# Adaptive Video Watermarking against Scaling Attacks Based on Quantization Index Modulation

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

- (1)
- An adaptive quantization index modulation method is designed by analyzing the property of the DC coefficients. The method reaches the synchronization between the quantized coefficients and the index intervals before and after scaling.
- (2)
- A strategy to enhance the efficiency of the extraction process is proposed. It terminates the extraction process in advance, based on the high decoding reliability of the QRCode, reducing the execution time largely.

## 2. Related Work

## 3. Adaptive QIM against Scaling Attacks in the Spatial Domain

#### 3.1. The Ratio of the DC Coefficients before and after Scaling

#### 3.2. Adaptive QIM Based on Video Resolution

## 4. A Strategy to Enhance the Efficiency of the Extraction Process

#### 4.1. Terminating the Extraction Process in Advance

#### 4.2. Reducing the Amount of the Embedded Data

## 5. Video Watermarking Scheme

#### 5.1. Video Watermarking Embedding Process

**Step****1:**- Encode the watermark information into a $W\times W$ QRCode; divide the QRCode into the excess regular area and the important data area; denote the important data area as $E$.
**Step****2:**- Obtain the Y component of the scene change frame, according to (17); enlarge the Y component to the size of $M\times N$, with a small scaling factor, so that $M$ and $N$ both can be divided by $W$.
**Step****3:**- Segment the Y component into $W\times W$ blocks; use a secret key to select some blocks whose number is equal to the number of the data in $E$.
**Step****4:**- For each selected block, embed one-bit information of $E$, according to (15). When $E$ has been embedded in all selected blocks, rescale the frame to the original size to obtain the watermarked frame. Then, the watermark will be embedded into the next scene change frame until the last frame of the video is decoded.

#### 5.2. Video Watermarking Extracting Process

**Step****1:**- Obtain the Y component of the scene change frame, according to (17); enlarge the Y component to the size of $m\times n$, with a small scaling factor, so that $m$ and $n$ both can be divided by $W$.
**Step****2:**- Segment the Y component into $W\times W$ blocks; select the corresponding image blocks to extract the watermark by using the same secret key as the embedding process.
**Step****3:**- Extract the watermark to obtain the corresponding important data area denoted as ${E}^{\prime}$, according to (16).
**Step****4:**- Combine the excess regular area with ${E}^{\prime}$ to reconstruct the QRCode, and if the QRCode can be decoded successfully, terminate the extracting process.
**Step****5:**- If the watermark is not extracted correctly in the current scene change frame, it will be extracted from the next scene change frame.

## 6. Experiments and Analysis

#### 6.1. Experimental Setup

#### 6.2. Verifying the Property of the DC Coefficients before and after Scaling

#### 6.3. Evaluation of Imperceptibility

#### 6.4. Comparisons of Robustness

#### 6.4.1. Robustness against Geometric Attacks

#### 6.4.2. Robustness against Combined Geometric Attacks

#### 6.4.3. Robustness against Network Media Propagation Attacks

#### 6.5. Computational Cost

## 7. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Asikuzzaman, M.; Pickering, M.R. An overview of digital video watermarking. IEEE Trans. Circuits Syst. Video Technol.
**2018**, 28, 2131–2153. [Google Scholar] [CrossRef] - Yu, X.; Wang, C.; Zhou, X. A survey on robust video watermarking algorithms for copyright protection. Appl. Sci.
**2018**, 10, 1891. [Google Scholar] [CrossRef][Green Version] - Ketcham, M.; Ganokratanaa, T. The evolutionary computation video watermarking using quick response code based on discrete multiwavelet transformation. In Recent Advances in Information and Communication Technology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 113–123. [Google Scholar]
- Rigoni, R.; Freitas, P.G.; Farias, M.C. Detecting tampering in audio-visual content using qim watermarking. Inf. Sci.
**2016**, 328, 127–143. [Google Scholar] [CrossRef] - Esfahani, R.; Akhaee, A.; Norouzi, Z. A fast video watermarking algorithm using dual tree complex wavelet transform. Multimed. Tools Appl.
**2019**, 78, 16159–16175. [Google Scholar] [CrossRef] - Barani, M.J.; Ayubi, P.; Valandar, M.Y.; Irani, B.Y. A blind video watermarking algorithm robust to lossy video compression attacks based on generalized newton complex map and contourlet transform. Multimed. Tools Appl.
**2020**, 79, 2127–2159. [Google Scholar] [CrossRef] - Yassin, N.I.; Salem, N.M.; EI Adawy, M.I. Qim blind video watermarking scheme based on wavelet transform and principal component analysis. Alex. Eng. J.
**2014**, 53, 833–842. [Google Scholar] [CrossRef][Green Version] - Cedillo-Hernandez, A.; Cedillo-Hernandez, M.; Garcia-Vazquez, M.; Nakano-Miyatake, M.; Perez-Meana, A. Transcoding resilient video watermarking scheme based on spatio-temporal hvs and dct. J. Vis. Signal Process.
**2014**, 97, 40–54. [Google Scholar] [CrossRef][Green Version] - Cedillo-Hernandez, A.; Cedillo-Hernandez, M.; Miyatake, M.N.; Meana, H.P. A spatiotemporal saliency-modulated jnd profile applied to video watermarking. J. Vis. Commun. Image Represent.
**2018**, 52, 106–117. [Google Scholar] [CrossRef] - Zhao, H.; Dai, Q.; Ren, J.; Wei, W.; Xiao, Y.; Li, C. Robust information hiding in low-resolution videos with quantization index modulation in dct-cs domain. Multimed. Tools Appl.
**2018**, 77, 18827–18847. [Google Scholar] [CrossRef] - Ponni alias Sathya, S.; Ramakrishnan, S. Non-redundant frame identification and keyframe selection in dwt-pac domain for authentication of video. IET Image Process.
**2019**, 14, 366–375. [Google Scholar] [CrossRef] - Ponni alias Sathya, S.; Ramakrishnan, S. Fibonacci based key frame selection and scrambling for video watermarking in dwt-svd domain. Wirel. Pers. Commun.
**2018**, 102, 2011–2031. [Google Scholar] [CrossRef] - Li, X.; Wang, X.; Yang, W.; Wang, X. A robust video watermarking scheme to scalable recompression and transcoding. In Proceedings of the 2016 6th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 17–19 June 2016; pp. 257–260. [Google Scholar]
- Masoumi, M.; Amiri, S. A blind scene-based watermarking for video copyright protection. AEU-Int. J. Electron. Commun.
**2013**, 67, 528–535. [Google Scholar] [CrossRef] - Goria, L.E.; Pickering, M.R.; Nasiopoulos, P.; Ward, R.K. A video watermarking scheme based on the dual-tree complex wavelet transform. IEEE Trans. Inf. Forensic Secur.
**2008**, 3, 466–474. [Google Scholar] - Chen, B.; Wornell, G.W. Quantization index modulation: A class of provably good methods for digital watermarking and information embedding. IEEE Trans. Inf. Theory
**2001**, 47, 1423–1443. [Google Scholar] [CrossRef][Green Version] - Fan, D.; Wang, Y.; Zhu, C. A blind watermarking algorithm based on adaptive quantization in contourlet domain. Multimed. Tools Appl.
**2019**, 78, 8981–8995. [Google Scholar] [CrossRef] - Li, Q.; Cox, I.J. Using perceptual models to improve fidelity and provide resistance to valumetric scaling for quantization index modulation watermarking. IEEE Trans. Inf. Forensic Secur.
**2007**, 2, 127–139. [Google Scholar] [CrossRef] - Huang, Y.; Niu, B.; Guan, H.; Zhang, S. Enhancing image watermarking with adaptive embedding parameter and psnr guarantee. IEEE Trans. Multimedia.
**2019**, 21, 2447–2460. [Google Scholar] [CrossRef] - Sadeghi, M.; Toosi, R.; Akhaee, M.A. Blind gain invariant image watermarking using random projection approach. Signal Process.
**2019**, 163, 213–224. [Google Scholar] [CrossRef] - Ali, M.; Ahn, C.W.; Pant, M.; Kumar, S.; Singh, M.K.; Saini, D. An optimized digital watermarking scheme based on invariant DC Coefficients in spatial Domain. Electronics
**2020**, 9, 1428. [Google Scholar] [CrossRef] - Huang, J.; Shi, Y.Q.; Shi, Y. Embedding image watermarks in dc components. IEEE Trans. Circuits Syst. Video Technol.
**2000**, 10, 974–979. [Google Scholar] [CrossRef][Green Version] - Su, Q.; Chen, B. Robust color image watermarking technique in the spatial domain. Soft Comput.
**2018**, 22, 91–106. [Google Scholar] [CrossRef] - Chen, J.H.; Chen, W.Y.; Chen, C.H. Identification recovery scheme using quick response (qr) code and watermarking technique. Appl. Math. Inf. Sci.
**2014**, 8, 585. [Google Scholar] [CrossRef][Green Version] - Patvardhan, C.; Kumar, P.; Lakshmi, C.V. Effective color image watermarking scheme using ycbcr color space and qr code. Multimed. Tools Appl.
**2018**, 77, 12655–12677. [Google Scholar] [CrossRef] - Rosales-Roldan, L.; Chao, J.; Nakano-Miyatake, M.; Perez-Meana, H. Color image ownership protection based on spectral domain watermarking using qr codes and qim. Multimed. Tools Appl.
**2018**, 77, 16031–116052. [Google Scholar] [CrossRef] - Thulasidharan, P.P.; Nair, M.S. Qr code based blind digital image watermarking with attack detection code. AEU-Int. J. Electron. Commun.
**2015**, 69, 1074–1084. [Google Scholar] [CrossRef] - Xiang, S.; Kim, H.J.; Huang, J. Invariant image watermarking based on statistical features in the low-frequency domain. IEEE Trans. Circuits Syst.
**2008**, 18, 777–790. [Google Scholar] - Hua, G.; Xiang, Y.; Zhang, L.Y. Informed histogram-based watermarking. IEEE Signal Process. Lett.
**2020**, 27, 236–240. [Google Scholar] [CrossRef] - Guan, H.; Zeng, Z.; Liu, J.; Zhang, S. A novel robust digital image watermarking algorithm based on two-level dct. In Proceedings of the 2014 International Conference on Information Science, Electronics and Electrical Engineering, Sapporo, Japan, 26–28 April 2014; pp. 1804–1809. [Google Scholar]
- Mareen, H.; Van Kets, N.; Lambert, P.; Van Wallendael, G. Fast Fallback Watermark Detection Using Perceptual Hashes. Electronics
**2021**, 10, 1155. [Google Scholar] [CrossRef] - Rajani, D.; Kumar, P.R. An optimized blind watermarking scheme based on principal component analysis in redundant discrete wavelet domain. Electronics
**2021**, 10, 1155. [Google Scholar] [CrossRef] - Zhou, X.; Ma, Y.; Zhang, Q.; Mohammed, M.A.; Damaševičius, R. A reversible watermarking system for medical color images: Balancing capacity, imperceptibility, and robustness. Electronics
**2021**, 10, 1024. [Google Scholar] [CrossRef] - Liu, J.; Rao, Y.; Huang, Y. Complex wavelet-based image watermarking with the human visual saliency model. Electronics
**2019**, 8, 1462. [Google Scholar] [CrossRef][Green Version] - Microblog. Available online: http://www.weibo.com/ (accessed on 27 April 2021).
- Zhihu. Available online: http://www.zhihu.com/ (accessed on 27 April 2021).
- Bilibili. Available online: http://www.bilibili.com/ (accessed on 27 April 2021).

**Figure 2.**A 25 × 25 QRCode and its two parts. (

**a**) The 25 × 25 QRCode; (

**b**) Excess regular area; (

**c**) Important data area.

Data Sets | 0.10 | 0.11 | 0.12 | 0.13 | 0.14 | 0.15 | 0.16 | 0.17 |
---|---|---|---|---|---|---|---|---|

Video 1080P | 45.11 | 44.42 | 43.89 | 43.41 | 42.97 | 42.43 | 41.99 | 41.57 |

Video 720P | 43.89 | 43.17 | 42.88 | 42.51 | 42.13 | 41.63 | 41.29 | 40.91 |

Data Sets | Videos 1080P | Videos 720P | |||
---|---|---|---|---|---|

Attack Types | Parameters | Proposed (%) | DQAQT (%) | Proposed (%) | DQAQT (%) |

Resizing | 0.1 | 0 | - | 72 | - |

0.15 | 0 | 4 | 0 | - | |

0.2 | 0 | 0 | 0 | 2 | |

0.3 | 0 | 0 | 0 | 0 | |

Scaling | 0.1 | 0 | - | - | - |

0.15 | 0 | - | 22 | - | |

0.4 | 0 | 0 | 0 | 0 | |

1.5 | 0 | 0 | 0 | 0 | |

2.0 | 0 | 0 | 0 | 0 | |

Aspect ratio change | 0.15 × 0.1 | 0 | - | 28 | - |

1.5 × 1.2 | 0 | 0 | 0 | 0 | |

0.1 × 2 | 0 | - | 0 | - | |

1.5 × 0.15 | 0 | - | 0 | - | |

Shielding | 25% | 0 | 0 | 0 | 0 |

36% | 0 | 11.97 | 0 | 12.47 | |

49% | 0 | 13.06 | 0 | 13.28 |

Data Sets | Videos 1080P | Videos 720P | |||
---|---|---|---|---|---|

Attack Types | Parameters | Proposed (%) | DQAQT (%) | Proposed (%) | DQAQT (%) |

Resizing and Scaling | 0.1 & 0.9 | 0 | - | 84 | - |

0.15 & 0.9 | 0 | 0.45 | 0 | - | |

0.2 & 0.9 | 0 | 0 | 0 | 0.52 | |

Aspect ratio Change and Resizing | 0.15 × 0.1 & 0.9 | 88 | - | 0 | - |

0.1 × 1.5 & 1.5 | 0 | - | 12 | - | |

1.5 × 0.15 & 0.9 | 0 | - | 24 | - | |

Resizing and Shielding | 0.1 & 10% | 0 | - | 84 | - |

0.15 & 10% | 0 | 1.11 | 0 | - | |

0.2 & 10% | 0 | - | 0 | 0.88 | |

Scaling and Shielding | 0.7 & 36% | 0 | 12.54 | 0 | 13.16 |

0.6 & 36% | 0 | 12.67 | 0 | 13.45 | |

0.5 & 36% | 0 | 13.27 | 0 | 12.86 |

Algorithms | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 |
---|---|---|---|---|---|---|---|---|---|---|

Proposed | 42.2 | 42.5 | 42.5 | 42.8 | 41.9 | 42.0 | 42.4 | 42.1 | 42.3 | 42.0 |

DQAQT | 41.7 | 41.8 | 41.9 | 41.8 | 41.8 | 41.8 | 41.8 | 41.7 | 41.7 | 41.7 |

**Table 5.**The comparisons of robustness against network media propagation attacks in realistic scenarios.

Websites | Download Resolution | Proposed (%) | DQAQT (%) |
---|---|---|---|

MicroBlog | 1080P | 0.00 | 0.00 |

720P | 0.00 | 1.33 | |

480P | 0.00 | 2.28 | |

360P | 0.00 | 12.50 | |

Zhihu | 720P | 0.00 | 1.02 |

480P | 0.00 | 1.02 | |

Bilibili | 1080P | 0.00 | 0.00 |

720P | 0.00 | 0.00 | |

480P | 0.00 | 0.86 | |

360P | 0.00 | 21.17 |

Data Sets | Proposed(s) | DQAQT(s) |
---|---|---|

Videos 1080P | 0.053 | 0.677 |

Videos 720P | 0.024 | 0.308 |

Data Sets | Proposed (s) | DQAQT (s) |
---|---|---|

Videos 1080P | 3.401 | 82.794 |

Videos 720P | 1.525 | 35.877 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lv, Z.; Huang, Y.; Guan, H.; Liu, J.; Zhang, S.; Zheng, Y.
Adaptive Video Watermarking against Scaling Attacks Based on Quantization Index Modulation. *Electronics* **2021**, *10*, 1655.
https://doi.org/10.3390/electronics10141655

**AMA Style**

Lv Z, Huang Y, Guan H, Liu J, Zhang S, Zheng Y.
Adaptive Video Watermarking against Scaling Attacks Based on Quantization Index Modulation. *Electronics*. 2021; 10(14):1655.
https://doi.org/10.3390/electronics10141655

**Chicago/Turabian Style**

Lv, Zhongze, Ying Huang, Hu Guan, Jie Liu, Shuwu Zhang, and Yang Zheng.
2021. "Adaptive Video Watermarking against Scaling Attacks Based on Quantization Index Modulation" *Electronics* 10, no. 14: 1655.
https://doi.org/10.3390/electronics10141655