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Abstract: This paper discusses an evaluation method of transmission properties of networks de-
scribed with regular graphs (Reference Graphs) using unevenness coefficients. The first part of
the paper offers generic information about describing network topology via graphs. The terms
‘chord graph’ and ‘Reference Graph’, which is a special form of a regular graph, are defined. The
operating principle of a basic tool used for testing the network’s transmission properties is discussed.
The next part consists of a description of the searching procedure of the shortest paths connecting
any two nodes of a graph and the method determining the number of uses of individual graph
edges. The analysis shows that using particular edges of a graph depends on two factors: their total
number in minimum length paths and their total number in parallel paths connecting the graph
nodes. The latter makes it possible to define an unevenness coefficient. The calculated values of
the unevenness coefficients can be used to evaluate the transmission properties of networks and to
control the distribution of transmission resources.

Keywords: ICT networks; graph theory; network transmission properties

1. Introduction

A basic problem faced by designers of ICT networks is the selection of a topology of
internodal connections that will guarantee the best efficiency and reliability of information
transfer, that is, a topology in which both the diameter and the average length of the paths
of the graph describing the lattice reach their minimum values. The aim of this study is to
analyze the transmission properties of ICT networks described with graphs whose nodes
are modules acting as commutators and whose edges are transmission channels connecting
the nodes. This paper includes the analysis and results of the possibility of utilizing the
unevenness coefficients of the use of individual graph edges for the assessment of the
transmission properties of networks described with these graphs. ICT networks must
fulfil the requirements of adequate quality, rate, and reliability of information transmission.
Therefore, apart from the selection of proper hardware to be installed in their nodes,
the correct setup of connections between the parts of the network [1–8] is taken into
consideration. The main purpose of ICT systems design is to reach the following:

• The minimum network connection cost presented as the total number of links;
• The minimum communication delay—the representation of this parameter is the size

of the diameter and the average path length;
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• A substantial fault tolerance characterized by the number of independent paths
between two nodes (connectivity) or the minimum number of nodes or edges after the
removal of which the networks is no longer consistent (node and edge connectivity);

• Regularity and symmetry;
• Ease of routing;
• Extensibility.

Network topologies can be described using graphs [1,9,10]. Their vertices (nodes)
can be commutation modules or specialized computers. The edges are usually two-way,
independent transmission channels linking these vertices. Fiber-optic cables are most
commonly used to transmit information in extended ICT networks, and these networks
generally have a ring structure [11,12]. The transmission characteristics of a standard ring
structure are not satisfactory; therefore, to improve it, it is modified by the introduction of
additional internodal connections called chords. The structures obtained in such a way are
called chordal rings [13].

Definition 1. The chordal ring is a special case of a circulant graph defined by the pair (p, Q),
where p denotes the number of nodes and Q the set of chords, Q ⊆ {1, 2, . . . , bp/2c}. Each of the
chords qi ∈ Q connects a pair of nodes included in the ring, where qi denotes the length of the chord
equal to the number of the ring edges between the nodes. The chord ring is described by the notation
G(p; q1, ..., qi), where q1 = 1 < q2 < · · · < qi. The degree of nodes is generally equal to d(V) = 2i,
except when the chord length is p/2; in this case, p and the node degree is 2i-1 [14].

Many publications [14–19] show that the diameter and average path length have a
significant influence on the transmission properties of the network modelled by graphs. To
objectively evaluate the minimal values above the given basic parameters of the analyzed
connection typologies, the Reference Graphs were established [20–22].

Definition 2. Reference Graphs are the regular structures with a predetermined number of nodes
in which the diameter values and the average path lengths from any source node reach the same,
theoretically calculated lower size limits.

Amongst Reference Graphs (RG) are ideal and optimal graphs that depend on the
number of nodes forming these graphs. An optimal graph is a structure in which all sets
of nodes equally distant from the source node (called ‘layers’) reach the maximum count,
while in an ideal graph, the set of nodes furthest from the node (the last layer) does not
fulfil this condition. The authors in [23] describe an algorithm that made it possible to
develop software for research aiming at the verification of whether structures of this kind
truly exist. The above-mentioned software was modified, which helped to achieve sets of
Reference Graphs with various configurations and with the predetermined number and
degree of nodes.

2. The Adopted Method of Analyzing the Topic

In the above-mentioned publications, the method of searching such structures was
described. Preliminary simulation studies of virtual ITC networks modelled with those
graphs have been made. The tests consisted of determining the transmission characteristics,
i.e., evaluating the probability of rejecting a service call in the function of the intensity of
the traffic generated by users connected to the nodes.

The operation of the simulator consists of testing the transmission properties of the
network with the time discretization. After loading the connection matrix describing the
graph, all paths connecting all nodes of this graph are determined. The simulation proceeds
as follows: The event queue is initiated by the selection of the first event (element) that has a
time stamp. After downloading the first item with the smallest value of the timestamp from
the queue, it is checked whether it is the beginning of the connection. If this condition is
fulfilled, another random element is placed in the queue with its time marker being drawn
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according to the assumed traffic volume expressed in Erlang. The starting and the target
node as well as the duration of the connection are drawn for the downloaded element.
The connection setup procedure is commenced, which allocates the network resources of
each of the edges forming a path from the start node to the terminal node. A transmission
resource is understood as, for example, the number of slots in a route used to send user
information or the bandwidth. In relation to real networks, such a situation may occur in
the case of using leased lines, where for selected internode relationships, it is possible to
specify for the operator, e.g., the bandwidth demand that allows for an improvement in
the transmission properties of networks modelled by regular graphs [24]. If connection
matching is successful, an event with a time stamp that is the end of the connection is
inserted in the queue. If there are several paths available between the starting node and the
destination node, the selection of one of them is made randomly. If the element selected
from the queue is an event that is the end of the connection, then the used resources are
released by the given path. The simulation is conducted until the stabilization of the result
at the assumed ε value. For subsequent simulation results, it is confirmed whether Rn
satisfies the inequality (1) and the assumed number of connections.

|Ri − Rn| ≤ ε (1)

where Ri is the result of the i-th simulation, Rn—the average value of test results after
n simulations.

Before starting the simulation, the following files are loaded: a file showing connec-
tions between the graph’s vertices, a file to which the numbers of edges connecting the
vertices of the graph will be saved, and a file containing the distribution of individual
edges in alternative paths of minimum length and the results of coefficient calculations of
the unevenness of the use of individual edge graphs, which will be explained later in the
article. In order to carry out the test, it is necessary to determine the resources allocated
to each of graph edge, the number of users generating traffic in each of the nodes, the
variability range of the generated traffic (min/max (ERL)), and the difference between
subsequent intensity values. The type of simulation is selected—with/without resource
control (which will be explained in the section on the use of the unevenness coefficients).
After the test, the number of the requests handled and unhandled and the value of the
determined probability in the function of changes of the intensity of generated traffic ap-
pear on the screen. Analyzing the results obtained through the use of the simulator found
that in some cases, basic parameters do not explain transmission characteristics. That is,
despite the same basic parameters, i.e., the same number of nodes, diameters, and average
lengths of Reference Graphs, their transmission characteristics are different. Examples of
nine-node graphs, with a diameter of 2 and an average path length of 1.5, are shown in
Figure 1.

Figure 1. Nine-node Reference Graphs.

Results obtained inspired analyses carried out in order to explain the cause of the
differences shown in the chart presented below (Figure 2).
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Figure 2. Results of simulating the probability of rejecting a call in the function of traffic density for
graphs A and B (Figure 1). Prej—probability of rejecting the call for realization, T—density of the
generated traffic measured in Erlangs.

3. The Method of Proceeding

To illustrate the process of identifying the cause of the above-mentioned differences,
the graphs shown in Figure 2 were utilized.

For both graphs, the number of uses of individual edges in minimum length paths
were specified. To this purpose, the exponentiation of the adjacency matrices describing the
above-mentioned graphs was used. Graphs A and B are described with adjacency matrices:

MSA =



0 1 1 0 1 0 0 0 1
1 0 1 0 0 1 1 0 0
1 1 0 1 0 0 0 1 0
0 0 1 0 1 1 0 1 0
1 0 0 1 0 1 0 0 1
0 1 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1 1
0 0 1 1 0 0 1 0 1
1 0 0 0 1 0 1 1 0


MSB =



0 1 1 1 0 0 0 0 1
1 0 1 0 1 0 1 0 0
1 1 0 1 1 0 0 0 0
1 0 1 0 1 0 0 1 0
0 1 1 1 0 1 0 0 0
0 0 0 0 1 0 1 1 1
0 1 0 0 0 1 0 1 1
0 0 0 1 0 1 0 1 1
1 0 0 0 0 1 1 1 0


Both matrices were turned into matrices MSTA and MSTB using the short names of

the edges:

MSTA =



0 a b 0 c 0 0 0 d
a 0 e 0 0 f g 0 0
b e 0 h 0 0 0 i 0
0 0 h 0 j k 0 l 0
c 0 0 j 0 m 0 0 n
0 f 0 k m 0 p 0 0
0 g 0 0 0 p 0 q r
0 0 i l 0 0 q 0 s
d 0 0 0 n 0 r s 0


MSTB =



0 a b c 0 0 0 0 d
a 0 e 0 f 0 g 0 0
b e 0 h i 0 0 0 0
c 0 h 0 j 0 0 k 0
0 f i j 0 l 0 0 0
0 0 0 0 l 0 m n p
0 g 0 0 0 m 0 q r
0 0 0 k 0 n q 0 s
d 0 0 0 0 p r s 0


By squaring them, all paths consisting of two edges were determined [25]. In this case,

the diameter of both graphs is equal to two. In Table 1, the obtained results of calculations
are shown (this table does not include the composition of the paths connecting the nodes
with themselves).

Based on the results presented in the tables, the distributions of the occurrence of
individual graph edges in the minimum paths of length 1 and 2 were determined (Table 2).
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In the case where the diameter of graph is large, the described operations will be repeated
until all cells have been filled.

Table 1. Minimal length path consisting of two edges.

Graph A

Node 0 1 2 3 4 5 6 7 8

0 be ae bh + cj dn af + cm ag + dr bi + ds cn
1 be ab eh + fk ac + fm gp fp ei + gq ad + gr
2 ae ab il bc + hj ef + hk eg + iq hl bd + is
3 bh + cj eh + fk il km jm kp + lq hi jn + ls
4 dn ac + fm bc + hj km jk mp + nr jl + ns cd
5 af + cm gp ef + hk jm jk fg kl + pq mn + pr
6 ag + dr fp eg + iq kp + lq mp + nr fg rs qs
7 bi + ds ei + gq hl hi jl + ns kl + pq rs qr
8 cn ad + gr bd + is jn + ls cd mn + pr qs qr

Graph B

Node 0 1 2 3 4 5 6 7 8

0 be ae + ch bh af + bi + cj dp ag + dr ck + ds 0
1 be ab + fi ac + eh + fj ei fl + gm 0 gq ad + gr
2 ae ab + fi bc + ij ef + hj il eh hk bd
3 bh ac + eh + fj bc + ij hi jl + kn kq 0 cd + ks
4 af + bi + cj ei ef + hj hi 0 fg + ml jk + ln lp
5 dp fl + gm il jl + kn 0 nq + pr mq + ps mr + ns
6 ag + dr 0 eg kq fg + lm nq + pr mn + rs mp + qs
7 ck + ds gq hk 0 jk + ln mq + ps mn + rs np + qr
8 0 ad + gr bd cd + ks lp mr + ns mp + qs np + qr

Table 2. Distribution of the use of edges in the analyzed graph.

Node Path
Length

Edge
a b c d e f g h i j k l m n p q r s

A 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
∑ 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

B 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 8 12 4 8 4 8 12 4 4 4 4 4 8 12 12 4 4 4
∑ 10 14 6 10 6 10 14 6 6 6 6 6 10 14 14 6 6 6

Table 3 shows the distribution of the use of graph edges. The row ∑ specifies the total
numbers of uses of edges in minimum paths.

Column uis contains the number of individual edges resulting from tests (total number
of simulations: 13,500,000). It was concluded that the results given in Table 2 are correlated
with the results of the simulation, which is shown in Table 3. However, for edges c, e, h, i, j,
and l of graph B, although possessing identical sums, the frequencies of their occurrence in
the paths obtained from the performed tests are different. This indicates that adopting this
parameter as the reason for the occurrence of differences in transmission properties of the
networks described by the graphs would be a mistake. Therefore, it was determined that
there had to be another factor causing the lack of evenness in the distribution of the uses of
edges in paths. In an attempt to identify this factor, it was assumed that the differences
depend on the number of uses of edges in parallel paths. The parallel paths have the same
length and consist of different configurations of edges connecting the same graph nodes. It
is important to note that individual edges can be a part of multiple paths, even those that
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connect the same nodes. By deleting the elements referring to the connection of a node
to themselves and by deleting the elements referring to the paths connecting individual
nodes with a source node of single edge length, the sets of edges creating the shortest paths
were obtained. The total numbers of uses of specific graph edges in all minimum length
paths were calculated, as shown in Table 4.

Table 3. Distribution of the use of graph edges resulting from the simulation.

Graph A

∑ uis ∑ uis ∑ uis

a 10 749,768 g 10 750,701 m 10 749,352
b 10 749,772 h 10 749,435 n 10 749,864
c 10 751,121 i 10 749,537 p 10 749,560
d 10 750,356 j 10 750,510 q 10 750,118
e 10 750,146 k 10 750,839 r 10 748,635
f 10 751,249 l 10 749,668 s 10 749,801

Graph B

∑ uis ∑ uis ∑ uis

a 10 666,682 g 14 1,249,334 m 10 666,768
b 14 1,248,994 h 6 499,130 n 14 1,251,003
c 6 583,250 i 6 500,822 p 14 1,251,017
d 10 667,232 j 6 749,417 q 6 749,858
e 6 584,238 k 6 583,680 r 6 499,736
f 10 665,674 l 6 582,844 s 6 500,906

Table 4. Total numbers of uses of specific graph edges in all minimum length paths.

Graph A

Node 0 1 2 3 4 5 6 7 8

0 0 a b bh + cj c af + cm ag + dr bi + ds d
1 a 0 e eh + fk ac + fm f g ei + gq ad + gr
2 b e 0 h bc + hj ef + hk eg + iq i bd + is
3 bh + cj eh + fk h 0 j k kp + lq l jn + ls
4 c ac + fm bc + hj j 0 m mp + nr jl + ns n
5 af + cm f ef + hk k m 0 p kl + pq mn + pr
6 ag + dr g eg + iq kp + lq mp + nr p 0 q r
7 bi + ds ei + gq i l jl + ns kl + pq q 0 s
8 d ad + gr bd + is jn + ls n mn + pr r s 0

Graph B

Node 0 1 2 3 4 5 6 7 8

0 0 a b c af + bi + cj dp ag + dr ck + ds d
1 a 0 e ac + eh + fj f fl + gm g gq ad + gr
2 b e 0 h i il eg hk bd
3 c ac + eh + fj h 0 j jl + kn kq k cd + ks
4 af + bi + cj f i j 0 l fg + lm jk + ln lp
5 dp fl + gm il jl + kn l 0 m n p
6 ag + dr g eg kq fg + lm m 0 q r
7 ck + ds gq hk k jk + ln n q 0 s
8 d ad + gr bd cd + ks lp p r s 0

The authors propose the introduction of a new factor, named the inequality coefficient
wspi and described by the following formula:
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wspi =
D(G)

∑
i=1

uio (2)

where D(G) is the diameter of the graph and uio values are calculated by Formula (3):

uio =
uk
k

(3)

where uk stands for the number of uses of edges in parallel paths of length k.
Table 5 shows calculated values of the wspi coefficients for individual edges of the

analyzed graph B.

Table 5. Total numbers of uses of specific graph edges in all minimum length paths.

Edge k wspi Edge k wspi Edge k wspi1 2 3 1 2 3 1 2 3

a 2 4 4 5.33 g 6 8 0 10.00 m 2 4 4 5.33
b 6 8 0 10.00 h 2 4 0 4.00 n 6 8 0 10.00
c 4 0 2 4.67 i 2 4 0 4.00 p 6 8 0 10.00
d 2 4 4 5.33 j 6 0 0 6.00 q 6 0 0 6.00
e 6 8 0 4.67 k 4 0 2 4.67 r 2 4 0 4.00
f 2 4 4 5.33 l 4 0 2 4.67 s 2 4 0 4.00

Calculating the sum of the value of edge use during the simulations performed,
dividing it by the sum of the calculated coefficients, and then multiplying the result
obtained by the coefficient determined for the given edge, it was possible to obtain results
that correlate with the edge distribution determined during the simulation:

uci = wspi
∑N−1

i=0 lsi

∑N−1
i=0 wspi

(4)

where uci is a calculated number of uses of a particular edge, values lsi are the number of
performed simulations, and N is the total number of edges. In this example, ∑N−1

i=0 wspi =

108, ∑N−1
i=0 lsi = 13,500,000.

For graph B, calculated values uci compared to results obtained from simulations usi
are shown in Table 6.

Table 6. Comparison of results obtained via calculations and simulations.

Edge uci usi Edge uci usi Edge uci usi

a 666,666.7 666,682 g 1,250,000.0 1,249,334 m 666,666.7 666,768
b 1,250,000.0 1,248,994 h 500,000.0 499,130 n 1,250,000.0 1,251,003
c 583,333.3 583,250 i 500,000.0 500,822 p 1,250,000.0 1,251,017
d 666,666.7 667,232 j 750,000.0 749,417 q 750,000.0 749,858
e 583,333.3 584,238 k 583,333.3 583,680 r 500,000.0 499,736
f 666,666.7 665,674 l 583,333.3 582,844 s 500,000.0 500,906

Conclusion: The value of the parameter wspi determines the number of occurrences
of a given edge in the minimum length paths.

Examples of amounts of the subsets of fourth-degree graphs with nine nodes are given
in Table 7. Using the prepared program, 16 different types of RG graphs out of a total 209
RG graphs were determined.

“RG Number” means a graph number assigned by the simulator. On the basis of the
results in Table 7, it was concluded that all RG graphs with the same number and the same
degree of nodes have an identical sum of all wspi coefficients.
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In order to find the reason for this rule, an analysis of the distribution of all minimum
length paths specified for each node of the graphs was carried out.

Table 7. Values of wspi coefficient obtained by simulation for the different fourth-degree RGs.

RG
Number 122 17 27 28 5 25 4 2 1 13 6 32 23 10 29 41

wspi

6 4.67 4.67 5.33 4 4 5 4 3.67 4 3.67 2 2 4 4 2
6 4.67 4.67 5.33 4 4 5 5 3.67 4 3.67 2 3.67 4 4 2 2
6 5.67 4.67 5.33 5.67 5 5 5 5 4 4 5.5 3.67 4 4 4
6 5.67 6 5.33 5.67 5 5 5.17 5 4 5 5.5 4 4 4 4
6 5.67 6 5.33 5.67 5.33 5 5.17 5 4 5 5.5 5.33 4 4.67 5
6 5.67 6 5.33 5.67 5.33 5 5.17 5 4 5.33 5.5 5.33 4 4.67 5
6 6.17 6 5.33 5.67 5.67 5 5.17 5.33 7 5.67 5.5 5.67 4 4.67 5
6 6.17 6 5.33 5.67 5.67 5 5.67 5.33 7 5.67 5.5 5.67 4 4.67 5
6 6.17 6 5.33 5.67 5.67 6 5.67 5.67 7 5.67 5.5 6.67 4 5.33 5
6 6.17 6 6.67 5.67 5.67 6 5.67 5.67 7 5.67 5.5 6.67 8 5.33 5
6 6.17 6 6.67 6 6.33 6 5.67 6.67 7 6 7 6.67 8 5.33 5
6 6.17 6 6.67 6 6.33 6 6 7 7 6 7 6.67 8 5.33 5
6 6.17 6.67 6.67 6.67 6.67 6 6.83 7 7 7 7 6.67 8 6 8
6 6.17 6.67 6.67 6.67 6.67 6 6.83 7 7 7 7 6.67 8 6 8
6 6.67 6.67 6.67 6.67 7.33 8 6.83 7 7 7.67 8 7.33 8 10 8
6 6.67 6.67 6.67 6.67 7.33 8 6.83 7.33 7 7.67 8 7.33 8 10 8
6 6.67 6.67 6.67 8 8 8 8.67 7.33 7 8.67 8 9 8 10 12
6 6.67 6.67 6.67 8 8 8 8.67 9.33 7 8.67 8 9 8 10 12

sum 108

The maximum numbers of nodes that can appear in the layers create a strictly specified
number sequences depending on the degree and the number of nodes and act as the
function of numbers of subsequent layers. The total number of minimum length paths
in optimal RGs connecting a selected source node with other nodes is described by the
following formula:

dsum =

D(G)d(V)

∑
k=1

k · d(V)(d(V)− 1)k−1 (5)

where the diameter of the graph D(G)d(V) is calculated from the following formula:

D(G)(dV) = logd(V)−1
(d(V)− 2) · N0 + 2

d(V)
(6)

where N0 is the number of nodes of the optimal RG.
For a perfect graph,

dsum =

D(G)d(V)

∑
k=1

k · d(V)(d(V)− 1)k−1 + D(G) · (No − Ni) (7)

Ni is the number of nodes of the perfect graph, and the diameter is determined from the
following formula:

D(G)(dV) =

⌈
logd(V)−1

(d(V)− 2) · Ni + 2
d(V)

⌉
(8)

The legitimacy of this formula can be explained as follows: each N node is connected
to all other nodes through paths of a specified length; the sum of all lengths of these
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paths, divided by the number of nodes, gives the value dav. In the discussed example, the
analyzed RG graphs (Figure 2) are not optimal structures.

• The diameter of each of the structures D(G)4 = 2; average path length dav = 1.5.
• The first layer, as well as the second one, consists of four nodes; thus, dsum = 4+ 4 · 2 =

12 edges.
• RGs have the same parameter values calculated from any node, so the global number

of edges forming the minimum paths is ∑ dsum = 9 · 12 = 108.

Conclusion: In Reference Graphs with an identical number and degree of nodes,
the total length of all minimum length paths ∑ dsum is equal to the total value of all wspi
coefficients. Using the obtained results shown in Table 7, the authors calculated and
analyzed the standard deviation σ of the studied coefficients from the average value wspi av.
The deviation is calculated according the following formula:

σ =

√
(wspi − wspi av)2

nk
(9)

the average value of wspi av is equal to

wspi av =
∑N−1

i=0 wspi

nk
(10)

nk is the number of edges included in a given graph:

nk =
N · d(V)

2
(11)

N—number of nodes; d(V)—degree of the nodes.
The results obtained are shown in Table 8.

Table 8. Distribution of the standard deviation of wspi versus different types of graphs.

RG
number 122 17 27 28 5 25 4 2

σ 0 0.577 0.667 0.667 1.018 1.155 1.155 1.207

RG
number 1 13 6 32 23 10 29 41

σ 1.395 1.414 1.483 1.732 1.767 2.000 2.222 2.749

Figure 3 shows the results of the performed simulations for the chosen types of graphs
placed in Table 8.

In order to better visualize the differences between the analyzed graphs, in Figure 4,
the results of tests in relation to graph 122 (its value σ is equal to 0) are shown.

As has been shown, the values of σ decide the transmission properties of the network
described with the help of graphs. Their correction, i.e., a change in the use of global
transmission resources, should allow any chosen RG graph created by a specified number
of nodes to possess the features of the reference graph (“best graph”). The “best graph” is
such a graph whose unevenness coefficients for each edge have identical values so that the
average standard deviation from the average value is zero.

Figure 5 shows examples of best graphs.
The correction procedure is illustrated using the example of graph 41 with the largest

σ coefficient value.
The following data are known: the theoretically determined mean value of the

wsp av = 6, the sum of all coefficients ∑ wspi = 108 and their distribution (Table 9), and the
global transmission resources RESg = 18 edges × 32 units = 576.
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Figure 3. Results of simulations for chosen graphs.

Figure 4. Results of simulations in reference to graph 122.

Figure 5. Examples of graphs with the best transmission properties (“best graphs”).

Table 9. Distribution of wspi.

Edge a b c d e f g h i
wspi 12 5 4 5 5 4 5 5 2

Edge j k l m n p q r s
wspi 8 5 12 8 8 8 5 2 5

From the determined values of coefficient. the value wsp av (Table 10) is subtracted.
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Table 10. Auxiliary Table 1.

Edge a b c d e f g h i
∆wspi 6 −1 −2 −1 −1 −2 −1 −1 −4

Edge j k l m n p q r s
∆wspi 2 −1 6 2 2 2 −1 −4 −1

The obtained values are divided by the sum of ∑ wspi and then multiplied by the
originally assumed number of resource units for each edge (Table 11).

Table 11. Auxiliary Table 2.

Edge a b c d e f g h i
∆RES 32.00 −5.33 −10.67 −5.33 −5.33 −10.67 −5.33 −5.33 −21.33

Edge j k l m n p q r s
∆RES 10.67 −5.33 32.00 10.67 10.67 10.67 −5.33 −21.33 −5.33

Then, after rounding to integer values, the obtained values are added to the primary
resources (Table 12).

Table 12. Results of counting.

Edge a b c d e f g h i
∆RES 64 27 21 27 27 21 27 27 11

Edge j k l m n p q r s
∆RES 43 27 64 43 43 43 27 11 27

The obtained results of tests are shown in Figure 6A before the correction and in
Figure 6B after the correction.

Figure 6. Results of simulations for graph 41 compared to graph 122: (A) without the correction
procedure; (B) with the correction procedure.

Table 7 shows that the graphs marked 27 and 28; although they have different distri-
butions of unevenness coefficients (Table 13), they have the same calculated value of the
standard deviation, and it amounts to σ = 0.6667.

Table 13. Distributions of wspi.

Graph a b c d e f g h i

27 5.333 5.333 6.667 6.667 5.333 6.667 6.667 6.667 6.667
28 4.667 6.000 6.667 6.667 6.000 6.667 6.667 6.000 6.000

Graph j k l m n p q r s

27 5.333 6.667 5.333 5.333 6.667 5.333 5.333 6.667 5.333
28 6.667 4.667 6.000 4.667 6.667 6.000 6.000 6.000 6.000
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The tests performed showed that they have the same transmission properties as those
shown in Figure 7.

Figure 7. Results of simulations: (A) without any correction; (B) with correction.

Conclusion: Based on the analysis of the determined values of σ, it is possible to
compare the transmission properties of networks described by graphs without performing
simulation tests. The smaller the value of σ, the better the transmission properties of the
network described by the RG graph. However, it is not a measure of these properties but
merely an indicator. The analysis of the results showed that for the selected number of
nodes constituting Reference Graphs of a given degree, the total number of coefficients of
unevenness is strictly defined. Its exemplary values are given in Tables 14 and 15.

Table 14. Total values of the coefficients of wspi for the third-degree nodes.

Node
number 6 8 10 12 14 16 18 20 22 24 26 28 30

∑ wspiN 42 88 150 252 378 528 702 900 1122 1416 1742 2100 2490

D(G) = 2 D(G) = 3 D(G) = 4

Table 15. Total values of the wspi coefficients for the fourth-degree nodes.

Node
number 6 7 8 9 10 11 12 13 14 15 16 17

∑ wspiN 36 56 80 108 140 176 216 260 308 360 416 476

D(G) = 2

Node
number 18 19 20 21 22 23 24 25 26 27 28 29

∑ wspiN 558 646 740 840 946 1058 1176 1300 1430 1566 1708 1856

D(G) = 3

Analyzing the determined summary values ∑ wspiN contained in the tables, it was
found that they can be calculated theoretically for any Reference Graph using the follow-
ing formula:

∑ wspiN = N · (N − 1) · dav (12)

where N is the number of nodes forming the graph and dav is average path length in
the graph. The legitimacy of this formula can be explained as follows: each N node is
connected to all other nodes through paths of a specified length; the sum of all lengths of
these paths divided by the number of nodes gives the value dav.

4. Summary and Conclusions

This paper presents some issues related to the study of transmission properties of
networks whose topologies are described by Reference Graphs. In order to accomplish
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this goal, a simulation program was developed, and the probability of the call rejection
was used as the measure for such transmission properties. As a result of the tests, it was
found that despite the same basic values of parameters of Reference Graphs (that is, the
diameter and the average path length), in some cases, the networks modelled by these
graphs have different transmission properties. This finding became the starting point of
identifying factors that could explain this phenomenon. It was assumed that the number
of uses of the individual edges of the graph could be such a factor. A software tool was
developed to determine this number. During the simulations, it was determined that there
is an uneven use of individual edges of the graphs describing the networks. Analysis of the
obtained results led to the conclusion that the effect on the occurrence of this phenomenon
was due to the number of uses of specific edges in minimum length paths, specifically their
presence in parallel paths. The unevenness coefficient was defined, and it can be used to
distribute the network resources used by the edges to transmit information. The general
conclusion that results from the presented paper is as follows: transmission properties of
networks described by RG graphs depend on the distribution of the values of unevenness
coefficients, and with the assistance of the analysis of their standard deviation from the
theoretically determined expected value, one can choose, without resorting to simulation
tests, the networks with the best transmission properties.
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20. Ledziński, D.; Marciniak, B.; Śrutek, M. Referential graphs. Telekomunikacja i Elektronika/Uniwersytet Technologiczno-Przyrodniczy w

Bydgoszczy 2013, 17, 37–73.
21. Bujnowski, S.; Marciniak, T.; Lutowski, Z.; Marciniak, B.; Bujnowski, D. Modeling Telecommunication Networks with the Use

of Reference Graphs. In Proceedings of the International Conference on Image Processing and Communications, Bydgoszcz,
Poland, 14–16 November 2017; Springer: Cham, Switzerland, 2017; pp. 115–126.

22. Bujnowski, S.; Marciniak, T.; Marciniak, B.; Lutowski, Z. The Analysis of the Possibility to Construct Optimal Third-degree
Reference Graphs. J. UCS 2020, 26, 528–546.

23. Bujnowski, S.; Marciniak, T.; Marciniak, B.; Lutowski, Z.; Marchewka, A. Analysis of the Influence of Transmission Resources
Control in Tree Structure Networks. Image Process. Commun. 2018, 23, 11–19. [CrossRef]

24. Bujnowski, S.; Marciniak, T.; Marciniak, B.; Lutowski, Z. Impact of Resource Control in Irregular Networks on their Transmission
Properties. J. UCS 2019, 25, 591–610.

25. Graham, R.L.; Knuth, D.E.; Patashnik, O.; Liu, S. Concrete mathematics: A foundation for computer science. Comput. Phys. 1989,
3, 106–107. [CrossRef]

http://dx.doi.org/10.1007/PL00009251
http://dx.doi.org/10.1515/ipc-2018-0002
http://dx.doi.org/10.1063/1.4822863

	Introduction
	The Adopted Method of Analyzing the Topic
	The Method of Proceeding
	Summary and Conclusions
	References

