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Abstract: A standard called MPEG Dynamic Adaptive Streaming over HTTP (MPEG DASH) ensures
the interoperability between different streaming services and the highest possible video quality
in changing network conditions. The solutions described in the available literature that focus
on video segmentation are mostly proprietary, use a high amount of computational power, lack
the methodology, model notation, information needed for reproduction, or do not consider the
spatial and temporal activity of video sequences. This paper presents a new model for selecting
optimal parameters and number of representations for video encoding and segmentation, based on
a measure of the spatial and temporal activity of the video content. The model was developed for
the H.264 encoder, using Structural Similarity Index Measure (SSIM) objective metrics as well as
Spatial Information (SI) and Temporal Information (TI) as measures of video spatial and temporal
activity. The methodology that we used to develop the mathematical model is also presented in
detail so that it can be applied to adapt the mathematical model to another type of an encoder or
a set of encoding parameters. The efficiency of the segmentation made by the proposed model was
tested using the Basic Adaptation algorithm (BAA) and Segment Aware Rate Adaptation (SARA)
algorithm as well as two different network scenarios. In comparison to the segmentation available in
the relevant literature, the segmentation based on the proposed model obtains better SSIM values in
92% of cases and subjective testing showed that it achieves better results in 83.3% of cases.

Keywords: adaptive streaming; MPEG DASH; video segmentation; representation; methodology;
spatial information; temporal information; MOS; SSIM

1. Introduction

The development of the Internet, as well as hardware that supports novel Internet
technologies, created the increased need for network and bandwidth resources. To fulfill
the user’s needs for streaming services at home as well as on the go, and taking into
account different devices and their capabilities, several solutions based on Hypertext
Transfer Protocol (HTTP) were developed. In adaptive bitrate (ABR) streaming solutions
like Microsoft Smooth Streaming, Apple HTTP Adaptive Streaming, and Adobe HTTP
Dynamic Streaming, user devices had to support a proprietary client protocol. Furthermore,
these solutions were not interoperable since they used different formats of segments and
manifest files [1].

MPEG Dynamic Adaptive Streaming over Hypertext Transfer Protocol (MPEG DASH)
was developed in order to simplify the application maintenance, reduce development
costs, and ensure interoperability. Every system developed in compliance with MPEG
DASH provides smooth playback due to an adaptation algorithm that selects appropriate
video segments encoded with different spatial resolutions and target coding bitrates based
on the client’s device characteristics and the state in a heterogeneous network [2]. The
smooth playback is ensured by monitoring the available bandwidth and the rate at which
the encoded content is downloaded. To prevent the buffer underflow and stalling events
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in case of network bandwidth decrease, the client application can select the appropriate
video segments with lower quality. The client can also select a stream with a higher target
coding bitrate if the download rate is greater than the target coding bitrate of the current
stream [3]. Adaptation logic in DASH systems aims to provide the highest possible Quality
of Experience (QoE) by taking into account parameters like available bandwidth and buffer
occupancy [4].

A client and server in DASH systems communicate using HTTP GET requests and
operate over proxy and firewall servers [5]. Apart from adaptation logic, the client ap-
plication consists of several modules like a player module, Media Presentation Descrip-
tion (MPD) parser module, segment acquisition and distribution module and the buffer
(Figure 1). The server is used to store MPD files and segmented video sequences. MPEG
DASH standard does not define parameters of the video segmentation and presentations,
the communication between the server and the client and it does not define client behavior.
MPEG DASH defines only the format of the segments and the MPD file. MPD is a manifest
file that provides information about available adaptation and representation sets. It can be
transported using HTTP, broadcast, e-mail, or other available communication channels.
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Figure 1. Overview of a system based on MPEG DASH.

After obtaining the MPD file, the client stores information about available adaptation
and representation sets and the HTTP GET request for the initialization segment can be
sent. The initialization segment is used to initialize the media decoder on the client side.
Except for the initializing segment, all other segments consist of one group of pictures
(GOP) and start with an I-frame, following by multiple P and B frames. When encoding,
the GOP length value is set to a value corresponding to the product of the desired video
segment duration and the video temporal resolution. In this way, video segments are made
to be self-contained, so when the representation for the next video segment changes, the
video playback can be continued without the need to download additional data. Each
segment is described in the MPD file with an URL address, ID and duration (sometimes
it also contains start time and segment size) [6,7]. As it can be seen in Figure 1, video
segments are organized in representation and adaptation sets. There can be one or more
adaptation sets stored on the server for a certain video sequence.



Electronics 2021, 10, 1843 3 of 17

Adaptation sets can differ by spatial resolution or by type of the multimedia compo-
nent (audio, subtitle). Within one adaptation set, there are usually multiple representation
sets (10–20), which consist of video sequences encoded on different target bitrates and typi-
cally with lower spatial resolutions for lower bitrates. It should be noted that target coding
bitrates can differ from the achieved values depending on the encoding parameters [1,7].

The duration of the video segments is usually a few seconds (most frequently, between
2 and 10 s). The choice of segment duration has an impact on QoE and depends on network
conditions. Segments with shorter duration have shorter GOP and consequently smaller
sizes, thus they can be downloaded faster (which results in faster buffer filling) and are more
suitable for systems with sudden changes in network conditions and available bandwidth.
Therefore, video segments that have short duration are better performance-wise when
the buffer occupancy is low, especially in cases when there is low available bandwidth,
considering that buffer underflow leads to stalling and cutoff events. On the other hand,
the problem related to segments with a short duration is the increased number of HTTP
signaling messages that can be reduced by requesting multiple segments with a single
HTTP request. This solution is especially interesting for the application in live video
streaming services where novel applications use segments shorter than one second [8–10].

Segments with longer durations have more problems when changes in network
conditions are abrupt, as they need more time to complete the download and consequently
to change the quality level in order to align with current network performance. However, in
stable network conditions, longer segments perform better than shorter ones because they
have a larger number of P and B frames; thus, they need a lower encoding bitrate to achieve
the given video quality. It can be concluded that the choice of segment optimal duration
depends on the network characteristics and although a dynamic change of the segment
duration can improve the quality of video streaming, existing solutions use segments
of the same and constant duration for all quality levels in order to avoid the increase of
complexity [7,11].

The client side of MPEG DASH systems has been thoroughly investigated since
the standard announcement but the server side has not yet been investigated enough,
especially the coding and segmentation process. First solutions were based on fixed
coding parameters and representation set parameters that were proven to be insufficient
for video sequences with different spatial and temporal activity. Thus, representation sets
with different parameters for each content genre were proposed [12]. Several available
papers use these fixed representation set parameters mostly recommended by streaming
providers [13,14]. In recent research, there are various solutions with parameters for
representation sets being determined by multiple precoding of each video sequence [2,15].

Considering that most of the available solutions are proprietary, demand high com-
putational power or do not consider the spatial and temporal activity of video sequences,
there is room for improvement regarding the selection of optimal representation sets for
MPEG DASH. In this article, a new model for selecting the parameters for representations
that can be used in systems based on MPEG DASH is presented. The mathematical model
is based on Spatial (SI) and Temporal Information (TI) of video sequences as measures of
spatial and temporal video activity. The idea was to simplify the process for the selection of
optimal representation sets taking into account the video content and to eliminate the need
for multiple precoding. Furthermore, the methodology used to develop the mathematical
model is presented in detail, so that it can be applied to adapt the model to any type of
an encoder or a set of encoding parameters.

An overview of currently available research regarding the models and systems that
can be used for selecting the parameters for representation sets is given in Section 2. The
test setup, analysis of selected video content, video coding and conclusions from our
research that precedes the model proposed in this paper are presented in Section 3. The
methodology and the notation of the proposed model are given in Section 4. Section 5
presents model testing results acquired using the adaptive streaming algorithms, followed
by a conclusion.
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2. Related Work

In comparison to the client side of MPEG DASH systems, very few research that focus
on video coding parameters, selection of optimal parameters for representation sets, and
consequently, the development of databases with video sequences prepared for MPEG
DASH are available.

The database presented in [12] is the most complete available database, but two of
three videos do not include the initialization segment. References [16,17] consist of only
one video sequence each. References [4,18] have only 3 and 4 videos longer than 20 s,
respectively, and for testing QoE parameters like initial delay, stalling, number and depth
of switching events, they should be at least 60–120 s long. All other available datasets do
not provide videos segmented for MPEG DASH with the initialization segment and/or the
corresponding MPD files. Moreover, none of these databases have additional information
in the MPD such as the segment size needed for novel adaptation algorithms nor are
the videos selected according to the content activity. And most importantly, there is no
information about the selection process for parameters of representations used in coding the
available datasets besides the [12] that specifies that the parameters for the representation
sets are determined based on the Peak Signal-to-Noise Ratio (PSNR).

One of the solutions for the problem of selecting the optimal parameters for repre-
sentation sets that considers the content is presented in [14,19]. The video content is in
this solution categorized as cartoon, documentary, movie and sport, which does not give
enough information about the spatial and temporal activity of video sequences. Integer
Linear Program and Video Quality Metric are used to specify the optimal parameters for
representation sets based on the network characteristics and QoE parameters. Considering
that, at the time, there was only a recommendation for fixed parameters for representation
sets defined by streaming providers, this solution outperformed them but at a cost of using
a large amount of computational power. In addition, this solution, as well as [15], does not
provide all information needed for reproducing results.

Several research focus on encoding complexity like [20]. In the proposed method, the
parameters for representation sets are selected based on the content-encoding complexity
and Video Multimethod Assessment Fusion (VMAF) values. The span of possible bitrates
was determined by content-encoding complexity, while the number of representations was
determined by a uniform distribution of bitrates based on VMAF values. Even though
the proposed method considers encoding complexity, Ref. [20] does not list all parameters
needed for results reproduction it does not give the notation of the presented model.

There are two solutions available in the literature that focus on obtaining the Rate-
Quality (RQ) curves for each video sequence by precoding them [15,21]. Both solutions
use PSNR to determine RQ curves after precoding video sequences with a set of spatial
resolutions and target coding bitrates. In [15], a constraint optimization problem was used
to determine the target coding bitrates while taking into account the available bandwidth
and distributions of the client’s viewport size. The optimal parameters for representation
sets were selected based on RQ curves. The solution proposed in [21] conducts a multi-pass
encoding and measures the bitrate of every segment. The number of representations is
selected so that adjacent representations are one Just Noticeable Difference (JDN) apart
and that the increment in target coding bitrates is around 5%. Both solutions that use RQ
curves require precoding for each video content that is segmented for streaming purposes,
which consumes a large amount of computing power.

The model for selecting the optimal parameters for representation sets described
in [22] focuses on Mean Squared Error and complexity–rate distortion attributes that
occur in the bitrate control mechanism. Unfortunately, the estimation of the number of
representations is not clearly presented.

There are also application-specific models like [23] that investigate the optimal pa-
rameters for representation sets for 3D scenes. An integer linear programming problem
with a limited computational complexity is used to model the representation set. The
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proposed solution can determine an optimal set for most of 3D scenes while reducing the
consumption of computational power.

Another interesting solution was proposed in [24]. It was developed for 360 VR (virtual
reality) video sequences and uses multi-quality tiles, i.e., small rectangular segments of
a video sequence. The authors assume that video sequences are precoded in a predefined set
of representations that correspond to quality levels which were determined by considering
the user’s quality requirements. Although multi-quality tile segmentation is proven to
be efficient in 360 VR and is widely used for 360 VR (head-mounted devices), panoramic
video sequences [25] and unmanned aerial vehicles [26], it is not applicable for mobile
services and commonly used streaming systems, for example, the ones used by video
streaming providers.

As can be seen from related work, most of the aforementioned solutions for selecting
optimal parameters for representation sets use a lot of computational resources due to
precoding and are proprietary or do not provide all parameters needed for reproduction.
Initial research also do not take into account the content-encoding complexity. Moreover
the available methods do not give the notation and needed information for determining
the number of representations.

3. Test Setup

Considering that the spatial and temporal activity of video sequences have a great
impact on the coding complexity, fourteen video sequences with distinguishing spatial (SI)
and temporal (TI) information were selected from the databases [12,20] for experiments
presented in this paper. Spatial and temporal information for these video sequences were
calculated based on Equations (1) and (2) for the Y color component of original video
sequences in YUV format.

SI = meantime
{

stdspace[Sobel(Ft(x, y))]
}

(1)

TI = meantime
{

stdspace[Ft(x, y)− Ft−1(x, y)]
}

(2)

The meantime in Equations (1) and (2) stands for time average, stdspace for the space
standard deviation, Sobel represents the Sobel operator and Ft represents the t-th video
frame in the observed video signal. SI and TI were determined according to expressions
(1) and (2) as time averages and not as maximum values as defined in recommendations
ITU-T P.910 [27]. Namely, the maximum values of these parameters can be much higher
than the average values and can appear in a very short fraction of the video signal, which
will not significantly affect the average quality of the encoded signal. Therefore, averaging
these values over the entire video signal is a better choice for research related to adaptive
video streaming.

SI and TI values, as well as SITI = SI·TI, for video sequences selected for developing
a model for determining optimal representation sets, are given in Table 1. Video sequences
were selected in order to cover a wide range of SI and TI values, as well as SITI as a joint
measure of temporal and spatial activity. Big Buck Bunny (BBB) [28], Elephants Dream
(ED) [29] and Tractor (TR) [29] video sequences were not used in the modeling process but
were later used for the model testing.

In order to develop the content-aware model for the selection of optimal representation
sets, we encoded the chosen video sequences on different bitrates and selected spatial
resolutions. For testing purposes, the range of target coding bitrates 50 kbps to 8 Mbps was
used as in [12], as well as spatial resolutions 240p, 360p, 480p, 720p, and 1080p. Original
video sequences that are available in YUV or Y4M formats were scaled from 1080p spatial
resolution to four lower spatial resolutions using the open-source program FFmpeg [30].
Each of the resulting video sequences were then encoded by H.264 codec at 32 target coding
bitrates in the range of 50 kbps to 8 Mbps. Coding parameters are listed in Table 2. The
coding process was explained in detail in [31].
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Table 1. Spatial (SI) and temporal information (TI) of video sequences used for modeling and
testing purposes.

Video Sequence SI TI SITI

Chimera 1102353 (C53) 13.63 5.51 75.07
Meridian Conversation (MC) 28.39 3.10 87.86

Chimera 1102347 (C47) 43.12 5.06 218.36
Station 2 (S2) 32.72 7.50 245.40

Pedestrian Area (PA) 32.32 15.47 500.11
Skateboarding (SK) 26.72 20.23 540.48

Grand Theft Auto (GTA) 47.63 18.09 861.65
Tears Of Steel Robot (TSR) 44.78 22.22 995.02

El Fuente Mask (EM) 54.92 24.71 1357.14
Soccer (SO) 79.06 24.71 1953.52

BlueSky (BS) 78.64 33.41 2627.31
Big Buck Bunny (BBB) 31.84 7.22 229.88
Elephants Dream (ED) 50.93 8.75 445.64

Tractor (TR) 34.99 18.83 658.69

Table 2. Selected encoding parameters.

Parameter Name Value

Preset Slow
Adaptive keyframe decision Disabled

The maximum rate of the video buffering verifier Double value of the bitrate
Buffer size of the video buffering verifier Quadruple value of the bitrate

Constant Rate Factor (CRF) 23
Number of passes 1

Quantizer curve compression 0.6

Encoding Context-adaptive binary arithmetic
coding (CABAC)

After encoding, FFmpeg was used to scale all encoded video sequences to 1080p
spatial resolution, the original spatial resolution of encoded video sequences in order to
calculate Structural Similarity Index (SSIM) [32] values.

SSIM was selected to measure the quality of encoded video sequences due to the
research presented in [33], where SSIM achieved the best correlation with Mean Opinion
Score (MOS) values for encoded sequences with different spatial resolutions.

From the measurement results available in [33] it can be concluded that, for given
coding parameters, SSIM outperforms PSNR, VMAF, Mean Sum of Differences, Visual
Signal-to-Noise Ratio, Mean Sum of Absolute Differences and Mean Squared Error consid-
ering it realizes higher values of Pearson Linear Correlation Coefficient (PLCC) [34] when
analyzing achieved MOS.

Based on calculated SSIM values, curves for every spatial resolution for each video
sequence, depending on the achieved bitrate, were obtained. SSIM-achieved bitrate curves
for PedestrianArea video sequence are depicted in Figure 2. It is given as an example of
obtained curves for every spatial resolution.

Based on the obtained curves, a model for selecting optimal switching points to
a higher spatial resolution was developed and presented in [35].

To improve the segmentation process even further, the model for selecting the opti-
mal number of representations and bitrates while eliminating the need for precoding is
proposed in this paper.



Electronics 2021, 10, 1843 7 of 17
Electronics 2021, 10, 1843 7 of 18 
 

 

 
Figure 2. SSIM-achieved bitrate curves for Pedestrian Area video sequence. 

Based on the obtained curves, a model for selecting optimal switching points to a 
higher spatial resolution was developed and presented in [35]. 

To improve the segmentation process even further, the model for selecting the op-
timal number of representations and bitrates while eliminating the need for precoding is 
proposed in this paper. 

4. Representation Selection Model 
4.1. Model Development 

This chapter presents the process of the representation selection model develop-
ment. It started by determining the data points of envelopes of SSIM-achieved bitrate 
curves (Figure 2) obtained for every video sequence. In doing so, the SSIM value for a 
given bitrate is taken for the resolution for which it is the highest. The points gathered in 
this way were used to construct the SSIMenv–bitrate curve by using a nonlinear function 
given with Equation (3). 𝑆𝑆𝐼𝑀𝑒𝑛𝑣(𝐵𝑅)  =  𝐴 ∙ 𝑙𝑛(𝐵𝑅)  +  𝐵  (3)

Coefficients A and B were determined for every video sequence by using the lscur-
vefit function in Matlab R2018b (Natick, MA, USA) that uses least-squares to fit the 
measured data to a nonlinear curve. The fitted curves for video sequences C47, PA, SK 
and EM are presented in Figures 3 and 4. Figures 3 and 4 show that the resulting fitted 
curves can be used to estimate the SSIMenv values based on the encoding bitrate values 
for a certain video sequence. 

Values of coefficients A and B as well as PLCC values determined for every video 
sequence used in the modeling process are given in Table 3. PLCC values were calculated 
to analyze the correlation between the measured SSIM values and the modeled values of 
SSIMenv. The mean value of PLCC for all video sequences is 0.953, i.e., the model 
achieves adequate results compared to measured values. 

Figure 5 presents SSIMenv–bitrate curves for all sequences used for modeling. It can 
be seen that SSIMenv values are lower for video sequences with a higher SITI for given 
bitrates. This is to be expected since videos with a higher level of spatial and temporal 
activity are more difficult to encode and for a given quality level, the degree of compres-
sion is lower than for sequences of less complexity. 

Figure 2. SSIM-achieved bitrate curves for Pedestrian Area video sequence.

4. Representation Selection Model
4.1. Model Development

This chapter presents the process of the representation selection model development.
It started by determining the data points of envelopes of SSIM-achieved bitrate curves
(Figure 2) obtained for every video sequence. In doing so, the SSIM value for a given
bitrate is taken for the resolution for which it is the highest. The points gathered in this
way were used to construct the SSIMenv–bitrate curve by using a nonlinear function given
with Equation (3).

SSIMenv(BR) = A · ln(BR) + B (3)

Coefficients A and B were determined for every video sequence by using the lscurvefit
function in Matlab R2018b (Natick, MA, USA) that uses least-squares to fit the measured
data to a nonlinear curve. The fitted curves for video sequences C47, PA, SK and EM are
presented in Figures 3 and 4. Figures 3 and 4 show that the resulting fitted curves can be
used to estimate the SSIMenv values based on the encoding bitrate values for a certain
video sequence.

Values of coefficients A and B as well as PLCC values determined for every video
sequence used in the modeling process are given in Table 3. PLCC values were calculated
to analyze the correlation between the measured SSIM values and the modeled values of
SSIMenv. The mean value of PLCC for all video sequences is 0.953, i.e., the model achieves
adequate results compared to measured values.

Figure 5 presents SSIMenv–bitrate curves for all sequences used for modeling. It can
be seen that SSIMenv values are lower for video sequences with a higher SITI for given
bitrates. This is to be expected since videos with a higher level of spatial and temporal
activity are more difficult to encode and for a given quality level, the degree of compression
is lower than for sequences of less complexity.

Electronics 2021, 10, 1843 8 of 18 
 

 

  

(a) (b) 

Figure 3. Fitted curves of data points presenting the envelope of SSIM-achieved bitrate curves for video sequences: (a) 

Chimera 1102347 (C47); (b) Pedestrian Area (PA). 

  

(a) (b) 

Figure 4. Fitted curves of data points presenting the envelope of SSIM-achieved bitrate curves for video sequences: (a) 

Skateboarding (SK); (b) El Fuente Mask (EM). 

Table 3. Values of A and B coefficients for every video sequence used in the modeling process. 

PLCC values present the correlation between the fitted curves and the measured values. 

Video Sequence A B PLCC 

C53 0.0043 0.939 0.9095 

MC 0.007 0.9299 0.859 

C47 0.0162 0.8533 0.8903 

S2 0.0428 0.6141 0.9515 

PA 0.0402 0.6359 0.9748 

SK 0.0168 0.8213 0.9937 

GTA 0.0419 0.5239 0.9955 

TSR 0.0394 0.6234 0.9943 

EM 0.0588 0.4789 0.9732 

SO 0.0741 0.3265 0.994 

BS 0.0565 0.5014 0.9496 

Figure 3. Fitted curves of data points presenting the envelope of SSIM-achieved bitrate curves for video sequences:
(a) Chimera 1102347 (C47); (b) Pedestrian Area (PA).



Electronics 2021, 10, 1843 8 of 17

Electronics 2021, 10, 1843 8 of 18 
 

 

  

(a) (b) 

Figure 3. Fitted curves of data points presenting the envelope of SSIM-achieved bitrate curves for video sequences: (a) 

Chimera 1102347 (C47); (b) Pedestrian Area (PA). 

  

(a) (b) 

Figure 4. Fitted curves of data points presenting the envelope of SSIM-achieved bitrate curves for video sequences: (a) 

Skateboarding (SK); (b) El Fuente Mask (EM). 

Table 3. Values of A and B coefficients for every video sequence used in the modeling process. 

PLCC values present the correlation between the fitted curves and the measured values. 

Video Sequence A B PLCC 

C53 0.0043 0.939 0.9095 

MC 0.007 0.9299 0.859 

C47 0.0162 0.8533 0.8903 

S2 0.0428 0.6141 0.9515 

PA 0.0402 0.6359 0.9748 

SK 0.0168 0.8213 0.9937 

GTA 0.0419 0.5239 0.9955 

TSR 0.0394 0.6234 0.9943 

EM 0.0588 0.4789 0.9732 

SO 0.0741 0.3265 0.994 

BS 0.0565 0.5014 0.9496 

Figure 4. Fitted curves of data points presenting the envelope of SSIM-achieved bitrate curves for video sequences:
(a) Skateboarding (SK); (b) El Fuente Mask (EM).

Table 3. Values of A and B coefficients for every video sequence used in the modeling process.
PLCC values present the correlation between the fitted curves and the measured values.

Video Sequence A B PLCC

C53 0.0043 0.939 0.9095
MC 0.007 0.9299 0.859
C47 0.0162 0.8533 0.8903
S2 0.0428 0.6141 0.9515
PA 0.0402 0.6359 0.9748
SK 0.0168 0.8213 0.9937

GTA 0.0419 0.5239 0.9955
TSR 0.0394 0.6234 0.9943
EM 0.0588 0.4789 0.9732
SO 0.0741 0.3265 0.994
BS 0.0565 0.5014 0.9496
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The question arises as to whether the observed behavior can be expressed as a func-
tional relationship between SSIMenv(BR) and SITI. Seeking an answer to this question, we
found that the relationship between A and SITI (A(SITI)) as well as B and SITI (B(SITI)) can
be expressed by Equation (4).

f (SITI) = X · ln(SITI) + Y (4)

Equation (4) is used for both A(SITI) and B(SITI), but with different parameters, X and
Y. SITI has proven to be an adequate measure that can be used to describe the spatial and
temporal activity of video sequences and consequently their encoding complexity [35]. The
nonlinear least-squares curve-fitting was done using the lscurvefit function in Matlab and
the resulting coefficients X and Y, as well as PLCC values, are given in Table 4.

Table 4. Values of X and Y coefficients that resulted from fitting the values of A, B, and SITI. PLCC
values present the correlation between the fitted curves and the measured values.

Coefficient X Y PLCC

A 0.0165 −0.0668 0.8715
B −0.1485 15.843 0.8789

Figure 6 depicts the fitted curves obtained for A(SITI) and B(SITI). As it can be seen
from Figure 6, as well as from PLCC values, the obtained fitted curves give an accurate
functional relationship between the coefficients A, B, and SITI.
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By using (3) and (4), the SSIMenv values can be presented as a function of bitrate (BR)
and SITI values for a given sequence, as given with Equation (5).

SSIMenv(BR, SITI) = (0.0165 · ln(SITI)− 0.0668) · ln(BR) + (−0.1485 · ln(SITI) + 1.5843) (5)

Equation (5) is a basic mathematical expression for the representation selection model
and can be used to estimate the SSIM value for a video sequence encoded to a specific
bitrate BR, only knowing the SITI value for that video sequence.

For the correct application of this model, the optimal spatial resolution for the given
bitrate and SITI must be selected according to Equation (6) presented in [35].

BR(SR, SITI) = (C · ITI + D + E · exp(F · SITI)) · SRG·SITIH
(6)
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If SITI is lower than or equal to 500, values of coefficients C, D, E, F, G, and H are 4.582,
5.421, 0, 0, 0.435, and 0.188, respectively. If SITI is higher than 500, values of coefficients C,
D, E, F, G, and H are 0, 0, 27,416.1, −0.332, 0.198, and 0.238, respectively. The accuracy of the
model was analyzed by comparing the SSIMenv values calculated with Equation (5) and
the measured SSIM values for each coded video sequence. That comparison of SSIM and
SSIMenv values was done using video sequences encoded at 32 different bitrates ranging
from 50 kbps to 8 Mbps. The results for fourteen videos used for modeling, as well as for
three videos not used in the modeling process, are given in Table 5. It can be seen that the
mean difference is only 4.28% for the first group of the videos and 5.84% for the second
group of the videos. PLCC values are higher than 0.91 for both groups of video sequences.

Table 5. Comparison between the measured SSIM and SSIMenv values for video sequences used in
modeling (C53, MC, C47, S2, PA, SK, GTA, TSR, EM SO and BS) as well as for video sequences not
used in the modeling process (BBB, ED and TR).

Video Sequences Used in Modeling Video Sequences Not Used in Modeling

Mean difference 0.0343 Mean difference 0.0448
Mean difference (%) 4.2832 Mean difference (%) 5.8393

RMSE 0.0428 RMSE 0.0594
PLCC 0.9188 PLCC 0.9377

4.2. Optimal Representation Set Selection

The model presented by Equation (5) can be used to determine the optimal set of
representations but we chose to first map the SSIMenv values to a subjective MOS (Mean
Opinion Score) scale by using the mapping presented in [36].

Mapping SSIM values to the 0–100 MOS scale was done by using Equation (7).

MOSp = 228.417 − 919.711 · SSIMenv + 1193.227 · SSIMenv
2 − 405.344 · SSIMenv

3 (7)

where MOSp represents the estimation of the user-perceived quality predicted by an SSI-
Menv value [36]. It should be noted that through SSIMenv, MOSp is also the function of BR
and SITI.

To determine the bitrates to which a video sequence should be encoded to form well-
balanced representation sets, another step needs to be taken. By using (5) and (7), we were
able to express bitrates as a function of MOSp values for the given SITI, as presented by
the curves in Figures 7–10 as well as by the function in Equation (8).

BR = C1 · exp(C2 · MOSp) (8)

Coefficients C1 and C2 calculated for each sequence are given in Table 6. The mean
value of PLCC for all video sequences used in the modeling process is 0.997.
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Based on the acquired function (8), it is now possible to determine the optimal values
of bitrates for representation sets for each video sequence based on the SITI and MOSp

values. Well-balanced representation sets should have neither too many nor too few
quality levels (i.e., bitrates) to provide optimal adaptability to the video streaming client.
Furthermore, it is logical that the video sequence encoding bitrates are selected so that the
change in the predicted subjective quality (∆MOSp) from level to level is constant. Based
on these assumptions, as well as the bitrate-MOSp curves shown in Figure 5, it can be
concluded that the number of quality levels for sequences with lower SITI will be lower
than for sequences with higher SITI. In order to obtain a sufficient number of quality levels
for sequences with a lower SITI, ∆MOSp should be lower.

According to our experience, for generating a representation set, it is advisable to
select encoding bitrates for video sequences with SITI lower than 100 by using ∆MOSp = 1,
for video sequences with SITI higher than 100 and lower than 500 by ∆MOSp = 2 and for
video sequences with SITI higher than 500 by ∆MOSp = 3.

Furthermore, for 1080p sequences and encoding by H.264 codec, it is not advisable to
use the bitrates that correspond to MOSp values lower than 40 and to use encoding bitrate
lower than 50 kbps. By using the advised steps between representation levels, the optimal
number of representations shall be obtained, ranging from 7 to 19.

5. Testing of the Representation Selection Model
5.1. Testing of the Optimal Representation Set Using Adaptive Streaming Algorithms

The efficiency of the segmentation made by the proposed model was tested in a video
streaming environment by using two adaptive streaming algorithms in two different
network scenarios. For this testing, we used a Big Buck Bunny video sequence that was
not used in the modeling process or to determine the model parameters. In this way, it was
checked whether the proposed model is suitable for application on video content outside
the set of contents used in the development of the model. The first step in this experiment
was a selection of optimal representations according to the model for BBB video sequence
as well as its segmentation.

The selection of optimal representations for a video sequence using the proposed
model consists of several steps as shown in Figure 11.
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First, as depicted in Figure 11, SI and TI values for the BBB video sequence were
calculated. Optimal bitrates for switching to a higher spatial resolution were calculated
using Equation (6). The range of bitrates and the number of representations for BBB were
determined based on Equations (5) and (7). The desired range of bitrates was set from
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50 kbps to 10 Mbps in order to achieve the satisfactory MOS values. Considering that
the advised step between the representation levels for BBB is ∆MOSp = 2, the selected
video sequence was segmented into 16 representations. Finally, the optimal bitrate for each
representation was calculated using Equation (8). Spatial resolutions and bitrates used in
this testing as well as MOSp values used for defining the representations for the proposed
segmentation are listed in Table 7. Moreover for testing purposes, BBB was segmented
using segment duration of 2, 6 and 10 s.

Table 7. Parameters for representation sets for the BBB video sequence from [12] and for the pro-
posed segmentation.

Segmentation [12] Proposed Segmentation

Spatial Resolution Target Coding
Bitrate (kbps) Spatial Resolution Target Coding

Bitrate (kbps) MOSp

20 × 240 50 320 × 240 50 63
320 × 240 100 480 × 360 70 65
320 × 240 150 480 × 360 100 67
480 × 360 200 480 × 360 150 69
480 × 360 250 854 × 480 250 71
480 × 360 300 854 × 480 350 73
480 × 360 400 854 × 480 500 75
480 × 360 500 1280 × 720 700 77
854 × 480 600 1280 × 720 950 79
854 × 480 700 1920 × 1080 1500 81

1280 × 720 900 1920 × 1080 2000 83
1280 × 720 1200 1920 × 1080 3000 85
1280 × 720 1500 1920 × 1080 4000 87
1280 × 720 2000 1920 × 1080 5500 89
1920 × 1080 2500 1920 × 1080 7500 91
1920 × 1080 3000 1920 × 1080 10,500 93
1920 × 1080 4000 - - -
1920 × 1080 5000 - - -
1920 × 1080 6000 - - -
1920 × 1080 8000 - - -

5.2. Experimental Framework

The proposed segmentation was tested using two different network scenarios and two
adaptive streaming algorithms, namely Basic Adaptation Algorithm (BAA) and Segment
Aware Rate Adaptation (SARA) algorithm.

BAA [37] has two phases when selecting the representation for the following segment.
In the first phase, when the available bandwidth is higher by a predefined factor than the
bitrate of a current representation, the first adjacent representation with a higher bitrate
is selected. In the second phase, when the available bandwidth is lower by a predefined
factor than the bitrate of a current representation, the most appropriate representation with
a lower bitrate is selected.

SARA algorithm [38] selects the representation of the following segment based on
the available bandwidth, segment size and buffer occupancy. The first segment is always
requested from the representation with the lowest bitrate, i.e., while the buffer occupancy
is lower than the first threshold. When the available bandwidth is higher than the bitrate of
a current representation, but the buffer occupancy is between the first and second threshold,
the first adjacent representation with a higher bitrate is selected. When the buffer occupancy
increases over the second threshold, the next representation can be increased by more than
one step. When the buffer occupancy increases over the third threshold, SARA introduces
a delay until the buffer occupancy falls below the third threshold.

In the first testing network scenario, the available network bandwidth had a mean
value of 7 Mbps, while in the second testing scenario, the available bandwidth had a mean
value of 4 Mbps. In comparison to the first scenario where the changes in the available
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bandwidth were gradual, the second scenario had more sudden changes in the available
bandwidth. Network test scenarios were set up using the open-source network bandwidth
limiting program called Wonder Shaper [39].

A-Stream [40] is a Python-based emulated video player which supports BAA and
SARA adaptive streaming algorithms. It was used for streaming the BBB video sequence,
which was segmented according to the proposed model. For testing purposes, A-Stream
was also used to stream segmented video sequence BBB available in the database [12].

5.3. Experimental Results

Upon streaming, received video segments were combined into video sequences that
were scaled to the original 1080p spatial resolution in order to calculate the SSIM values as
a measure of resulting video quality. Calculated SSIM values are listed in Table 8. Based
on the SSIM values, it can be concluded that the proposed segmentation produces higher
values of SSIM compared to [12] in 92% cases. Therefore, the proposed segmentation
presents an improvement to previously available segmentations, exclude the necessity for
precoding while still introducing the content-based segmentation with optimal representa-
tion sets. It should be noted that the improvement was achieved with a smaller number of
representations, which means fewer memory requirements on the server.

Table 8. SSIM values obtained using the SARA and BBA adaptive streaming algorithms, two
network test cases while BBB was segmented using the segmentation available in [12] and the
proposed segmentation.

Segment Duration

Test case Algorithm 2 6 10

Segmentation [12]

CASE 1 SARA 0.953 0.942 0.942
BAA 0.927 0.933 0.933

CASE 2 SARA 0.902 0.897 0.913
BAA 0.908 0.908 0.915

Test case Algorithm 2 6 10

Proposed segmentation

CASE 1 SARA 0.962 0.948 0.937
BAA 0.965 0.950 0.937

CASE 2 SARA 0.934 0.935 0.929
BAA 0.953 0.943 0.929

To additionally confirm the accuracy of the proposed model, the coded video signals
for segmentation presented in [12] and the proposed segmentation were evaluated using
a subjective method for evaluating the video quality. Subjective testing was performed
for 24 encoded video sequences after video streaming and the original video signal. The
experimental part of the subjective testing was conducted with 32 inexperienced viewers in
a controlled environment following the ITU-T Recommendation P.913 [41]. Prior to testing,
all participants were tested for visual acuity and color recognition, and all participants
were introduced to the type of assessment and the range of grades. The ACR-HR method
was used as the test procedure.

After removing the hidden reference, PLCC was calculated for each viewer’s ratings
according to the respective average ratings of all viewers as rejection criteria. Since the
achieved PLCC values for six viewers were less than 0.75, the collected scores of the re-
maining 26 viewers were used to calculate the MOS values for each video signal (Table 9).
As can be seen from Table 9, subjective testing of the quality of encoded video sequences
showed that the proposed method of selecting the number and parameters of representa-
tions achieves better results compared to the segmentation presented in [12] in 83.3% cases.
The average MOS value for the proposed segmentation was higher by 0.263 compared to
the MOS values achieved for the segmentation presented in [12].
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Table 9. MOS values obtained using the SARA and BBA adaptive streaming algorithms, two
network test cases while BBB was segmented using the segmentation available in [12] and the
proposed segmentation.

Segment Duration

Test Case Algorithm 2 6 10

Segmentation [12]

CASE 1 SARA 4.46 3.38 3.35
BAA 4.27 3.15 3.31

CASE 2 SARA 3.12 3.08 3.42
BAA 3.69 3.12 3.54

Test case Algorithm 2 6 10

Proposed Segmentation

CASE 1 SARA 4.77 3.77 3.15
BAA 4.62 3.54 3.46

CASE 2 SARA 4.00 3.42 3.27
BAA 4.31 3.46 3.62

6. Conclusions

MPEG DASH is a standard for adaptive streaming that defines the format of video
segments and the manifest file thus ensuring the interoperability between different stream-
ing services and client protocols. Before streaming, in order to be used on systems based
on MPEG DASH, all video sequences need to be encoded at predefined representation
sets and segmented. The encoding and segmentation process have a great impact on the
user’s QoE. In comparison to adaptive streaming algorithms, the segmentation of video
sequences for DASH systems has not yet been investigated enough. Solutions described
in the available research that address the problem of defining the optimal representation
sets are mostly proprietary and do not ensure all needed information for reproducting
presented results. Moreover they do not provide model methodology and notation; they
need a large amount of computational power or they do not take the spatial and temporal
activity of video sequences into account.

This paper presents a model that can be used to determine representation sets based
only on spatial (SI) and temporal information (TI) of selected video sequences. The SI
and TI parameters need to be calculated only once, for the original sequence, and then the
optimal encoding bitrates can be selected based on a simple procedure. The ease of use of
this model for the selection of representation sets is its greatest advantage over existing
methods, which mostly involve multiple precoding and quality calculations of encoded
video sequences. Considering that this model was developed based on the analysis of
sequences encoded by a specific encoder (H.264), the presented model parameters cannot
be used for other encoders like H.265 or V9. However, the presented methodology ensures
that the presented model can be easily adapted to any other encoding. Furthermore, the
model uses the SSIM video quality measure but can be adjusted for any other objective
quality metric.
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