits comprehensive performance
with the low spur, low jitter, and high FoM.

This article focuses on the following: the demand for a high data rate of WLAN
transceiver motivates the development of a local oscillator (LO) signal of high quality and
integrity. The LO signals for high daterate WLAN applications are desired to not only have
proper shape waveforms and adequate voltage amplitude but also to achieve relatively
stable and clean outputs with low phase noise and low spur. A fractional-N frequency
planning is critical for quadrature LO-generator, which consists of a single-sideband (SSB)
mixer and multiple dividers since it can avoid the frequency pulling and alleviate the self-
mixing and DC offset issues, while spur levels are easily increased due to harmonic mixing,
imbalance, and leakage of the SSB mixer. This article proposes a simple and innovative
quadrature LO-generator, which adopts a current-mode-logic (CML) inductive peaking
(IP) circuit to improve phase noise and suppress spurious tones.

The remainder of this paper is structured as follows: Section 2 presents the architecture
of the proposed quadrature LO-generator. Section 3 describes the main circuit blocks, such
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as the SSB mixer, quadrature divider, clock receiver for bypass mode, and LO delivery.
Four LO delivery circuits using the IP technique are also proposed and the performance
comparison is discussed in Section 3. Section 4 demonstrates the simulated and post-layout
simulation results. Finally, Section 5 concludes the article.

2. The Architecture of the Proposed Quadrature LO-Generator

Figure 1 depicts a block diagram of the proposed quadrature LO-generator.
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Figure 1. Architecture of proposed quadrature LO-generator.

The frequency planning and design optimization of the LO signals are highly relative
to the adopted topology and demands of WLAN transceiver, such as SNR and EVM. The
system can be reconfigured to select either VCO mode or bypass mode to support the
external VCO as the inputs. Then, it would generate four-phased quadrature LO outputs
for the TX mixer and RX mixer, respectively. The LO-generator is designed for a direct
conversion transceiver and applied for a 2.4 GHz WLAN band.

The frequency range of the internal VCO is from 6.4 to 6.624 GHz, which can avoid
LO pulling by setting the VCO oscillating frequency apart from the transceiver operating
frequency. To decrease the spurious tones, a single-sideband (SSB) mixer is used with
quadrature inputs produced by two successive quadrature divide-by-two CML dividers.
The SSB mixer separately combines the quadrature outputs of two successive dividers to
generate differential signals over the frequency range from 4.8 to 4.968 GHz. Then, the
LO-frequency plan also consists of a quadrature divide-by-two divider with a 25% duty
cycle, with LO signals operating at a frequency from 2.4 to 2.484 GHz.

To meet the requirements of a compact and symmetrical floor plan, the clock generated
by internal VCO requires driving long wires. The clock needs to deliver over long wires
with multi-mm lengths from local VCO to TX and RX mixers, and to suppress spurious
tones due to the third-order and fifth-order harmonics mixing, amplitude/phase imbalance,
and leakage signals from the inputs to outputs of the SSB mixer. A CML inductive peaking
(IP) technique is adopted, and a gm driver of open-drain converts voltage-mode signals to
current-mode signals. Then, it uses a three-taped LC tank as the load, which is followed by
a cascode transistor. It is desirable to meet the requirement of input voltage swing of the
local quadrature divider, and a negative gm (-gm) boosting is adopted to adjust output
voltage amplitude.

An external 4.8 GHz VCO for bypass mode can be switched on to independently
measure the performance of the LO-generator. Through a common-gate-based clock
receiver, the differential output signals of the external VCO are delivered to LC tank, -gm
boosting, and quadrature divide-by-two. As shown in Figure 1, a distributing cascode
amplifier is designed to deliver CML signals over the long wires, wires1 and wires2. Then,
the CML signals are converted to voltage mode signals by the following LC tank and -gm
boosting, providing the inputs of the following quadrature dividers to generate LO signals
from 2.4 to 2.484 GHz.
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3. Design and Analysis of Proposed Quadrature LO-Generator
3.1. Single-Sideband (SSB) Mixer

As shown in Figure 2a, an SSB mixer is comprised of two mixer cores, which are an
in-phase (I) mixer and a quadrature-phase (Q) mixer. It can be selected as either an I/Q
up-converter or an I/Q down-converter. Figure 2b illustrates that the undesired lower
sideband is naturally suppressed when it is used for the SSB up-converter. As shown in
Figure 3, the SSB mixer requires two Gilbert-based cells, I-Gilbert and Q-Gilbert, sharing a
common LC tank load. Compared with QVCO, it can save significant chip area and power
consumption. The quadrature input signals are produced by two successive CML dividers,
and the frequencies of input signals are 3.2 GHz and 1.6 GHz, respectively.
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Figure 3. Schematic of the SSB mixer.

This fractional frequency planning takes an advantage of avoiding frequency
pulling and pushing between PA and VCO, and it can alleviate the self-mixing and DC
offset issues [22–24].

Based on the block diagram of an SSB up-converter, the output products can be
derived as follows:

A cos(ω1t)B cos(ω2t)− A sin(ω1t)B sin(ω2t) = AB cos(ω1t + ω2t) (1)

In many WLAN applications, low spur LO outputs are demanded. As shown in
Figure 2a,b, which assumes ω1 < ω2, the production output of the SSB mixer is only a
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single tone, while the input is considered as an ideal single tone, and it is assumed that
input signals have equal amplitudes and precise quadrature phases. However, input
signals consist of odd harmonics of the fundamental frequency, which causes harmonic
mixing, especially the third- and fifth-order harmonics. Phase/amplitude imbalance also
exists between quadrature input signals due to design and fabrication mismatch. Thus,
the output spectrum of the SSB mixer would present undesirable frequency components
due to harmonic mixing, imbalance, leakage signals, and some other non-idealities. Even
though the LC tank can suppress undesirable spurious tones, it is still limited due to the
tradeoff between the bandwidth and capacity of the sideband suppression. Furthermore,
it is a challenge to deliver high-speed signals over a long wire of the multi-mm length
and obtain high spur suppression at the end of the long wire. Considering the interferer
conditions and the wanted signal-to-noise ratio (SNR) [1], it is demanded below −45 dBc
spurious suppression at the 2.4 GHz frequency band to avoid the harmful out-of-band
interferers down-converting to the required sub-bands.

Figure 4 displays the transient waveforms of the SSB mixer, which consists of four
1/2 fVCO quadrature inputs at the 3.2 GHz frequency, four 1/4 fVCO inputs at the 1.6 GHz
frequency, and a 3/4 fVCO differential output.
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As shown in Figure 5a,b, the third-order and fifth-order harmonics of the SSB mixer
outputs are significantly large, which would lead to harmonic mixing and increase the
spur levels. The SSB mixer can generate single-sideband down-conversion outputs of
1 × fVCO/4 at the 1.6 GHz frequency. Moreover, the spectrum appears the outputs of
5 × fVCO/4 at the 8 GHz frequency due to harmonic mixing between the third-order
harmonic of the 1 × fVCO/4 input and other 1 × fVCO/2 input. Figure 5c displays the
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4.8 GHz output spectrum, where the SSB mixer achieves a sideband suppression >−42 dBc
at the 1.6 GHz frequency, as well as harmonic mixing suppression >−30 dBc at the 8 GHz
frequency. However, the spur suppression is still poor, even with the inherent characteristic
of spur rejecting of the SSB mixer and the LC tank filtering.
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Therefore, it is necessary to increase the sideband suppression and harmonic mixing
suppression. A current-mode-logic (CML) inductive peaking (IP) circuit is used to solve
the spurious problem and achieve efficient LO delivery over a long wire of the multi-
mm length.

3.2. Comparison of Long Wires Delivery Circuits

Conventional inductive peaking (IP) topologies are presented in Figure 6, which
includes three topologies, a single shunt IP without long wires as a blank comparison, a
single shunt IP with long wires delivery, and a single shunt IP with splitting wires. The
IP circuit uses an LC tank to improve noise suppression and voltage headroom. In the
architecture of Section 2, input current mode signals come from the SSB mixer outputs. An
inductor is deployed, along with parasitic capacitances and a C bank to form an LC tank,
then it would achieve impedance transformation and filtering.

As shown in Figure 7, the spur levels are partly declined when using traditional single
IP topologies, while still suffering from limited driving capacity. The limitation of the single
IP architecture lies in the long wires with large capacitance and poor spur levels of the
delivery signals. Ideally, the outputs of the SSB mixer only produce a single tone, but the
harmonic mixing components of the SSB mixer are large, and the SSB mixer itself also has
phase/amplitude imbalance and leakage signals due to design and fabrication mismatch.
Therefore, the output spectrum of the SSB mixer may appear to have undesirable frequency



Electronics 2021, 10, 1869 7 of 22

components. Even if the LC tank can suppress undesirable spurious tones, it is still poor
because of the tradeoff between the bandwidth and the sideband suppression. In addition,
it is necessary to overcome the obstacle to deliver large-swing signals over long wires of
the multi-mm length.

Electronics 2021, 10, x FOR PEER REVIEW 7 of 25 
 

 

 
(c) 

Figure 5. Simulated SSB mixer spectrum: (a) input 3.2 GHz; (b) input 1.6 GHz; (c) output 4.8 GHz. 

Therefore, it is necessary to increase the sideband suppression and harmonic mixing 

suppression. A current-mode-logic (CML) inductive peaking (IP) circuit is used to solve 

the spurious problem and achieve efficient LO delivery over a long wire of the multi-mm 

length. 

3.2. Comparison of Long Wires Delivery Circuits  

Conventional inductive peaking (IP) topologies are presented in Figure 6, which in-

cludes three topologies, a single shunt IP without long wires as a blank comparison, a 

single shunt IP with long wires delivery, and a single shunt IP with splitting wires. The 

IP circuit uses an LC tank to improve noise suppression and voltage headroom. In the 

architecture of Section 2, input current mode signals come from the SSB mixer outputs. 

An inductor is deployed, along with parasitic capacitances and a C bank to form an LC 

tank, then it would achieve impedance transformation and filtering. 

LRCR

IIN_P

IIN_N

VOUT_P

VOUT_N
 

LRCR

IIN_P

IIN_N

VOUT_P

VOUT_N

Wire2

Wire2

 
(a) (b) 

LRCR

IIN_P

IIN_N

VOUT_P

VOUT_N

Wire3

Wire3

Wire2

Wire2

 
(c) 

Figure 6. Conventional LO delivery topologies: (a) IP technique without long wires; (b) IP technique 

with long wires; (c) IP technique with splitting-long wires. 

As shown in Figure 7, the spur levels are partly declined when using traditional sin-

gle IP topologies, while still suffering from limited driving capacity. The limitation of the 

single IP architecture lies in the long wires with large capacitance and poor spur levels of 

the delivery signals. Ideally, the outputs of the SSB mixer only produce a single tone, but 

the harmonic mixing components of the SSB mixer are large, and the SSB mixer itself also 

0 2 4 6 8 10
-150

-100

-50

0

50

V
o
lt

a
g
e 

(d
B

)

Frequency (GHz)

 Output 4.8 GHz

(1.6E9, -41.78795)

(2.51429E9, -77.00622)

(4.8E9, 0)

(8E9, -30.47943)

(5.71429E9, -81.01703)

Figure 6. Conventional LO delivery topologies: (a) IP technique without long wires; (b) IP technique
with long wires; (c) IP technique with splitting-long wires.

Electronics 2021, 10, x FOR PEER REVIEW 8 of 25 
 

 

has phase/amplitude imbalance and leakage signals due to design and fabrication mis-

match. Therefore, the output spectrum of the SSB mixer may appear to have undesirable 

frequency components. Even if the LC tank can suppress undesirable spurious tones, it is 

still poor because of the tradeoff between the bandwidth and the sideband suppression. 

In addition, it is necessary to overcome the obstacle to deliver large-swing signals over 

long wires of the multi-mm length. 

  
(a) (b) 

 
(c) 

Figure 7. Spectrums of conventional LO delivery topologies: (a) IP technique without long wires; (b) IP technique with 

long wires; (c) IP technique with splitting-long wires. 

The low spur levels and high efficiency are desirable characteristics for LO delivery 

circuits. Previous circuit techniques focused on reducing spur by using a single IP circuit. 

This section presents four different types of LO delivery circuits by combining the IP tech-

nique with other improving spur level techniques, then we conclude the critical perfor-

mance. We assume that an LC tank includes an ideal inductor, an ideal capacitor, and an 

equivalent parallel resistor. 

As shown in Figure 8a, an inverter-based IP topology is employed to drive a large 

capacitive load of long wires, which are split into several wires and driven by multiple 

inverters. Before inverters and long wires, an IP circuit is used to filter out spurious tones. 

This type of LO delivery takes advantage of simple design and compact area. However, it 

0 2 4 6 8 10
-150

-100

-50

0

50

V
o

lt
a

g
e 

(d
B

)

Frequency (GHz)

 Output 4.8 GHz

(1.6E9, -41.79076)

(8E9, -30.47048)

(4.8E9, 0)

0 2 4 6 8 10
-150

-100

-50

0

50

V
o

lt
a

g
e 

(d
B

)

Frequency (GHz)

 Output 4.8 GHz

(1.6E9, -35.78973)

(8E9, -19.56685)

(4.8E9, 0)

0 2 4 6 8 10
-150

-100

-50

0

50

V
o
lt

a
g
e 

(d
B

)

Frequency (GHz)

 Output 4.8 GHz

(1.6E9, -39.2907)

(8E9, -21.90942)

(7.36E9, -44.99884)

Figure 7. Spectrums of conventional LO delivery topologies: (a) IP technique without long wires; (b) IP technique with long
wires; (c) IP technique with splitting-long wires.

The low spur levels and high efficiency are desirable characteristics for LO delivery
circuits. Previous circuit techniques focused on reducing spur by using a single IP cir-
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cuit. This section presents four different types of LO delivery circuits by combining the
IP technique with other improving spur level techniques, then we conclude the critical
performance. We assume that an LC tank includes an ideal inductor, an ideal capacitor,
and an equivalent parallel resistor.

As shown in Figure 8a, an inverter-based IP topology is employed to drive a large
capacitive load of long wires, which are split into several wires and driven by multiple
inverters. Before inverters and long wires, an IP circuit is used to filter out spurious tones.
This type of LO delivery takes advantage of simple design and compact area. However,
it is difficult to drive long wires of the multi-mm length, since it needs larger sizes of
transistors and more power to deliver LO signals as the length of long wires increases.
Then, the RC delay from parasitic capacitance and resistance of the large transistors, as well
as the capacitive impedance of the long wires would harm high-speed LO signals. Thus,
the inverter-based IP topology suffers from the difficulty of extreme power consumption.
Figure 8b describes a topology that combines the IP circuit with an active negative gm (-gm)
boosting [25]. By using an active -gm load, the gain of the differential LO signals increases,
and it also adopts a splitting-wires IP circuit to suppress spurious tones. However, the
topology also suffers from the problem of limited spur suppression. To improve the
capacity of spur suppression, dual-IP circuits are utilized in Figure 8c. The dual-IP circuits
with active -gm boosting can alleviate the stress of the voltage gain and spur suppression,
but the bandwidth of the LO delivery circuit would be degraded, when it is needed to
drive high-speed long wires. Since it uses voltage mode to deliver LO signals, the LO
delivery topology in Figure 8d is an alternative, which employs a CML-IP circuit using
distribution cascode and active -gm boosting. A CML-IP driver is added to the input end
of the long wire; thus, a high-speed LO signal can be delivered by the mode of current not
voltage, which can achieve wideband even considering the large parasitic capacitance of
the long wires. In addition, a pair of differential cascode transistors and an IP circuit with
active -gm boosting is used to split long wires. Therefore, this topology can reduce the spur
suppression by dual inductive peaking as well as gain-boosting by a distribution cascode
amplifier and an active load.
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Figure 8. Proposed four LO delivery topologies: (a) topology of inverter-based IP; (b) topology of negative gm-boosting-
based IP (VML IP); (c) topology of negative gm-boosting-based dual IP (Dual IP); (d) topology of distribution-cascode-
based CML-IP.

As shown in Figure 9, output voltage swings of four LO delivery topologies are
controlled as identical values to achieve a reasonable comparison of the performance. As
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shown in Figure 10, all four topologies can improve spur suppression, and the topology of
distribution-cascode-based CML-IP even can improve spur suppression up to 30 dBc.

Electronics 2021, 10, x FOR PEER REVIEW 10 of 25 
 

 

 

Figure 9. Simulated waveform of LO delivery output. 

  
(a) (b) 

  
(c) (d) 

0 500 1000 1500 2000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

V
o

lt
a

g
e 

(V
)

Time (ps)

  Output  4.8 GHz

(2.58E-11, -0.10758)

0 2 4 6 8 10
-200

-150

-100

-50

0

50

0 2 4 6 8 10
-150

-100

-50

0

50

V
o

lt
a

g
e 

(d
B

)

Frequency (GHz)

 Differential Input
(4.8E9, 0)

(5.44E9, -67.55201)
(7.36E9, -60.63287)

(8E9, -30.80444)

(4.16E9, -74.74088)

(2.24E9, -69.95153)

(1.6E9, -42.0268)

V
o

lt
a

g
e 

(d
B

)

Frequency (GHz)

 Differential Output

(4.8E9, 0)

(1.6E9, -34.91029)

(2.24E9, -66.70628) (7.36E9, -63.25831)

(8E9, -39.34361)

0 2 4 6 8 10
-150

-100

-50

0

50

0 2 4 6 8 10
-150

-100

-50

0

50

V
o

lt
a

g
e 

(d
B

)

Frequency (GHz)

 Differential Input

(4.8E9, 0)

(6.4E9, -72.0368) (9.6E9, -74.29766)

(3.2E9, -85.72015)

(1.6E9, -35.75362) (8E9, -28.37805)

V
o

lt
a

g
e 

(d
B

)

Frequency (GHz)

 Differential Output
(4.8E9, 0)

(1.6E9, -47.33005)
(2.24E9, -56.32942)

(4.16E9, -64.74033)
(5.44E9, -69.44874)

(7.36E9, -47.99401)

(8E9, -31.78881)

0 2 4 6 8 10
-150

-100

-50

0

50

0 2 4 6 8 10
-150

-100

-50

0

50

V
o

lt
a

g
e 

(d
B

)

Frequency (GHz)

 Differential Input

(4.8E9, 0)

(1.6E9, -40.20094)

(2.24E9, -58.34705)

(4.16E9, -62.56139)

(5.44E9, -58.63136)

(7.36E9, -49.74395)

(8E9, -24.68956)

V
o

lt
a

g
e 

(d
B

)

Frequency (GHz)

 Differential Output

(4.8E9, 0)

(2.24E9, -54.14289)

(1.6E9, -52.76353)
(7.36E9, -50.88459)

(8E9, -30.99248)

0 2 4 6 8 10
-200

-150

-100

-50

0

50

0 2 4 6 8 10
-200

-150

-100

-50

0

50

V
o

lt
a

g
e 

(d
B

)

Frequency (GHz)

 Differential Input

(8E9, -31.21991)

(7.36E9, -61.19565)

(5.44E9, -68.61751)

(4.8E9, 0)

(1.6E9, -41.8607)

(2.24E9, -69.1531)

(4.16E9, -71.72964)

V
o

lt
a

g
e 

(d
B

)

Frequency (GHz)

 Differential Output
(4.8E9, 0)

(2.24E9, -53.70164)

(2.88E9, -85.69369)

(7.36E9, -49.90069)

(8E9, -59.1502)

Figure 9. Simulated waveform of LO delivery output.
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Figure 10. Spur suppression of proposed four LO delivery topologies: (a) topology of inverter-based IP; (b) topology of
negative gm-boosting-based IP; (c) topology of negative gm-boosting-based dual IP; (d) topology of distribution-cascode-
based CML-IP.
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Figure 11 shows the phase noise comparison of four topologies. At the frequency of
4.8 GHz, the CML-IP circuit achieves −153.8 dBc/Hz of phase noise at 1 MHz frequency
offset, which is greater than the other three LO delivery topologies. Considering the RMS
jitter in the integration range of 10 KHz to 10 MHz and DC Power consumption, the figure
of merit (FoM) [26] is calculated by the following equation:

FoM = 20 ∗ log10(
σt

1s
) + 10 ∗ log(

P
1mW

) (2)

where σt is RMS jitter and P is DC power consumption; FoM is shown in Figure 12. The
performance of four topologies of LO delivery is presented in Table 1, which also includes
the supply-noise-induced jitter (ps) [27,28], where a 100 mV peak-to-peak sine wave is
added to the supply voltage to simulate the supply noise; then, we calculate the RMS jitter
in the integration range of 10 KHz to 10 MHz.
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3.3. LO Delivery of Distribution-Cascode-Based CML-IP

Figure 13 shows the distribution-cascode-based CML inductive peaking (IP) circuit
for VCO mode, which includes an SSB mixer and a CML-IP delivery circuit.
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Table 1. Performance comparison of proposed four topologies of LO delivery.

Inverter-Based IP Gm-Boosting-Based IP Gm-Boosting-Based Dual IP Distribution-Cascode-Based
CML-IP

Spur (dBc) −40.11 −31.79 −30.99 −53.70
Output Voltage

Swing (V) 1.75 1.73 1.65 1.69

Phase Noise@1 MHz
(dBc/Hz) −151.92 −148.96 −149.82 −154.18

RMS Jitter (fs) 3.14 4.44 4.12 2.52
PDC (mW) 11.81 3.00 3.00 6.30
FoM (dB) −279.34 −282.28 −282.93 −283.98

Supply-Noise-Induced
Jitter (ps) 3.83 1.78 0.57 0.40
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SSB mixer can generate fractional-N frequency output signals to avoid frequency
pulling of the VCO and PA. However, the SSB mixer would result in high spurious tones
due to harmonic mixing, imbalance, leakage signals, and some other non-idealities. To
improve spur suppression and avoid attenuating signals when LO signals are delivered
over long wires, a CML-IP circuit is used to provide large load impedance at the resonant
frequency and filter out spurious tones. CML-IP delivery circuit obtains the optimum
performance, such as spur suppression, phase noise, supply-noise-induced jitter, and FoM
among four LO delivery circuits.

In terms of simulation results, the outputs of the delivery circuit are needed to provide
voltage signals above 1 V voltage peak-to-peak (VPP) swing, to drive the following quadra-
ture divider. Therefore, the CML-IP delivery circuit requires a large gain to drive long wires
and improve spur suppression of the LO signals from the SSB mixer outputs. However,
the gain of the CML-IP circuit is related to the delivery current and load impedance. An
LC tank uses a capacitor bank to adjust the resonant frequency of the load impedance to
avoid gain degrading.

The following part provides the analysis of the optimum load impedance and current
distribution of the CML-IP delivery circuit. The one-port circuit diagram of the CML-
IP circuit is shown in Figure 14a; -gm boosting is equivalent to a negative impedance
−1/gm5. Limited Q-factor of the LC tank is considered as an equivalent shunt resistive
impedance, and RP, CR and LR represent the capacitive and inductive components of the
LC tank, respectively.
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lent circuit.

The one-port equivalent model of CML-IP circuit adopts distribution cascode with
IP circuit and -gm-boosting, which is presented in Figure 14b. The load impedance of the
cascode transistor M3 at the output node can be written as:

ZLC =
sLRRP

2(s LR(1− gm5RP
2 ) + RP

2 (s2LRCR + 1))
(3)

where ZLC and ZLM represent the load impedance seen from the drain node and the source
node of the transistor M3, respectively, which is expressed as follows:

ZLM =
ro3 + ZLC

1 + (gm3 + gmb3)ro3 + sCgs3(ro3 + ZLC)
(4)

Based on the load impedance analysis, the gain of the CML-IP circuit with -gm-
boosting can be derived as follows:

ZLM(jω) =
1 + ZLC(jω)

ro3

( 1
ro3

+ gm3 + gmb3)(1 +
jω
ωT

(1 + ZLC(jω)
ro3

))
(5)

At the peak resonant frequency ωo, the load impedance ZLM can be approximately
written as:

ωo =
1√

LRCR
� ωT =

Cgs3
1

ro3
+ gm3 + gmb3

, (6a)

RP = (Q2 + 1)RS ≈ Q2RS, (6b)

ZLM(ω = ωo) =
1 + Rp

ro3(1−gm5Rp)

1
ro3

+ gm3 + gmb3
≈

1 + Q2Rs
ro3(1−gm5Q2Rs)

1
ro3

+ gm3 + gmb3
. (6c)

where Q represents the quality factor of the LC tank. According to the small-signal model,
the gain of the CML-IP circuit with -gm-boosting is the product of load impedance of the
transistor of M3 output and gm of common source transistor M9, which can be derived as:

Zout =
((1 + (gm3 + gmb3)ro3)ro1 + ro3)ZLC
(1 + (gm3 + gmb3)ro3)ro1 + ro3 + ZLC

(7)

Considering the large intrinsic gain of one transistor,

(1 + (gm3 + gmb3)ro3)ro1 + ro3 �
Rp

2(1− gm5Rp
2 )

(8)



Electronics 2021, 10, 1869 13 of 22

Therefore, the gain Av can be described as follows:

Av = gm9Zout ≈ gm9
Rp

2(1− gm5Rp
2 )

(9)

The gain is related to the positive gm transistor gm9 and negative gm transistor gm5,
and the relation of output voltage swing and positive gm current is illustrated in Figure 15a.
Figure 15b,c show the optimum size of the cascode transistor, which presents the tradeoff
between output voltage swing and RMS jitter concerning the ratio of width to length (W/L)
of the transistor M5. Figure 16 shows the effect of the current distribution between positive
gm gm9 and negative gm gm5 on the output voltage swing and RMS jitter. It is necessary
to distribute adequate currents to positive gm as much on the condition of limited total
currents; more positive gm currents would improve the voltage gain and RMS jitter.
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Figure 15. (a) Effect of positive gm on output voltage swing. Effect of W/L of cascode transistor on: (b) output voltage
swing; (c) RMS jitter.
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Figure 16. Effect of current distribution on (a) output voltage swing; (b) RMS jitter.

3.4. Load Resuing of Bypass Mode

To independently measure the quadrature LO-generator, the internal VCO is power-
off and an external VCO is used as the input for bypass mode. Figure 17 presents the
schematic of a differential common gate-based (CG) clock receiver. Followed by an off-chip
Balun, a single-ended clock source at the frequency of 4.8 GHz is transformed to differential
signals. The differential input mode and a lower input frequency of external VCO can
alleviate the issue of ground bounce due to the inductor and capacitor of the bonding wire
and suppress the common-mode noise [29]. However, the off-chip balun would cause a
large in-phase/quadrature-phase (I/Q) imbalance of the clock signal, and the I/Q phase



Electronics 2021, 10, 1869 14 of 22

imbalance would appear on the quadrature LO signals at the output node. However, the
differential amplifier naturally suppresses this I/Q imbalance, since the phase imbalance is
considered as common-mode noise.
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Figure 17. Schematic of bypass mode for external VCO input.

Similarly, the clock signal from external VCO is required to deliver over a long wire of
a multi-mm length. Thus, the CML-IP delivery circuit is also adapted to obtain high spur
suppression and improve phase noise. Moreover, a load reusing technique is used in the
clock receiver, which would enhance gain and shrink the chip area.

A one-port equivalent circuit of clock receiver for bypass mode is shown in Figure 18.
We present the analysis of the input impedance and gain of the clock receiver as follows.
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Figure 18. A one-port equivalent circuit of: (a) clock receiver for bypass mode; (b) distribution-
cascode with negative gm-boosting.

The input impedance Zids of the clock receiver can be written as:

Zids =
(Zi + sL1)

1
sC1

Zi + sL1 +
1

sC1

(10a)

where Zi is

Zi(jω) =
jω(C3 + C4)Zg + 1

jω(C2 + C3)(jωC4Zg + 1)−ω2C2C3Zg
(10b)
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where Zg is

Zg(jω) =
jωL2

1 + jωL2(gm1 + gmb1)
(10c)

At the resonant frequency, Zids is expressed as:

Zids(jω) =
Zi + jω(L1 −ω2L2

1C1 − Z2
i C1)

(1−ω2L1C1)
2 + ω2Z2

i C2
1

(11)

A similar analysis to VCO mode is presented as follows. The gain of the clock receiver
for bypass mode consists of output load impedance and transconductance of the input
common-gate transistor.

Zout =
((1 + (gm3 + gmb3)ro3)ro1 + ro3)ZLC
(1 + (gm3 + gmb3)ro3)ro1 + ro3 + ZLC

(12)

where Zout represents output impedance, according to the supposed large intrinsic gain,

(1 + (gm3 + gmb3)ro3)ro1 + ro3 �
Rp

2(1− gm5Rp
2 )

(13)

The gain of the clock receiver is expressed as follows:

Av = (gm1 + gmb1)Zout ≈ (gm1 + gmb1)
Rp

2(1− gm5Rp
2 )

(14)

The quadrature LO-generator provides reconfigurable selections of the clock source,
either VCO mode or bypass mode which supports the external VCO source. Figure 19
presents three methods to switch on/off. The switching scheme demands maintaining
LO signal integrity for bypass mode and reducing the effect of long wires of external
clock delivery on VCO mode. As shown in Figure 19a, the input common-gate transistors
are reused as amplifying and switching. The circuit design is simple and the chip area
is compact. Figure 19b presents the architecture of splitting-wire using a pair of series
switching transistors, which isolates the long wires Wire1 and the circuits of VCO mode.
To further improve the isolation, Figure 19c adds a switch gm circuit, which would induce
the LO signals to the ground when bypass mode is switching off, and it would consume
more power due to adding an extra switch gm circuit. Therefore, the switching scheme of
Figure 19b is adopted to reconfigure selections of the clock source, either VCO mode or
bypass mode which supports the external VCO source.

3.5. Quadrature Divide-by-Two Divider

Figure 20 shows the quadrature divider circuit with a regenerative loop, which consists
of two latches based on regenerative loops to generate successive four-phased quadrature
outputs [30]. When either one of the input signals turns high, the associated branches are
off. For example, CKP is assumed to turn high, then M11 and M12 are off and the associated
outputs of the VIP and VIN obtain low. Similarly, when either one of the input signals turns
low, the related branches turn on; for example, when CKP turns low, it is assumed that VIP
turns on, then VIN keeps low, and VQP and VQN also hold low, otherwise, it would violate
the initial assumption of VIP turning on. Four-phased outputs alternately turn high during
two periods; thus, the quadrature divider generates divide-by-two signals with the 25%
duty cycle.



Electronics 2021, 10, 1869 16 of 22

Electronics 2021, 10, x FOR PEER REVIEW 17 of 25 
 

 

The gain of the clock receiver is expressed as follows: 

1 1 1 1

5

( ) ( )

2(1 )
2

p

v m mb out m mb

m p

R
A g g Z g g

g R
   



 
(14) 

The quadrature LO-generator provides reconfigurable selections of the clock source, 

either VCO mode or bypass mode which supports the external VCO source. Figure 19 

presents three methods to switch on/off. The switching scheme demands maintaining LO 

signal integrity for bypass mode and reducing the effect of long wires of external clock 

delivery on VCO mode. As shown in Figure 19a, the input common-gate transistors are 

reused as amplifying and switching. The circuit design is simple and the chip area is com-

pact. Figure 19b presents the architecture of splitting-wire using a pair of series switching 

transistors, which isolates the long wires 
1

Wire  and the circuits of VCO mode. To further 

improve the isolation, Figure 19c adds a switch gm circuit, which would induce the LO 

signals to the ground when bypass mode is switching off, and it would consume more 

power due to adding an extra switch gm circuit. Therefore, the switching scheme of Figure 

19b is adopted to reconfigure selections of the clock source, either VCO mode or bypass 

mode which supports the external VCO source. 

VS

RS

Bonding wire of 

Packaging 

C1

C1 C2

C2

L1

L1

AVSS

L2

L2C4

C4

C3

C3

Lb2Lb1

1:n

M1

Vb1(SW)

M2

M7 M8

Vib1

Vb2

VN_mix
C5

R1

Vb2

VP_mix C5

R1

PD

AVSS

Mixer-gm

M11 M12

M9

IOUT_P

IOUT_N

Wire1

Wire2

Wire2

Vb1(SW)

Wire1 CG-AMP

 

VS

RS

Bonding wire of 

Packaging 

C1

C1 C2

C2

L1

L1

AVSS

Vb1

L2

L2C4

C4

C3

C3

Lb2Lb1

1:n

M1

Vb1
M2

M9 M10

Vib1

Vb2

VN_mix
C5

R1

Vb2

VP_mix C5

R1

PD

AVSS

SWM8M7SW

Mixer-gm

M11 M12

M9

IOUT_P

IOUT_N

CG-AMP

Wire1 Wire1

Wire2

Wire2

 
(a) (b) 

VS

RS

Bonding wire of 

Packaging 

C1

C1 C2

C2

L1

L1

AVSS

Vb1

L2

L2C4

C4

C3

C3

Lb2Lb1

1:n

M1

Vb1

M2

M9 M10

Vib1

Vb2

VN_mix
C5

R1

Vb2

VP_mix C5

R2

PD

AVSS

M8M7

Mixer-gm

M11 M12

M9

IOUT_P

IOUT_N

CG-AMP

Wire1

Wire2

Wire2

Vib2

M13

AVDD
R2

Wire1

switch-gm

 

 

(c)  

Figure 19. Proposed three bypass switching methods: (a) reusing common-gate transistor and switch transistor; (b) split-

ting wires using series switch transistor; (c) voltage mode gm switch transistor. 

3.5. Quadrature Divide-by-Two Divider 

Figure 20 shows the quadrature divider circuit with a regenerative loop, which con-

sists of two latches based on regenerative loops to generate successive four-phased quad-

rature outputs [30]. When either one of the input signals turns high, the associated 

Figure 19. Proposed three bypass switching methods: (a) reusing common-gate transistor and switch transistor; (b) splitting
wires using series switch transistor; (c) voltage mode gm switch transistor.
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Figure 20. Quadrature divide-by-two divider with a regenerative loop.

4. Simulation Results and Discussion

The proposed quadrature LO-generator was designed with 55 nm CMOS technology.
All circuits are designed and simulated on Virtuoso Design Environment. Figure 21
shows the layout of four main circuit blocks, consisting of an SSB mixer with a positive
gm circuit, a distribution cascode using CML-IP technique with a negative gm-boosting,
a quadrature divide-by-two divider, and a clock receiver for bypass mode supporting
external VCO input.

Figure 22 shows the simulated timing waveforms of the critical nodes of the proposed
quadrature LO-generator for the VCO mode and the bypass mode, respectively. Figure
22a,b display the transient waveforms for VCO mode. The VCO generates differential
signals at the inputs of the quadrature LO-generator; the differential signals achieve 3.2 V
voltage peak-to-peak (VPP) swing at the 6.4 GHz frequency. Then, the 4.8 GHz outputs
of the SSB mixer are desired to deliver CML signals over long wires and produce voltage
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signals as the inputs of the quadrature divider. The cascode output signals indicate that the
CML-IP delivery circuit has effectively overcome the deterioration of parasitic capacitance
of long wires. Figure 22c presents transient waveforms at key nodes for bypass mode.
An external clock at the 4.8 GHz frequency is converted from the single-ended signal to
differential signals through an off-chip balun. The common-gate amplifier of the clock
receiver achieves impedance matching and amplifying. In addition, the CML-IP circuit for
VCO mode is reused as a common load for bypass mode.
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Figure 21. Layout of proposed LO-generator and LO delivery: (a) SSB mixer with a positive gm; (b) distribution cascode
using CML-IP with a negative gm; (c) quadrature divide-by-two divider; (d) clock receiver for bypass mode of external
VCO input.
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Figure 22. Waveforms of LO delivery: (a) simulated results for VCO mode; (b) post-layout simulation results for VCO
mode; (c) simulated results and post-layout simulation results for bypass mode.
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Figure 23 displays the transient waveforms of the quadrature LO outputs at the
2.4 GHz frequency, presenting the simulated results and post-layout simulation results.
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Figure 23. Waveforms of output LO signals: (a) simulated results; (b) post-layout simulation results.

As shown in Figure 24a,b, the spectra are normalized to the fundamental signal at the
4.8 GHz frequency. When the quadrature LO-generator operates at VCO mode, the spur
levels from the SSB mixer outputs to cascode outputs have been significantly decreased.
For the 8 GHz mixing harmonics component, the CML-IP delivery circuit presents spur
reduction over 23.5 dBc of simulated results and 21.0 dBc of post-layout simulation results.
For the 1.6 GHz lower sideband component, the CML-IP delivery circuit presents spur
reduction over 36.2 dBc of the simulated results and 34.23 dBc of the post-layout simulation
results. Therefore, the CML-IP delivery circuit achieves efficient sideband suppression and
mixing harmonics suppression.

Similarly, when the quadrature LO-generator operates at bypass mode from an ex-
ternal clock source, spurious tones are also suppressed due to the CML-IP circuit. The
third-order harmonic suppressions of simulated results and post-layout simulation results
are improved from −36 dBc to −66 dBc, as well as from −37 dBc to −61 dBc, respectively.
The spectrum displays the third-order harmonic rejection over 28 dBc and 24 dBc, respec-
tively. Moreover, second-order harmonic components of simulated results and post-layout
simulation are reduced over 14 dBc and 15 dBc, respectively.

Figure 25 shows the simulation results of the S-parameters of the clock receiver, which
achieve great impedance matching over the desired band. Figure 25b presents the results
of S21, which attains gain over 10 dB at the frequency of 4.8–5 GHz by adjusting the critical
code of the capacitor bank to achieve adequate gain.

At the 1 MHz frequency offset, which is relative to the 4.8 GHz frequency carrier,
Figure 26 presents the phase noise results of the quadrature LO-generator when operated
at either VCO mode or bypass mode. Figure 26a presents the phase noises of simulated
results and post-layout simulation results for bypass mode; both phase noise results are
approximate. In addition, Figure 26b compares phase noise results for VCO mode and
bypass mode, where the quadrature LO-generator achieves phase noise of−141.86 dBc/Hz
and −145.09 dBc/Hz, respectively.

Figure 27 presents the power consumption of the quadrature LO-generator for VCO mode
and bypass mode, which consume the total power of 23.86 mW and 15.71 mW, respectively.
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Figure 24. Spur suppressions of LO delivery: (a) simulated results for VCO mode; (b) post-layout simulation results for
VCO mode; (c) simulated results for bypass mode; (d) post-layout simulation results for bypass mode.

Table 2 summarizes and compares the characteristics of the proposed quadrature LO-
generator with previously published reports. Our architecture of quadrature LO-generator
combines an SSB mixer with a divider to achieve fractional-N frequency planning. The
CML-IP delivery circuit is adopted to drive long wires and suppress spur produced from
the SSB mixer. Our proposed quadrature LO-generator achieves spur suppression of
−52.6 dBc and −59.2 dBc for VCO mode and bypass mode, respectively. Comprehensively
considering the power and RMS jitter, the greater FoM of −270.8 and −264.9 for VCO
mode and bypass mode can be obtained, respectively.
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Table 2. Performance summary and comparison of quadrature LO-generator.

[11] [9] [10] [12]
This

VCO Mode Bypass Mode

Architecture On/off switching
Fractional–N

divider + Digital
Spur Cancellation

Fractional–N
counter + Digital

Calibration

Fractional–N
Σ-∆ modulator + Digital

Calibration
SSB Mixer + CML-IP

CMOS Technology (nm) 180 65 65 40 55
Supply Voltage (V) 1.5 1.2 1.2 - 1.5 /1.2

LO Frequency (GHz) 3.1–5.1 3–3.6 3 5.5–12 2.4—2.484
Phase noise @1 MHz offset

(dBc) @ carrier (GHz) - −103.4 @ 3.6 −123 @ 3 −144 @ 7 −141.9 @ 4.8 −145.6 @ 4.8

RMS Jitter (fs)
(Frequency Range) - 900

(10 K–30 M) - 560
(10 K—40 M)

11.6
(10 K–10 M)

6.9
(10 K–10 M)

Largest spur (dBc) −25 −57 −45 −48 −52.6 −59.2
Power PDC (mW) 7.8 80 10 30 23.86 15.71

* FoM - −221 - −230 −270.8 −264.9
Active Area (mm2) 0.31 0.4 0.4 0.28 0.178 0.186

* FoM = 20 ∗ log10(
σt
1s ) + 10 ∗ log( P

1mW )

5. Conclusions

In this paper, a novel quadrature LO-generator using a fractional-N frequency archi-
tecture for WLAN application is proposed, in which fractional-N frequency planning is
achieved by a single-sideband (SSB) mixer and multiple dividers to avoid the frequency
pulling and alleviate the self-mixing and DC offset issues. To improve phase noise and sup-
press spurious tones of LO signals due to harmonic mixing, imbalance, and leakage of the
SSB mixer, four types of LO delivery circuits using the iductive peaking (IP) technique were
proposed and compared. Among the four circuits, the CML-IP delivery circuit achieves
the optimum performance in terms of spur suppression, phase noise, and capacity of
driving long wires. In addition, the quadrature LO-generator can achieve two alternatives
of the input clock source, either at VCO mode or at bypass mode supporting external
VCO input. Compared to previous digital spur cancellation methods, the CML-IP circuit
displays greater performance. For VCO mode and bypass mode, the simulation results
demonstrate spur suppression of −52.6 dBc and −59.2 dBc, respectively; phase noise of
−142 dBc/Hz and−145.09 dBc/Hz at 1 MHz offset at the 4.8 GHz carrier frequency, respec-
tively; and FoM of −271 and −264.9, respectively. Nevertheless, the proposed quadrature
LO-generator may suffer from gain degradation as the length of long wires of LO delivery
increases. Therefore, future research is needed to improve the ability of dynamic adaption
for LO delivery length.
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