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Abstract: Fuzzy transform is a technique applied to approximate a function of one or more variables
applied by researchers in various image and data analysis. In this work we present a summary of a
fuzzy transform method proposed in recent years in different data mining disciplines, such as the
detection of relationships between features and the extraction of association rules, time series analysis,
data classification. After having given the definition of the concept of Fuzzy Transform in one or
more dimensions in which the constraint of sufficient data density with respect to fuzzy partitions
is also explored, the data analysis approaches recently proposed in the literature based on the use
of the Fuzzy Transform are analyzed. In particular, the strategies adopted in these approaches for
managing the constraint of sufficient data density and the performance results obtained, compared
with those measured by adopting other methods in the literature, are explored. The last section is
dedicated to final considerations and future scenarios for using the Fuzzy Transform for the analysis
of massive and high-dimensional data.

Keywords: direct F-transform; inverse F-transform; multi-dimensional F-transform; fuzzy partition;
dependency between attributes time series; data classification

1. Introduction

Fuzzy Transform (for short, F-transform) [1,2] is a recent soft computing approxima-
tion technique, successfully used in numerous applications in image and data analysis (see,
e.g., [3] for an in-depth discussion on this matter).

In particular, the properties of the F-transform in the information aggregation and
function approximation favors its use in many data analysis and data mining problems.

The aim of this paper is to provide an in-depth overview of soft computing data
analysis techniques based on the use of the F-transform proposed in the literature.

Some variations of basic functions used to constrict the F-transform are proposed
in [4], in which they are given by B-spline functions, and in [5] where the basic functions
are given by block pulse functions.

Recently an extension of the basic F-transform on higher-degree F-transform was
introduced in [6] by generalizing the case of constant (zero-order) components to the case
of m-order polynomial components. In [7,8] the applicability of the m-order F-transform
is discussed and an application of the one-degree F-transform in seasonal time series
forecasting is presented in [9]. However, while increasing the performance in terms of
accuracy and precision of the results compared to basic F-transforms, the higher-degree
fuzzy transforms are computationally more complex to manage and this makes them
unsuitable for use in data analysis applications, especially in the presence of datasets of
high cardinality and size.

In this work we focus on the application of the basic (zero-order) F-transform in
data analysis. We will discuss the techniques proposed in the literature that employ the
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direct and inverse zero-order F-transform in data mining problems, such as dependencies
between attributes, time series analysis and data classification, analyzing their critical
points and performance benefits.

F-transform techniques were initially applied in image analysis in which the con-
straint of sufficient density described in Section 2 is always respected. In data analysis,
however, the application of the F-transform necessarily requires the management of this
constraint and the choice of suitable fuzzy partitions of the domains of the input variable
and the choice of the appropriate dimensionality of the fuzzy partitions which cannot be
too fine, to guarantee sufficient data density, nor too coarse grained, to guarantee high
performance levels.

In Section 2 we introduce the one-dimensional and multi-dimensional F-transforms,
providing a summary of their characteristics. In particular, the constraint of sufficient den-
sity of the data will be analyzed, which is of extreme importance in the use of F-transform
techniques in data analysis. In Section 3 are discussed the methods proposed in the litera-
ture applying the multidimensional F-transform in the analysis of dependencies between
attributes in the data and in detecting association rules. Section 4 focuses on the F-transform
techniques applied in time series analysis. In Section 5 a classification method based on
the multi-dimensional F-transform is discussed. Final considerations are contained in
Section 6. A list with descriptions of all acronyms and abbreviations in the text is given in
Appendix A.

2. Preliminaries
2.1. Basic Functions

Let X = [a,b] be a close interval in R and {x1, x2, . . . , xn} be a set of n fixed points in
[a,b] such that 3 ≤ n and a = x1 < x2 < . . . < xn = b.

In [1,2] the following definition of fuzzy partition of X was introduced: the fuzzy sets
A1, . . . , An: [a,b]→ [0,1] form a (generalized) fuzzy partition of [a,b], if for each k = 2, . . . ,
n − 1, the following constraints hold:

1. Ak(x) = 0 ∀x /∈ (xk−1, xk+1) (locality)
2. Ak(x) > 0 ∀x ∈ (xk−1, xk+1) and Ak(xk) = 1 (positivity)
3. Ak is continuous in [xk−1, xk+1] (continuity)
4. Ak is strictly decreasing in (xk−1, xk) and strictly increasing in (xk, xk+1)
5. ∑n

k=1 Ak(x) = 1 ∀x ∈ [a, b] (Ruspini condition).

The membership functions {A1, . . . , An} are called basic functions. If the nodes
x1, ..., xn are equidistant, the fuzzy partition {A1, . . . , An} is called h-uniform fuzzy parti-
tion of [a,b] where h = (b − a)/(n + 1) is the distance between two consecutive nodes.

For an h-uniform fuzzy partition the following additional properties hold:

1. Ak(xk − x) = Ak(xk + x) ∀x ∈ [0, h]
2. Ak(x) = Ak−1(x− h) and Ak−1(x) = Ak(x + h) ∀x ∈ [xk, xk+1]

An h-uniform fuzzy partition can be generated (see, e.g., [2]) by an even function
A0: [[–1,1]→ [0,1], which is continuous, positive in (−1,1) and null on boundaries {−1,1}.
The function A0 is called generating function of the h-uniform fuzzy partition. The fol-
lowing expression represents an arbitrary basic function from an h-uniform generalized
fuzzy partition:

Ak(t) =

{
A0

(
x−xk

h

)
x ∈ [xk − h, xk + h]

0 otherwise
. (1)
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2.2. One-Dimensional Direct and Inverse F-Transform

Let {A1, A2, . . . , An} be a fuzzy partition of [a,b] and f (x) be a continuous function on
[a,b]. The n-tuple [F1, F2, . . . , Fn] with components:

Fk =

∫ b
a f (x)Ak(x)dx∫ b

a Ak(x)dx
k = 1, . . . , n (2)

is called the fuzzy transform of f with respect to {A1, A2, . . . , An}. The Fk are called
components of the F-transform.

If the fuzzy partition {A1, A2, . . . , An} is uniform with nodes x1, x2, . . . , xn, the
components are given (cfr. [2] Lemma 1) by the formula:

Fk =


2
h

∫ x2
x1

f (x)Ak(x)dx if k = 1
1
h

∫ xi
xi−1

f (x)Ak(x)dx if k = 2, . . . , n− 1
2
h

∫ xn
xn−1

f (x)Ak(x)dx if k = n

(3)

Now we define the following function on [a,b] given by a weighted average of the
basic functions in which the weights are the F-transform components:

fF,n(x) =
n

∑
k=1

Fk Ak(x)x ∈ [a, b] (4)

It is called inverse F-transform of f with respect to the uniform fuzzy partition {A1, A2,
. . . , An}. An important theorem proves that the function fF,n approximates the continuous
function f on [a,b] with arbitrary precision. We enunciate below this theorem and its proof
is given in [2] Theorem 2.

Theorem 1. Let f(x) be a continuous function on [a,b]. For every ε > 0, then there exist an integer
n(ε) and a related fuzzy partition {A1, A2, . . . , An(ε)} of [a,b] such that for all x ∈ [a, b] results∣∣∣ f (x)− fF, n(ε)(x)

∣∣∣ < ε.

Theorem 1 concerns the approximation of a known continuous function f, but in many
cases we only know that the function f assumes determined values in a set of m points
p1, . . . , pm ∈ [a,b].

We assume that the set P of these nodes is sufficiently dense with respect to the fixed
fuzzy partition, i.e., for each k = 1, . . . , n there exists an index j ∈ {1, . . . , m} such that
Ak(pj) > 0. Then we can define the n-tuple [F1, F2, . . . , Fn] as the discrete F-transform of
f with respect to {A1, A2, . . . , An }, where each Fk is given by

Fk =
∑m

j=1 f
(

pj
)

Ak
(

pj
)

∑m
j=1 Ak

(
pj
) k = 1, . . . , n (5)

Then we call the discrete inverse F-transform of f with respect to {A1, A2, . . . , An} to
be the following function defined in the same points p1, ..., pm of [a,b]:

fF,n(x) =
n

∑
k=1

Fk Ak(x)x ∈ [a, b] (6)

Analogously to Theorem 1, we have the following approximation theorem (its proof
is given in [2] Theorem 5.

Theorem 2. Let f(x) be a function assigned on a set P of points p1, ..., pm of [a,b]. Then, for every
ε > 0, there exists an integer n(ε) and a related fuzzy partition {A1, A2, . . . , An(ε) } of [a,b] such that
P is sufficiently dense with respect to {A1, A2, . . . , An(ε) } and for every pj ∈ [a, b], j = 1, . . . , m,

holds
∣∣∣ f (x)− fF, n(ε)(x)

∣∣∣ < ε.
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Theorem 2 states that the inverse F-transform (6) approximates the original continuous
function f in a point with an arbitrary precision.

2.3. Multi-Dimensional Direct and Inverse F-Transform

The one-dimensional F-transform can be extended to approximate continuous func-
tions defined in a N-dimensional domain given by the Cartesian product [a1,b1] × [a2,b2]
× . . . × [as,bs] of s real intervals [ai,bi] ⊆ R (i = 1, . . . , s).

Let f : [a1,b1] × [a2,b2] × . . . × [as,bs]→ R be a continuous function on the universe of
discourse. Let

{
A11, A12, . . . , A1n1

}
,
{

A21, A22, . . . , A2n2

}
, . . . {As1, As2, . . . , Asns} uniform

fuzzy partitions of [a1,b1], . . . ,[as,bs], respectively.
The F-transform of the function f with respect to

{
A11, A12, . . . , A1n1

}
,
{

A21, A22, . . . , A2n2

}
,

. . . , {As1, As2, . . . , Asns}, are the functions given by

Fk1k2 ...ks =

∫ bs
as

. . .
∫ b2

a2
. . .
∫ b1

a1
f (x1, x2, . . . , xs)Ak1(x1)Ak2(x2) . . . Aks(xs)dx1dx2 . . . dxs∫ bs

as
. . .
∫ b2

a2
. . .
∫ b1

a1
Ak1(x1)Ak2(x2) . . . Aks(xs)dx1dx2 . . . dxs

(7)

The inverse F-transform of the function f with respect to
{

A11, A12, . . . , A1n1

}
,{

A21, A22, . . . , A2n2

}
, . . . {As1, As2, . . . , Asns} are the following functions defined on [a1,b1]

× [a2,b2] × . . . × [as,bs]:

f F
n1n2 ...ns(x1, x2, . . . , xs) =

n1

∑
k1=1

n2

∑
k2=1

. . .
ns

∑
ks=1

Fk1k2 ...ks Ak1(x1)Ak2(x2) . . . Aks(xs) (8)

Let the function f (x1, x2, . . . , xs) be known in N points pj = (pj1, pj2, . . . , pjs) ∈ [a1,b1]
× [a2,b2] × . . . × [as,bs] being j = 1, 2, . . . , N.

The set P = {(p11, p12, . . . , p1s), (p21, p22, . . . , p2s), . . . , (pN1, pN2, . . . , pNs)} is called suf-
ficiently dense with respect to the partitions

{
A11, A12, . . . , A1n1

}
, . . . , {As1, As2, . . . , Asns}

if, for any combination (h1, . . . , hs) ∈ {1, . . . , n1} × . . . × {1, . . . , ns} there is some
pv = (pv1, pv2, pvs) ∈ P, v ∈ {1, . . . , N}, such that A1h1(pv1) · A2h2(pv2) · . . . · Ashs(pvs) > 0.
So we can define the (h1, h2, . . . , hs)th components Fh1h2 ...hs of the direct F-transform of
f with respect to the basic functions

{
A11, A12, . . . , A1n1

}
, . . . , {As1, As2, . . . , Asns} as

Fh1h2 ...hs =
∑N

j=1 f
(

pj1, pj2, . . . pjs
)
· A1h1

(
pj1
)
· A2h2

(
pj2
)
· . . . · Ashs

(
pjs
)

∑N
j=1 A1h1

(
pj1
)
· A2h2

(
pj2
)
· . . . · Ashs

(
pjs
) (9)

If the set P is sufficiently dense with respect to the fuzzy partition we can define the inverse
multi-dimensional F-transform of f with respect to the basic functions

{
A11, A12, . . . , A1n1

}
,{

A21, A22, . . . , A2n2

}
, . . . {As1, As2, . . . , Asns} to be the following functions by setting for

each point pj = (pj1, pj2, . . . , pjs) ∈ [a1,b1] × . . . × [as,bs]:

f F
n1n2 ...ns

(
pj1, pj2, . . . , pjs

)
=

n1

∑
h1=1

n2

∑
h2=1

. . .
ns

∑
hs=1

Fh1h2 ...hs · A1h1

(
pj1
)
· . . . · Ashs

(
pjs
)

(10)

for j = 1, . . . , N. The following theorem, which is an extension of Theorem 2, holds:

Theorem 3. Let f (x1, . . . , xs) be a function assigned on the set of points P = {(p11, p12, . . . , p1s),
(p21, p22, . . . , p2s), . . . ,(pm1, pm2, . . . , pms)}⊂[a1,b1] × [a2,b2] × . . . × [ak,bs] and assuming
values in [0,1]. Then for every ε > 0, there exist k integers n1(ε), . . . , ns(ε) and related fuzzy
partitions

{
A11, A12, . . . , A1n1(ε)

}
, . . . ,

{
As1, As2, . . . , Asns(ε)

}
such that the set P is sufficiently

dense with respect to this fuzzy partitions. Moreover, for every pj = (pj1, pj2, . . . , pjs) ∈ P, j = 1,
. . . , m, the following inequality holds.∣∣∣ f (pj1, pj2, . . . , pjs

)
− f F

n1(ε)n2(ε)...ns(ε)

(
pj1, pj2, . . . , pjs

)∣∣∣ < ε (11)
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The inverse multi-dimensional F-transform f F
n1n2 ...ns can be used in regression analysis

only if the input dataset is sufficiently dense with respect to the set of fuzzy partitions{
A11, A12, . . . , A1n1

}
,
{

A21, A22, . . . , A2n2

}
, . . . {As1, As2, . . . , Asns}.

In Figure 1 an example of data points not sufficiently dense with respect to the fuzzy
partition is shown. Let

{
A11, A12, . . . , A1n1

}
be a fuzzy partition of the domain [a1,b1] and{

A21, A22, . . . , A2n2

}
be a fuzzy partition of the domain [a2,b2]. The data points are shown

in red. No data points are located within the subset [a1 h−1, . . . , a1 h+1]× [a2 k−1, . . . , a2 k+1],
corresponding to the dark yellow area in Figure 1. Consequently, for each data point
pj = (pj1, pj2) j = 1, . . . , N we have A1h

(
pj1
)
= 0 and A2k

(
pj2
)
= 0. Then, the data are not

sufficiently dense with respect to this set of two fuzzy partitions.

Figure 1. Example of non sufficiently dense data points with respect to the fuzzy partitions.

In Figure 2 two examples of fuzzy partitions that are more coarse-grained with respect
to the fuzzy partitions are shown in Figure 1. In both cases the data points are sufficiently
dense with respect to the fuzzy partitions.

Figure 2. Examples of data points sufficiently dense with respect to the fuzzy partitions.
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It is necessary to properly set the size of the fuzzy partitions. In fact, the use of fuzzy
partitions that are too thin can make the data points not sufficiently dense with respect
to them; on the contrary, fuzzy partitions that are too coarse grained, while guaranteeing
the sufficient density of the data points, can significantly reduce the performances of the
regression analysis methods in which the inverse multi-dimensional fuzzy transform is
used as a regression function.

3. Multi-Dimensional F-Transform Methods to Explore Dependency and Rules in the Data
3.1. Multi-Dimensional F-Transform Techniques to Detect Dependency between Attributes in Datasets

The multi-dimensional F-transform was applied by many researchers to detect depen-
dency among numerical features in datasets.

In [10,11] the multi-dimensional discrete F-transform is applied to find dependency
between attributes in the data.

Following [10,11] a dataset with r features can be schematized as a relation with
r attributes and m instances as in Table 1.

Table 1. Schema of a relation with r attributes and m instances.

X1 ... Xi ... Xr

O1 p11 . p1i . p1r
. . . . . .
. . . . . .
. . . . . .

Oj pj1 . pji . pjr
. . . . . .
. . . . . .
. . . . . .

Om pm1 . pmi . pmr

where X1, . . . , Xi, . . . , Xr are the attributes and, O1, . . . , Oj, . . . , Om (m > r) are the objects
in the dataset; each object Oj is given by an r-dimensional data point (pj1, . . . , pji, . . . , pjr)
where pji is the value assumed by Oj of the attribute Xi.

The attribute Xi is a variable assuming values in the real interval [ai,bi] defined by
setting ai = min{p1i, . . . , pmi} and bi = max{p1i, . . . , pmi}.

In [10,11] the dependency is studied among attributes in the form:

Xz = H(X1, . . . , XK) (12)

where H: [a1,b1] × [a2,b2] × . . . × [ak,bk]→ [az,bz] is a continuous function of k variables.
In [10] the multi-dimensional inverse F-transform was applied as a regression function

to assess the functional dependency (12). The given function H(X1, . . . , Xk) is known
in m points Pj = (pj1, pj2, . . . , pjk), j = 1, . . . , m, by setting H(pj1, pj2, . . . , pjk) = pjz
for j = 1, 2, . . . , m.

For any interval [ai,bi], i = 1, . . . , k, a fuzzy partition {Ai1, Ai2, ...., Aini } is created with
ni ≥ 3. If the set of m points is sufficiently dense with respect to these fuzzy partitions, we
can define the multi-dimensional direct F-transform of H with (h1, h2, . . . , hk)th components
given by

Fh1h2 ...hk
=

∑m
j=1 pjz · A1h1

(
pj1
)
· . . . · AkhK

(
pjk

)
∑m

j=1 A1h1

(
pj1
)
· . . . · AkhK

(
pjk

) (13)

Using Formula (10), the inverse F-transform HF
n1n2 ...nk

of H in the point Pj is given by

HF
n1n2 ...nk

(
pj1, pj2, . . . pjk

)
=

n1

∑
h1=1

n2

∑
h2=1

. . .
nk

∑
hk=1

Fh1h2 ...hK · A1h1

(
pj1
)
· . . . · AkhK

(
pjk

)
(14)
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In [10] a measure of the dependency of Xz from X1, . . . , Xk evauated by (14) is given
by the statistical index of determinacy:

r2
c =

∑m
j=1

(
HF

n1n2 ...nk

(
pj1, pj2, . . . , pjk

)
− p̂z

)2

∑m
j=1

(
pjz − p̂z

)2 (15)

where p̂z is the average of values p1z, p2z, . . . , pmz of the attribute Xz.
The index of determinacy r2

c ranges in the interval [0,1], where r2
c = 0 means that

HF
n1n2 ...nk

does not fit to the data and, conversely, r2
c = 1 means that HF

n1n2 ...nk
fits perfectly

to the data.
A variation of the Formula (15) used in multiple regression analysis to take into

account the number of independent variables k and the scale of the data sample is given
by (Johnson and Wichern, 1998):

r’2c = 1−
[(

1− r2
c

)
· m− 1

m− k− 1

]
(16)

This formula includes both the number of independent variables k and the scale
of the data sample. The function H in the point (x1, x2, . . . , xk) is approximated by the
following formula:

HF
n1n2 ...nk

(x1, x2, . . . xk) =
n1

∑
h1=1

n2

∑
h2=1

. . .
nk

∑
hk=1

Fh1h2 ...hK · A1h1(x1) · . . . · AkhK (xk) (17)

In [10] the inverse multi-dimensional F-transform is applied to find dependency
among attributes in the dataset containing economic data measured in the Czech Republic
in quarters starting from 1997. The two indices of determinacy (15) and (16) are used to
evaluate the existence of such dependency.

The results obtained show that the inverse multi-dimensional F-transform provides
good performance used as a regression function for the analysis of the dependency between
numerical attributes in the datasets. However, it is necessary to determine the optimal
fuzzy partitions of the domains of the input attributes and check when the data points are
not sufficiently dense. In [11] an algorithm has been proposed that finds the optimal fuzzy
partitions and checks that the data points are sufficiently dense with respect to the fuzzy
partition. This algorithm is schematized in Figure 3.

To reduce the computational costs, the same number n of fuzzy sets is assigned to each
of the fuzzy partitions of the input attribute domains. Initially the minimum value n = 3
is set; in each cycle the algorithm checks that the data points are sufficiently dense with
respect to the fuzzy partitions and, successively, calculates the direct multi-dimensional
F-transform and, for each data point, the inverse multi-dimensional F-transform, finally
measuring the value of the index of determinacy. If this value exceeds a predetermined
α threshold, the algorithm ends by returning the components of the direct F-transform,
otherwise a successive iteration is performed in which the number n is increased by one
unit. If, during an iteration, the data points are not sufficiently dense with respect to the
fuzzy partition, the algorithm terminates by reporting that it has not found the dependency
of Xz on the attributes X1, ..., Xk.

In [11] this algorithm is executed to explore dependency between oceanographic and
surface meteorological attributes of a dataset containing data measured from a series of
buoys positioned throughout the Equatorial Ocean Pacific and used to analyze the El
Nino/Southern Oscillation (ENSO) cycles.
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Figure 3. Flow diagram of the algorithm proposed in [11].

The application of the multi-dimensional F-transform as a machine learning regression
function can become expensive in the presence of massive datasets in which the number of
data points and the number of features become higher. In a recent work [12] an extension of
the algorithm is proposed in [11], called MFAD (Massive F-transform Attribute Dependency)
aimed to find dependencies between numerical attributes in massive datasets. MFAD apply
a uniform sampling algorithm to partition the dataset in subsets having the same cardinality.
The F-transform attribute dependency algorithm [11] is executed on each subset returning
the multi-dimensional direct F-transform components (13) and the index of determinacy
(16). Let Fq be the direct F-transform vector obtained applying the F-transform attribute
dependency algorithm on the qth subset, where q = 1, . . . , s.

The functional dependency of Xz from X1, X2, . . . , Xk in the form Xz = H(X1, X2, . . . , Xk)
in a point (x1, x2, . . . , xk) is evaluated computing the following weighted average:

HF(x1, x2, . . . , xk) =
∑s

q=1 wp(x1, x2, . . . , xk) · HF
nq(x1, x2, . . . , xk)

∑s
p=1 wq(x1, x2, . . . , xk)

(18)

where HF
nq(x1, x2, . . . , xk) q = 1, . . . , s is the value of the inverse multi-dimensional F-transform

in the point (x1, x2, . . . , xk) obtained by (17) using the qth direct F-transfom Fq and the
weighted term wq(x1, x2, . . . , xk), q = 1, . . . , s, is given by the formula:

wq(x1, x2, . . . , xk) =

{
r2

cq if (x1, x2, . . . , xk) ∈ Dq

0 otherwise
(19)
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The closed set Dq = [aq1,bq1] × [aq2,bq2] × . . . × [aqk,bqk] is the domain in which
is defined the qth subset and r2

cq is the index of determinacy obtained by executing the
F-transform attribute dependency algorithm on the qth subset.

The greater the index of determinacy r2
cq, the greater the weight of the inverse multi-

dimensional F-transform HF
nq(x1, x2, . . . , xk) in the approximation of the function H in the

point (x1, x2, . . . , xk). The weighted term (19) is null if the point (x1, x2, . . . , xk) is outside
the domain Dq.

In Figure 4 the MFAD method is schematized. Each subset is treated separately by
applying the F-transform attribute dependency algorithm. The regression function is
constituted by the weighted average of the single inverse-fuzzy transforms where the
weights are the values of the index of determinacy obtained for each subset.

Figure 4. Schema of the MFAD method proposed in [12].

To test the MFAD algorithm in [12] it was applied on a large dataset given by the
Italian National Statistical Institute census database with 140 numerical features related to
census characteristics and measured for all the 402,678 Italian census tracts enclosed. In
their tests the authors execute the MFAD algorithm by varying the number s of subsets and
compare the results with those ones obtained by applying the classical F-transform attribute
dependency algorithm [11] to the entire dataset (s = 1). Table 2 show the final index of
determinacy obtained by applying MFAD to explore the dependency of Xz = Families in
owned residences on the attribute X1 = Resident population with job or capital income,
setting a threshold α = 0.8.
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Table 2. Values of the index of determinacy applying MFAD for different values of the parameter s [12].

s Index of Determinacy

1 0.881
8 0.872
9 0.872

10 0.874
11 0.875
13 0.877
16 0.878
20 0.878
26 0.875
40 0.872

Table 1 shows the value of the index of determinacy obtained for different values of
the parameter s. The value of the index of determinacy obtained by running the attribute
dependency algorithm on the entire dataset (s = 1) is 0.881. All the values of the resulting
index of determinacy obtained applying MFAD with different number of datasets (from
s = 8 to s = 40) are comparable with this value.

The results of tests performed in [12] on large datasets show that the performances
are comparable with the ones obtained using the well-known Support Vector Regression
(SVM) and Multilayer Perceptron (MLP) regression methods.

3.2. Multi-Dimensional F-Transform Techniques for Mining Association Rules

In [10] a method based on the multi-dimensional F-transform for mining association
rules in the data is proposed. The inverse multi-dimensional F-transform (14) applied to find
a dependency of the attribute Xz to the attribute X1, . . . , Xk in the form Xz = H(X1 . . . Xk)
can be used to mine association rules.

However, unlike to the functions describing dependency between attributes, mining
associations are fuzzy functions which establish a correspondence between universes of
fuzzy sets.

Let U1, . . . , Uk be the domains of k attributes partitioned by fuzzy sets: a mining
association functionally joins some fuzzy sets from partitions of U1 . . . Uk with fuzzy sets
over respective F-transform components.

Let {Aih1 , . . . , Aihi
, . . . , Aihi

} be an uniform fuzzy partition of the domain of the ith
attribute Xi constructed as basic functions of this domain. The fuzzy partition is obtained
on the ni nodes xi1, . . . , xini in the domain Ui.

Each association is supported by two parameters, namely the degrees of support r and
confidence γ defined below. In [10] the multi-dimensional F-transform is applied in order
to discover associations rules in the following form:(

X1 is A1h1

)
AND

(
X2 is A2h2

)
AND .. AND

(
Xk is Akhk

)
vF mean(Xz) is C (20)

where Aihi
, i = 1, . . . , k, models the meaning of the linguistic expression “approximately

xhi
”. The corresponding logic clause can be read as “Xi is approximately xhi

”.
The label C in the consequent is one of the following linguistic expressions character-

izing the (h1, . . . , hk)th component of the F-transform: Sm (small), Me (medium), Bi (big);
it is eventually combined with one of the following linguistic hedges: Ex (extremely),
Si (significantly), Ve (very), empty hedge, ML (more or less), Ro (roughly), QR (quite
roughly), VR (very roughly). Let Oj, j = 1, 2, . . . , m, be the jth data point with component
(pj1, pj2, . . . , pjk, pjz).

To measure the strength of the fuzzy rule (20), in [10] a membership function of an
induced fuzzy set on the set of m data points {O1, . . . , Om} is defined by considering the
antecedent of the hth rule (20):

Ah(Oj) = A1h1(pj1) · . . . · Akhk
(pjk) (21)
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where Aihi
(pji) is the membership degree to the fuzzy set Aihi

of the ith attribute in the jth
data point. The following value

r =
card

{
Oj
∣∣Ah(Oj) > 0

}
m

(22)

is called degree of support of the association rule (20). If Fh1h2 ...hk
is the (h1, . . . , hk)th

component of the direct F-transform (13) and

f F
n1n2 ...nk

(
Oj
)
=

n1

∑
h1=1

n2

∑
h2=1

. . .
nk

∑
hk=1

Fh1h2 ...hK · A1h1

(
pj1
)
· . . . · AkhK

(
pjk

)
(23)

is the inverse F-transform on the point (pj1, . . . , pjk), in (Perfilieva et al., 2008) the degree of
confidence of the association rule (20) is defined as

γ =

√√√√√√∑m
j=1

(
fF
n1n2 ...nk

(
Oj
)
− Fh1h2 ...hK

)2
·A1h1

(
pj1

)
· . . . ·AkhK

(
pjk

)
∑m

j=1

(
pjz − Fh1h2 ...hK

)2
·A1h1

(
pj1

)
· . . . ·AkhK

(
pjk

) (24)

The strength of the hth association rule is evaluated by measuring the degree of
support r and the degree of confidence γ. If both the two parameters are greater or equal
to a degree of support threshold and a degree of confidence threshold, respectively, the
association is found.

In [10] this method is tested on a dataset of measures of air pollution produced on a
road related to traffic volumes and weather conditions, collected by the Norwegian Public
Roads Administration.

4. F-Transform Techniques for Time Series Analysis

Time series forecasting involves methods for fitting over historical data referring to
measures of an observable series and using them to predict future observations.

A time series is given by a set of data measured at different times listed in time order.
Let y be a measured parameter and y(t) the measure performed at the time t. A time series
is a function y: t ∈ N→ y(t)∈ R known in n regular time steps y(1), y(2), . . . , y(n), where
y(i), i = 1, 2, . . . , n, is the measured value of y at the ith time step.

Time series forecasting techniques assess the value of y in the n future time steps
y(n + 1), ..., y(n + m), where the value y(t + 1) at the step t + 1 is evaluated as a function of
the previous p + 1 measured values y(t), y(t − 1), ..., y(t − p). Let y(t), t = 1, 2, . . . , T, be a
time series. It can be decomposed by following two terms:

y(t) = f (t) + r(t) (25)

The term f (t) is a deterministic part, called trend; the term r(t) is an additional random
function called residuals, giving the random error with respect to the trend at the time t.
A general model of a stationary time series y(t) as a linear function of the p + 1 measured values
y(t), y(t − 1), ..., y(t − p) is the Auto-Regressive of order p model AR(p), given by ([13,14]):

y(t) = α1y(t− 1) + . . . + αpy(t− p) + εt (26)

The p coefficients α1, . . . , αp must satisfy some constraints and the term εt is the
statistical white noise giving the fluctuations in the observations that cannot be explained
by the model.

4.1. One-Dimensional F-Transform Time Series Models

In [15,16] the one-dimensional F-transform is applied to approximate the trend f (t)
in (25). Let {y(t), t = 1, 2 . . . , T} be a time series given by a set of data y(t) measured in
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T regular time intervals. Let {t1 = 1, t2, . . . , tn = T} be a set of n nodes of the interval [1,T],
where 3 ≤ n ≤ T, and {A1, ..., An} be the basic functions of a uniform fuzzy partition of the
interval [1,T].

If the dataset given by the time series {y(t), t = 1, 2 . . . , T} is sufficiently dense with
respect to this fuzzy partition, then there exists the direct one-dimensional F-transform of
f with components

Fk =
∑T

i=1 y(t)Ak(t)

∑T
i=1 Ak(t)

k = 1, 2..., n (27)

Let Pk, k = 1, ..., n, be a subset of {1, 2, . . . , T} given by the time steps t, being Ak(t) > 0, as

Pk = {t ≤ T|Ak(t) > 0} (28)

We can decompose y(t) as:

y(t) =
n
∨

k=1
(Fk + rtk) (29)

where rtk is the kth residual of yt with respect to Ak given by

rtk =

{
yt − Fk i f t ∈ P k
−∞ otherwise

(30)

Based on the autoregressive model (26), in [15,16] the kth component Fk is given
by a linear combination of the p previous components. The trend at the kth time step is
assessed by

Fk = α1Fk−1 + α2Fk−2 + . . . + αpFk−pk = p + 1, . . . , n (31)

In [15,16] p = 3 is set as well. The calculated value for Fn are used to forecast the
unknown value Fn+1 as

Fn+1 =
−
α1Fn +

−
α2Fn−1 +

−
α3Fn−3 (32)

The values α̃1, α̃2, α̃3 chosen for the three coefficients α1,α2,α3 minimize the absolute
difference between the predicted and the calculated values of Fn. In [15] a numerical
method and a Multilayer Perceptron neural network are used to find the optimal values of
the coefficients α1, α2, α3. In [16] a method based on fuzzy relations is proposed to find the
best values of the three coefficients.

In [16] comparisons with the autoregressive model ARIMA and with other time series
fuzzy-based models are performed; the MAPE and SMAPE indexes are used to measure
the forecast errors; the authors showed that their F-transform-based time series prevision
model has the best performances.

In [17] the one-dimensional F-transform is proposed to filter the high frequencies
in the time series. A time series can be additively decomposed into three components:
trend cycle, a seasonal component, and noise. The authors prove that the one-dimensional
F-transform acts as a low-pass filter, removing or significantly reducing the seasonal and noise
components; then, the inverse F-transform optimally approximates the trend component.

4.2. Multi-Dimensional F-Transform Time Series Model

In [17] a time series forecasting model based on the multi-dimensional F-transform is
proposed. The authors applied their method to the well-known Mackey-Glass time series
generated by the differential equation:

dy
dt

=
0.2 · y(t− τ)

1 + y10(t− τ)
− 0.1 · y(t) (33)
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In [18] the function y(t) is approximated by previous t-6 values y(t − 6), y(t − 5),
. . . , y(t − 1) by constructing a multi-dimensional F-transform to approximate the output
variable y as a function of six variable xi = y(t − i), i = 1, . . . , 6.

To construct the components of the direct multi-dimensional F-transform the N points(
x(j)

1 , x(j)
2 , . . . , x(j)

6 , y(j)
)

are considered, where j = 1, . . . , N. They are given by

Fh1h2 ...h6 =
∑N

j=1 y(j) · A1h1

(
x(j)

1

)
· . . . · A6h6

(
x(j)

6

)
∑N

j=1 A1h1

(
x(j)

1

)
· . . . · A6h6

(
x(j)

6

) (34)

The inverse F-transform is given by

f F
n1n2 ...n6

(
x(j)

1 1, x(j)
2 , . . . , x(j)

6

)
=

n1

∑
h1=1

n2

∑
h2=1

. . .
n6

∑
h6=1

Fh1h2 ...h6 · A1h1

(
x(j)

1

)
· . . . · A6h6

(
x(j)

6

)
(35)

To assess the value of the function y(t) at the time t considering the value obtained
in the six previous time steps: xi = y(t − i) i = 1, . . . , 6, the Formula (35) is applied by
obtaining the following:

ỹ = f F
n1n2 ...n6

(x1, x2, . . . , x6) =
n1

∑
h1=1

n2

∑
h2=1

. . .
n6

∑
h6=1

Fh1h2 ...h6 · A1h1(x1) · . . . · A6h6(x6) (36)

In [18] the authors compare the results obtained by applying this method to the
Mackey-Glass time series with those ones obtained by using the well-known Wang and
Mendel method and with the results obtained using a local Wavelet Neural Network with
three layers, six input nodes, 10 hidden nodes and one output node. They measure the
MAPE, RMSE and MADMEAN indices, showing that the multi-dimensional time series
method has the best performances.

The multi-dimensional fuzzy transform method [18] can be generalized for any func-
tion considering a dependency on k input parameters. In [19] it is applied for forecasting
problems in spatial analysis. The framework proposed in [19] is schematized in Figure 5.

The area of study is partitioned in subzones. For each subzone a training dataset
with the measure of characteristics of the subzone in a specified period is extracted. Then,
the time series correspondent to a measured characteristic f (t) from a time t = 0 to t = T
is constructed and the multi-dimensional F-transform prediction method [17] is applied
to assess the value of f at the time T + ∆t. The RMSE and the MADMEAN are used to
evaluate the performances of the forecasting model. Finally, two thematic maps of the
predicted value of the characteristic at the time T + ∆t and of the prediction error in each
subzone are given after performing a fuzzification process. This approach is encapsulated
in a Geographical Information System and is tested in [19] to analyze the demographical
balance data measured every month in the period 1 January 2003–31 October 2014 in
the municipalities of Cilento and Vallo di Diano National Park located in the province of
Salerno (Italy). The birth-rate and death-rate in November 2014 in each municipality are
evaluated. The mean RMSE obtained is under 0.01.

4.3. F-Transform Seeasonal Time Series Model

In some time series a phenomenon called seasonality is present, given by a repetitive
and regular pattern of changes that repeats over S time periods. For example, in a monthly
time series S = 12, in an hourly time series S = 24, and so on.

Some well-known statistical models as the Seasonal Auto Regressive Integrated Mov-
ing Average (SARIMA) models [20,21] are used to forecast the value of the output variable
at a time t as a combination of the trend with a seasonal component.
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Figure 5. Schema of the framework proposed in [19].

In [22] a seasonal time-series forecasting method based on F-transforms is proposed
as Time Series Seasonal F-transform (TSSF). A polynomial best fit is applied to extract
the trend; then the data are de-trended, subtracting the trend from the time series and
the de-treated time series is partitioned in S subsets. The one-dimensional F-transform is
applied to each subset to assess the correspondent seasonality.

To assess the value of the output variable y at the time t included in the sth season,
with s in {1, 2, . . . , S}, we calculate the inverse F-transform f F

n(s)(t).

Let {(t(1), y(1)), (t(2), y(2)) ...(t(M
s
), y(M

s
))} be the de-treated sth subset with cardinality

Ms, where y(j), j = 1, . . . , Ms, is given by difference between the original measure obtained
at the time t(j) and the trend calculated at that time.

Let Fh, where h = 1, 2, . . . , n(s), be the hth component of the one-dimensional direct
F-transform calculated by using a fuzzy partition of n(s) basic functions of the domain of
the sth subset. The one-dimensional inverse F-transform calculated at the time t is given by

f F
n(s)(t) =

n(s)

∑
h=1

Fh · Ah(t)· (37)

The forecasted value ỹ0(t) of the output y0 at the time t included in season s is

ỹ0(t) = f F
n(s)(t) + trend(t) (38)
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where the term trend(t) is the assessed value of the trend of the time series at the time t.
In the TSSF model, to verify that each subset of data is sufficiently dense with respect

to the fuzzy partition and to find the best fuzzy partition, is applied the technique pro-
posed in [11]. To find the best fuzzy partition for each subset the MADMEAN measure is
calculated, being

MADMEANS =
∑Ms

j=1

∣∣∣ f F
n(s)

(
t(j)
)
− y(j)

∣∣∣
∑Ms

j=1 y(j)
(39)

The number of fuzzy sets of the initial fuzzy partition is set to 3; then, the sufficient
density of the data with respect to the fuzzy partition is verified and the direct F-transform
is calculated. The inverse F-transform in each time t(j), where j = 1, . . . , Ms, is calculated
by Formula (37) and, finally, the MADMEAN index (39) is measured. If the MADMEAN
index is greater than a fixed threshold, then the process stops and the direct F-transform
components are stored; otherwise, the number of fuzzy sets of the fuzzy partition n(s) is
increased by one unit and the previous steps are iterated. This process is executed for each
seasonal subset.

In Figure 6 the flow diagram of the TSSF model is shown.

Figure 6. Flow diagram of the TSSF model in [22].

In [22] many comparison tests are performed comparing the performance of TSSF with
the ones measured executing other forecasting algorithms applied to seasonal time series.
Comparisons are executed with respect to the statistical Average Seasonal Variation (avgSV)
and Seasonal ARIMA models [21], the model based on the multi-dimensional F-transform
(MF-tr) [18] and the soft computing forecasting models Support Vector Machine (SVM) [23]
and Automatic Design of Artificial Neural Networks (ADANN) [24]. Table 3 shows the
RMSE obtained applying these models on a set of 14 seasonal time series giving the daily
mean temperature measured by 14 weather monitoring stations located in the province of
Genova (Italy). In each experiment, the month is used as seasonality and each dataset is
partitioned in twelve subsets.
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Table 3. RMSE in six methods for the mean temperature in 14stations in the province of Genova (Italy).

Station
RMSE

avgSV SARIMA MF-tr. TSSF SVM ADANN

Alpe Gorreto 2.98 1.20 1.49 0.84 0.81 0.83
Campo Ligure 2.74 1.09 1.34 0.76 0.71 0.76

Barbagelata 3.25 1.30 1.57 0.89 0.84 0.90
Camogli 3.39 1.38 1.68 0.95 0.88 0.86

Campo ligure 3.02 1.20 1.49 0.83 0.77 0.79
Carlasco 2.91 1.15 1.42 0.80 0.77 0.76
Chiavari 2.78 1.12 1.39 0.78 0.73 0.77

Genova Bolzaneto 2.95 1.16 1.41 0.81 0.77 0.75
Genova Pegli 3.34 1.29 1.64 0.94 0.89 0.88

Panesi 3.20 1.29 1.56 0.87 0.84 0.83
Rapallo 2.71 1.08 1.33 0.75 0.78 0.84

Rovegno 2.94 1.18 1.45 0.82 0.82 0.80
Tigliolo 3.06 1.24 1.52 0.85 0.80 0.85

Viganego 3.17 1.28 1.57 0.88 0.82 0.83

The results in Table 2 show that the TSSF’s performances are better than the ones
obtained by using the avgSV, SARIMA and F-transform and comparable with those ones
obtained by using SVM and ADANN. In addition, SVM and ADANN are computationally
more complex to manage than TFSS. A critical point of TSFF is its inability to manage
irregular time series, in which it is complex to evaluate time series patterns in the data.

In [9] an extension of the TFSS model has been proposed, based on the use of the
first-order F-transform. This model improves the performance of the TFSS model but
increases its computational complexity.

5. F-Transform in Data Classification

In Section 3 we analyzed techniques that use the multi-dimensional F-transform as a
regression function to explore dependency between data ([10,11]). In [25] a classification
method based on the use of the multi-dimensional F-transform is proposed. The proposed
algorithm, called MFC (Multi-dimensional F-transform Classification), compute the direct
and inverse multi-dimensional F-transforms to classify data points.

The learning dataset is given by a set of data points characterized by a pair (X,Y),
where X is a vector of s numerical features (X1, . . . Xs) and Y is the class feature designated
as class which has C categories, labelled with the values 1, 2, . . . , C.

The multi-dimensional F-transform is applied to explore a relation between attributes
in the form:

Y = f (x1, . . . , xs) (40)

where f is a discrete function f : [a1,b1] × [a2,b2] × . . . × [as,bs] → {1, 2, ..., C} with
xi ∈ [ai,bi] i = 1, . . . , s, and Y ∈ {1, 2, ..., C}.

MFC uses the multi-dimensional inverse F-transform to approximate the function f.
To avoid the over-fitting problem is applied the K-fold cross validation resampling algo-
rithm to control this presence.

K-fold cross validation is a well-known resampling technique in which the dataset is
partitioned into K subsets of equal size called folds. The classification algorithm is iterated
K times. At any iteration of a fold constitutes the validation set and the union of the other
K-1 folds forms the training set, used to train the classifier. With respect to other resampling
techniques, K-fold is more efficient in dealing with the over-fitting problem, as in K-fold
each fold is treated once as a validation set.

Let P = (p1, p2, . . . , ps) be a data point. Formally, if Fk is the multi-dimensional direct
F-transform calculated by using the kth fold and f Fk

n1n2 ...ns(p1, p2, . . . , ps) is the value of the
multi-dimensional inverse F-transform calculated in P, then, an average of the K inverse
F-transforms in the point P is calculated as
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fn1n2 ...ns(p1, p2, . . . , ps) =
1
K

K

∑
k=1

f Fk
n1n2 ...ns(p1, p2, . . . , ps) (41)

The point P is classified in the class labeled c*, where

c∗ = arg
{

min
c=1,...,C

(| fn1n2 ...ns(p1, p2, . . . , ps)− c|)
}

(42)

To evaluate the performance of the classifier for each fold two index CVk
1 and CVk

2
k = 1, . . . , K are calculated, where

- CVk
1 is the percentage of all the misclassified data points in the kth training set;

- CVk
2 is the percentage of all the misclassified data points in the kth validation set.

The final index giving the average of the percentage of misclassified data points in the
training sets is

CV1 =
1
K

K

∑
k=1

CVk
1 (43)

and the final index giving the average of the percentage of misclassified data points in the
validation sets is

CV2 =
1
K

K

∑
k=1

CVk
2 (44)

CV1 and CV2 are used to evaluate the performances of MFC. If CV1 is under a fixed
threshold α and CV2 is under a fixed threshold β, then the algorithm stops, else a finer set
of fuzzy partitions of the domains of the s input variables is constructed and the process
is iterated.

In Figure 7 we show the flow diagram of MFC.

Figure 7. Flow diagram of the MFC algorithm [25].



Electronics 2021, 10, 1771 18 of 20

In [25] comparison tests are performed on over 100 classification datasets extracted
from the University of California, Irvine (for short, UCI) Machine Learning and from the
Knowledge Extraction Evolution Learning repositories.

In Table 4 are shown the mean accuracy, precision and recall classification mea-
sures obtained by running MFC, Decision tree-based J48 [26], Multi-Layer Perceptron [27],
naive Bayes [28] and Lazy K-Nearest Neighbor IBK [29].

Table 4. Mean accuracy, precision and recall with 5 classification algorithms.

Algorithm Accuracy Precision Recall

MFC Classifier 98.15% 98.09% 97.36%
Decision tree J48 98.38% 98.17% 97.51%

Multilayer Perceptron 98.22% 98.23% 97.48%
Naive Bayes 96.55% 91.89% 90.65%

Lazy IBK 97.17% 93.30% 91.44%

These results show that MFC provides classification performance better than those
ones obtained by using the naive Bayes and Lazy IBK algorithms. They are comparable
with the results obtained by the Decision tree J48 and the Multilayer Perceptron algorithms.

A weak point of MFC algorithm is its high computational complexity which makes it
unsuitable to manage massive and high-dimensional datasets.

The integration with data compression and feature selection approaches in the pre-
processing phase can reduce these high computational costs. An approach that integrates
Principal Component Analysis (PCA) feature reduction techniques with higher-degree
F-transform has been proposed in [30] in image classification. A mixed model that inte-
grates higher-degree F-transform and PCA techniques could be tested in data classification
to reduce the number of features and improve the accuracy and precision of the classifier
model, without significantly increasing the time consumption.

6. Conclusions

This paper presents a summary of the data analysis techniques proposed in the
literature based on the use of the F-transform in one or more dimensions. We initially
presented the definition of one-dimensional direct and inverse F-transform, showing how it
can be used to approximate a continuous function on a real interval. We then extended this
concept to the multi-dimensional F-transform, showing how it can be used in regression
analysis. In particular, attention was paid to the constraint of sufficient data density with
respect to fuzzy partitions, which is extremely important for the choice of the optimal
cardinality of fuzzy partitions. Then, the methods proposed in the literature for the analysis
of the dependency between attributes in the data and for the extraction of association rules
through the use of direct and inverse multi-dimensional F-transforms were presented
and analyzed. An extensive discussion was devoted to the different time series analysis
techniques based on the F-transforms proposed in the literature. Finally, a classification
method recently presented in the literature based on the multi-dimensional F-transform
was described.

The use of F-transform-based approaches in data analysis still remains an evolving
research field. We foresee that in the future new approaches based on the use of the
F-transform may be presented that reduce the time-consumption and computational com-
plexity that currently, on the one hand, prevent the application of these techniques to
massive and high dimensional data and on the other hand allow to also use high-orders
F-transforms in data analysis, improving the performance obtained using the zero-order
F-transform. In the future, hybrid strategies of using the high-order F-transform and
reducing the data size could lead to an optimal trade-off between the quality of the results
and the processing times.

In the future, the multidimensional zero and high-order fuzzy transform methods
may be included into soft computing hybrid models for the analysis of risk prediction
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and damage assessment proposed in recent soft computing risk analysis and forecasting
models such as damage assessment of existing buildings [31] and entity assessment of the
damage that can be produced on them by seismic events [32]. Moreover, fuzzy transform
methods can be applied for the solution of fuzzy differential equations [33] and fuzzy
partial equations [34] in data analysis models for complex systems.
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Appendix A. Table of Acronyms and Abbreviations

In Table A1 are listed the acronyms and abbreviation terms used in the text.

Table A1. Acronyms and abbreviations.

Acronym/Abbreviation Explanation

F-transform Fuzzy transform
Multidimensional F-transform Multi-dimensional Fuzzy transform
MFAD Massive F-transform Attribute Dependency method
SVM Support Vector regression Method
MLP MultiLayer Perceptron method
avgSV AVeraGe Seasonal Variation model
SARIMA Seasonal AutoRegressive Integrated Moving Average model
MF-tr Multi-dimensional Fuzzy TRansform forecasting model
TFSS Time Series Seasonal time series F-transform model
ADANN Automatic Design of Artificial Neural Networks model
MFC Multidimensional F-transform Classification method
UCI University of California, Irvine

K-fold Cross-validation K-fold resampling method applied
in classification.

Naïve Bayes Naïve Bayesian classification method

J48 Decision tree J48 classification algorithm in the Weka data
mining tool.

Lazy IBK Lazy K-Nearest Neighbor Instance-Bases learning with
parameter K classification method.

PCA Principal Component Analysis.
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