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Abstract: This paper proposes a robust multi-frame video super-resolution (SR) scheme to obtain
high SR performance under large upscaling factors. Although the reference low-resolution frames
can provide complementary information for the high-resolution frame, an effective regularizer is
required to rectify the unreliable information from the reference frames. As the high-frequency
information is mostly contained in the image gradient field, we propose to learn the gradient-
mapping function between the high-resolution (HR) and the low-resolution (LR) image to regularize
the fusion of multiple frames. In contrast to the existing spatial-domain networks, we train a deep
gradient-mapping network to learn the horizontal and vertical gradients. We found that adding the
low-frequency information (mainly from the LR image) to the gradient-learning network can boost
the performance of the network. A forward and backward motion field prior is used to regularize
the estimation of the motion flow between frames. For robust SR reconstruction, a weighting scheme
is proposed to exclude the outlier data. Visual and quantitative evaluations on benchmark datasets
demonstrate that our method is superior to many state-of-the-art methods and can recover better
details with less artifacts.

Keywords: convolutional neural network; gradient prior; robust reconstruction; video super-
resolution

1. Introduction

Image/video super-resolution (SR) plays an important role in various applications
such as computer vision, image recognition and high-definition display devices. The
demand for high-performance SR algorithms is growing as high and ultra-high-definition
displays have become prevalent. In general, video super-resolution can be divided into
two categories: single image-based methods and multi-frame-based methods.

Bilinear, bicubic and spline interpolation are usually used for video super-resolution
due to their low complexity. For these methods, fixed interpolation kernels are used to
estimate the unknown pixels on the HR grid. However, the fixed kernel strategy will
produce visually annoying artifacts such as jaggy edges, ringing effects and blurred details
in the output image. Advanced interpolation methods [1–5] which take image structure
into consideration can produce less jaggy edges. However, these methods still tend to
produce blurry images, especially for large upscaling ratios. Learning-based methods try to
reconstruct the high-resolution images via the mapping between the LR and HR images [6–9].
Timofte et al. [7,10] propose to replace the LR patches by the most similar dictionary atoms
with pre-computed embedding matrix. Self-example approaches [11] exploit the fact
that patches of similar pattern tend to recur in the image itself. More recently, deep
neural networks have shown its potential to learn hierarchical representations of the high-
dimensional data. Convolutional neural network (CNN)-based methods have achieved
impressive results [8,12–19] in image/video SR.
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Multi-frame-based super-resolution methods [20–33] use multiple images that de-
scribe the same scene to generate one HR image. They assume that different frames contain
complementary information of the high-resolution frame. Thus, the key points of multiple
frame SR include registration and fusion of the frames. Typical multi-frame SR meth-
ods [20,21,25,32] align the frames in sub-pixel level and reconstruct the HR frame based
on the observation model. These methods perform well if the motions between the LR
frames are small and global. However, it is difficult for them to handle large scale factors
and large motions. Learning-based multi-frame SR methods learn a mapping directly from
low-resolution frames to high-resolution frames [27–29]. These methods use the optical
flow estimation to warp the frames according to the current frame and learn multi-frames
fusion progress from the external database. Liao et al. [27] propose to handle the large and
complex motion problems in multi-frame SR by deep-draft ensemble learning based on
convolutional neural networks. More advanced methods learn the sub-pixel registration
and the fusion function simultaneously via the deep neural networks [26,30]. However,
the complex motion makes the learning of multiple fusion difficult and important image
information may be eliminated by these methods.

Because of the ill-posedness of SR problems, prior models such as Total variation [34],
sparse representation [35–38], steering kernel regression [39], Markov random field (MRF) [40],
Non-local similarity [41–43] are used to regularize the estimated image. Sophisticated priors
such as gradient profile prior [44–46] are proposed for image super-resolution. However,
modeling the gradient field via simple models ignores the local geometric structures of
the gradients.

In this paper, a robust multi-frame video super-resolution scheme is proposed to
deal with large upscaling factors. Because of the ill-posedness of SR problem, a gradient
prior learning network is trained to regularize the reconstruction of the HR image. The
gradient network takes the upsampled LR image as inputs and learns the gradient prior
knowledge from the external dataset. Then the learned gradient prior participates in the
multi-frame fusion to predict the final HR image. Instead of directly learning the mapping
from the LR gradients to HR gradients, we add the low-frequency information to the
input of the network to stabilize the gradient learning and boost the performance. The HR
reconstruction branch takes the LR frames as inputs, which provide the complementary
information for the high-resolution frame. In the fusion stage, the learned gradients
prior regularizes the reconstructed HR image to be visually nature. Experimental results
demonstrate that our method is superior to many state-of-the-art single and multi-frame
super-resolution methods in large upscaling factor, especially the edge and texture regions.

The contributions of the proposed scheme include:
(1) We propose a novel deep gradient-mapping network for video SR problems.

The network learns the gradient prior from the external datasets and regularize the SR
reconstructed image. The effectiveness of this prior is analyzed.

(2) To obtain the high-resolution motion fields, we propose to estimate the motions in
the low-resolution scale and then interpolate them to the high resolution. The motion field
is regularized by a forward-backward motion field prior, which brings in more accurate
estimation around the motion boundary.

(3) A weighting scheme is proposed to exclude the outlier data for robust SR recon-
struction.

The rest of this paper is organized as follows. Section 2 gives the background of this
paper. Section 3 introduces the proposed gradient prior learning network. Section 4 studies
the estimation of the motion field and the robust SR reconstruction using the reference LR
frames. Experimental results are reported in Section 5 and Section 6 concludes the paper.

2. Background
2.1. Framework of Multiple Frames SR Reconstruction

As shown in Figure 1, the degradation of video frames is usually caused by the atmo-
spheric turbulence, inappropriate camera settings, downscaling determined by the output
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resolution and noise produced by the sensor. Based on some studies on camera sensor
modeling, the commonly used video frames observation model describes the relationship
between an HR frame and a sequence of LR frames: the LR frames are acquired from the
corresponding HR frame through motion, blurring and down-sampling. In this process,
the LR frames may be disturbed by noise. Thus, the video frames observation model can
be formulated as follows:

yk = D ·H · F(uk, vk) · x + nk, k = −M, ...0, ..., M (1)

where yk represents the k-th Low-resolution (LR) frame of size PQ × 1. x denotes the
vectorized HR frame of size s2PQ× 1, where s is the down-sampling factor. 2M + 1 is
the number of LR frames. F(uk, vk) represents the geometric warping matrix between the
HR frame and the k-th LR frame, where uk and vk represents the horizontal and vertical
displacement fields, respectively. H is the blurring matrix of size s2PQ × s2PQ and D
denotes the down-sampling matrix of size PQ× s2PQ. nk represents the additive noise of
the k-th LR frame with the size of PQ× 1. Here, we define the y0 frame as the current LR
frame and the neighboring LR frames, {yk}k 6=0 are the reference frames.

Noisy LR Frames

HR Frames

Blur

Down 

Sample
Noise

Blurred HR Frames
Clean LR Frames

Registration 

and 

Reconstruction

Optical 

Flow

Estimated 

HR Frames

Noise

Variance

Image 

Prior 

Figure 1. Observation model for multi-frame video super-resolution. The SR reconstruction is the
inverse progress of video frames observation.

Assuming that the neighboring LR frames in the temporal domain describe the same
HR scene and have complementary information to each other, we intend to estimate the HR
frame using the LR frames. In this paper, we cast the multi-frame video super-resolution
as an inverse problem. Given multiple LR frames {yk}M

k=1, the original HR frame x can be
estimated via the maximum a posterior probability (MAP) estimator:

x̂ = arg max
x

M

∑
k=−M

log(Pr(yk|x)) + log(Pr(x)). (2)

where log(Pr(yk|x)) indicates the likelihood of x and log(Pr(x)) corresponds to the image
prior knowledge. As Pr(y|x) characterizes the relationship between yk and x, the noise
probability model should be established.

2.2. Gradient-Based Super-Resolution

During the image acquisition process, the LR images lose parts of its visual details
compared with the original HR images. The lost visual details are high-frequency in nature,
and is believed to be mostly contained in the image gradient field. Many approaches try to
recover the high-frequency image details by modeling and estimating the image gradients.

SR framework of the gradient-based methods is illustrated in Figure 2. The LR image
y is first upsampled to the high resolution using a simple interpolation method. This
upsampled LR image yu usually contains visual artifacts due to the loss of high-frequency
information. The lost image details such as edges and textures are mainly contained in
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image gradients. Therefore, the framework extracts the gradient field Gyu from yu and
process it by a gradient recover operation, say P(·):

G̃x = P
(
Gyu

)
(3)

where G̃x is the estimated HR gradient field. G̃x is supposed to contain more accurate
information about the image details. Finally, the HR image x̃ is reconstructed by fusing the
LR image y with the obtained HR gradient field G̃x:

x̃ = F
(
y , G̃x

)
(4)

where F (·) is the fusion operation. For the reconstruction-based SR methods, the fusion
operation F (·) is usually formulated as an MAP estimator (2).

Sun et al. [44] try to model the gradient-mapping function from the LR image to HR
image by a statistical and parametric model. As the sharp edges in the natural image are
related to the concentration of gradients perpendicular to the edge, Sun et al. [44] develop
the gradient transform to convert the LR gradients to the HR gradients. However, it is rather
difficult to model the gradients of an image with only a few parameters. Thus, the obtained
HR images are usually over-sharped or suffer from false artifacts due to the incorrect
estimation of gradients. Zhu et al. [47] propose a deformable gradient compositional model
to represent the non-singular primitives as compositions of singular ones. Then they use
the external gradient pattern information to predict the HR gradients. Although it is more
expressive than the parametric gradient prior models, performance limitations also exist,
especially in the complex detail areas.

Recently, deep neural networks showed its power in learning the representations
of high-dimensional data. The convolutional neural networks (CNN) have already been
used for many low-level vision applications such as denoising, super-resolution and de-
rain. Dong et al. [8] first develop a three-layer neural network named SRCNN to learn
the non-linear mapping between the LR image and the corresponding HR image. Later,
Kim et al. [13] propose a very deep CNN with residual architecture to achieve outstanding
SR performance, which can use broader contextual information with larger model capacity.
Another network is also designed by Kim et al. [12], which contains recursive architectures
with skip connection to boost image SR performance while only a small number of model
parameters are exploited. However, these methods seldom impose any prior constraints on
the recovered HR image. Yang et al. [48] introduce a deep edge guided recurrent residual
(DEGREE) network to progressively perform image SR by imposing properly modeled
edge priors. However, the edge priors only contain small parts of the high-frequency
information and limited performance improvements are reported.

In contrast to the existing CNN-based methods, we develop an end-to-end network
that learns the gradient recover operation P(·) and then combine it with the MAP estimator
F (·) for multiple frames SR. An overview of the framework of the proposed method is
shown in Figure 3. As illustrated, our SR framework conceptually contains the following
two branches: the gradient branch learns the gradient priors and the reconstruction branch
estimates the HR image by fusing multiple frames regularized by the learned gradient
prior knowledge.

Upscaling Gradient Field 
Mapping

SR 
Reconstruction

LR Image

Upscaled LR Image Upscaled LR 
Gradient field

HR Gradient field HR Image

Gradient 
Extraction

Figure 2. Gradient-based super-resolution framework. A HR gradient map is estimated from the
upsampled LR image and fused with the LR image to generate the final HR image.
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Figure 3. The architecture of the proposed multi-frame video SR. The framework contains two
branches: the gradient prior learning branch and the HR image reconstruction branch. The gradient
branch aims to predict the accurate gradient information while the image reconstruction branch fuse
multiple LR frames and the gradient prior information to predict the final HR image. The motion
field estimation is performed on the LR frames followed by the interpolation of the motion field to
the high resolution.

3. Deep Gradient Prior Learning Network

In this section, we will present the technical parts of our gradient-learning network in
details. In the framework, the LR image y is first upsampled by the bicubic interpolation
to the desired size yu and then extract the horizontal Gh

yu and vertical gradients Gv
yu

by convolve the image by discrete gradient operator [−1/2, 0, 1/2] and [−1/2, 0, 1/2]T ,
respectively. The gradients Gh

yu , Gv
yu and the upsampled image yu are combined to be fed

into the network. The network performs convolutions to the input data to estimate the HR
gradients G̃h

x , G̃v
x . The estimated image gradients are treated as image priors to regularize

the high-frequency information of the reconstructed HR image x̃.

3.1. Gradient-Learning Network

As stated before, the gradient branch aims to learn the mapping:[
G̃h

x G̃v
x

]
= P

([
Gh

yu Gv
yu

])
(5)

Due to the high-frequency nature of image gradients, P in Equation (5) is actually
a high-frequency to high-frequency mapping function. During image degradation, the
high-frequency components are corrupted and become more unstable compared with the
low-frequency components. Thus, existing methods almost learn the low-frequency to
high-frequency mapping for SR, instead. In this paper, we stabilize the learning process
using the upsampled image yu. In contrast to the existing works that learn the gradient-
mapping operation P(·) from the upsampled LR gradient Gyu to the HR gradient G̃x, we
propose to learn the mapping from the upsampled LR image to the HR gradient. Then
learning of HR gradients becomes: [

G̃h
x G̃v

x

]
= P(yu) (6)

Similar to [49,50], we could transpose the vertical gradients so that the vertical and
horizontal gradients can share the weights in the training process. Learning the vertical
and horizontal gradients in one network can use the correlation between the vertical and
horizontal gradients.

Residual structure exhibit excellent performance in computer vision problems from
the low-level to high-level tasks. As shown in Figure 2, gradients Gh

yu , Gv
yu and gradients

Gh
x , Gv

x are similar in values. Thus, it is efficient to let the network learn the difference only.
Then we have: [

G̃h
x
(
G̃v

x
)T
]
= P(yu) +

[
Gh

yu

(
Gv

yu

)T
]

(7)
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The gradient-learning network can be expressed as:

H1 = WH1 ∗ yu + BH1 ; (8)

Hi = ReLU
(
WHi ∗ Hi−1 + BHi

)
, 1 < i < M; (9)

[
G̃h

x
(
G̃v

x
)T
]
= (WHM ∗ HM−1 + BHM ) +

[
Gh

yu

(
Gv

yu

)T
]

(10)

where Hi is the output of the i th layer, WHi and BHi is the filter and the bias. ReLU denotes
the rectified linear unit and M denotes the final layer number. In other words, the proposed
network maps the low-frequency features to the high-frequency residual features.

The proposed network has 20 convolutional layers. All the convolutional layers except
the first and the last layers are followed by a ReLU layer. We simply pad zeros around the
boundaries before applying convolution to keep the size of all feature maps the same as
the input of each level. We add a batch norm (BN) layer after the ReLU layer. We initialize
the network using the method of He et al. [51].

3.2. Training Loss Function

The final layer of the end-to-end gradient-learning network is the loss layer. Given
a set of HR images {xi} and the corresponding LR images {yi}, we upsample the LR
images {yi} by bicubic interpolation to obtain {yu

i } and extract the horizontal and vertical
gradients {Gh

yu
i
}, {Gv

yu
i
} from {yu

i }. The HR gradients {Gh
xi
}, {Gv

xi
} are extracted from {xi}.

Usually, the Mean Square Error (MSE) is adopted for training the network to guarantee
high PSNR (Peak Signal to Noise Ratio) of the output HR image. As generally known,
natural image gradient exhibits a heavy-tailed distribution. Thus, statistical gradient priors
such as total variation (TV) adopt the Laplacian distribution and the L1 norm in the regular
term. Motivated by this, the L1 norm is adopted for training the gradients to impose
sparsity on gradients. The training process is achieved by minimizing the following total
loss function:

Loss
(

yu, Gh
yu , Gv

yu , Gh
x , Gv

x ; Θ
)
=

1
T

T

∑
i=1
{

∥∥∥P(yu
i , Gh

yu
i
; Θ
)
− Gh

xi

∥∥∥1

1
+
∥∥∥P(yu

i , Gv
yu

i
; Θ
)
− Gv

xi

∥∥∥1

1

} (11)

where Θ denotes all the parameters of the network. P(·) denotes the gradient predictor.

3.3. Further Study of the Gradient Prior Learning Network

As shown above, one of the key points of the proposed multi-frame SR scheme is the
gradient prediction branch. It regularizes the recovered high-frequency information to be
closer to natural images. As gradients reveals the local variation of the image intensity,
we choose to learn the mapping function from the upsampled LR image to the gradient
residual of the HR image in this paper. We intend to add the reliable low-frequency
information from the LR image to stabilize the learning. In this section, some experiments
are conducted to support our design of this scheme.

The straight-forward strategy mentioned above is to learn the mapping function
between the upsampled LR gradient and the HR gradient residual:

G̃x = U
(
Gyu

)
+ Gyu (12)

As shown in Figure 4, we respectively show the above-mentioned networks which
are known as Scheme#1 and Scheme#2. Except for the different network input data, the
network structure and the output of the networks are identical. To evaluate the learning
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ability of the networks, we define the gradient mean square error (GMSE) as follows to
measure the horizontal and vertical gradient prediction accuracy:

GMSEh =
1

MN

{
‖G̃h −Gh‖2

2

}
(13)

GMSEv =
1

MN

{
‖G̃v −Gv‖2

2

}
(14)

where G̃ and G denotes the predicted gradients and the groundtruth. We test the models
on four commonly used test dataset and the average GMSE results are shown in Table 1.
We can see that learning the gradient prior directly from the low-resolution gradients
is hard for the network as only the high-frequency information is given to the network.
On the contrary, learning from the intensity image itself is simpler as it can provide the
low-frequency information as well.

...1

2

3

+

... +

... +

Figure 4. Analysis of two gradient-learning network. The triangle labels indicate different type of
network. We use the same plain network stacked by 18 convolution+BN+ReLU layers to respectively
learn different mapping function to predict the gradient image.

Table 1. Average GMSE results for scale x3 on benchmark datasets Set5, Set14, BSD100 and Gen-
eral100.

Dataset Scale Bicubic Scheme#1 Scheme#2

Set5 x3 47.07 21.99 20.04
Set14 x3 75.15 55.82 54.41

BSD100 x3 90.91 73.66 71.85
General100 x3 59.54 40.16 38.35

4. Robust Super-Resolution Reconstruction from Multiple Frames

In the literature, most works modeled nk as signal independent Gaussian noise [20,32].
The Gaussian model converges to the mean estimation and is not robust to data outliers
caused by the brightness inconsistency and occlusions. In this paper, we model the data er-
rors from the reference frames as Laplacian instead. Therefore, the first term in Equation (2)
can be formulated as the L1 norm which converges to the median estimation [20]:

log(Pr(yk|x)) =
√

2
σk
‖yk −DHF(uk, vk)x‖1

1 (15)

where σk denotes the noise / error variance. Thus, the optimization problem (2) can be
generally reformulated as:

arg min
x

M

∑
k=−M

√
2

σk
‖yk −DHF(uk, vk)x‖1

1 + λ · Υ(x), (16)

where Υ(x) represents the regularity term and λ is the regularization parameter. In past
decades, many image prior models have been proposed. The most prominent approach
in this line is total variation (TV) regularization [34], which well describes the piecewise
smooth structures in images. From a statistical point of view, TV is actually assuming
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a zero mean Laplacian distribution as the statistical model for the image gradient at all
pixel locations.

However, using zero value as a mean prediction for gradients of all the pixels is
misleading as natural images are typically non-stationary, especially at the edge and
texture regions. Although the original HR image x is not available, we can obtain a good
estimation of the gradient mean from the LR frames using the learned gradient-mapping
network. Generally speaking, we want the gradient field of the reconstructed HR image is
close to G̃. Thus, Υ(x) here can be formulated as:

Υ(x) = ‖∇x−P(yu
0 )‖p = ∑

i

∣∣∇ix− G̃i
∣∣p (17)

Here, ∇i denotes the discrete gradient operator at pixel location i. G̃i is the expectation of
the gradient at location i. In this paper, we assume that the gradients follow the non-zero
mean Laplacian distribution and set p = 1.

4.1. Displacement Estimation for the Warping Operator

One of the key problems of multi-frame video super-resolution is to construct the
warping matrix F(uk, vk). To obtain F(uk, vk), we need to align the reference LR frames
{yk}k 6=0 to the current HR frame x. In the literature, various motion estimation/registration
techniques have been proposed. For the multi-frame video SR problem, the sub-pixel
motion should be accurately estimated. Optical flow estimation concerning the dense and
sub-pixel matching between frames has been studied in recent decades. However, different
from the standard optical flow estimation in the same scale, we intend to estimate the
motion between the LR scale and the HR scale. We can estimate the displacement between
the LR and the HR image by minimizing an energy function defined as:

min
uk ,vk
‖yk([aL, bL])−DHx([aH + uk, bH + vk])‖p + β · TV(uk, vk), (18)

where [aL, bL] denotes the horizontal and vertical coordinate of the LR frame and [aH, bH]
denotes the coordinate of the HR frame. λ is a regularization parameter. The fidelity
term measures the matching error between x and yk. As the above optical flow estimation
between different scales is an ill-posed problem, prior knowledge of the displacement field
should be imposed to regularize the flow field. Assuming the local motion consistency, the
widely used TV model is used here to penalize the deviation of the flow field in the two
directions while preserving the motion discontinuities. To reduce the computational cost,
we here adopt a simple approximation using the interpolated flow field on the LR frames:

min
uk ,vk
‖yk([a, b])− y0([a + uk, b + vk])‖p + β · TV(uk, vk) (19)

To better deal with the outliers and occlusions, we use the L1 norm in this paper and
set p = 1. Let [u f

k , v f
k ] denotes the forward flow from yk to y0, [ub

k , vb
k] denotes the backward

flow from y0 to yk. We impose the prior knowledge that [u f
k , v f

k ] and [ub
k, vb

k] should be the
opposite. Then the objective function can be formulated as:

min
u f

k ,v f
k

‖yk([a, b])− y0

(
[a + u f

k , b + v f
k ]
)
‖1+

β · TV(u f
k , v f

k ) + ‖y0([a, b])− yk

(
[a + ub

k, b + vb
k]
)
‖1

(20)

In practice, we compute the forward and backward flow respectively and then fuse
the forward and backward flow to obtain the final flow estimation:

[u f
k , v f

k ] =
(

w f · [u f
k , v f

k ]−wb · [ub
k, vb

k]
)

/(w f + wb) (21)
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where w f and wb are weight matrix with weights defined as:

w f = e−div([u f
k ,v f

k ])
2/h, wb = e−div(−[ub

k ,vb
k ])

2/h (22)

div(·) denotes the divergence of the optical field, which measures the occlusion for each
pixel. Finally, the high-resolution optical field can be obtained by interpolating the low-
resolution optical field via simple interpolation methods (e.g., bicubic). Figure 5 shows the
estimated optical flow fields by different schemes. We can see that the output flow field by
our method is better estimated especially around the motion boundary.
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Figure 5. Optical flow estimation results (color coded) of video “city”. From left to right: reference
frame; Forward flow field; backward flow field and the flow field generated by the proposed method.
Please enlarge the figure for better comparison.

Once we obtain the optical flow fields, the warping matrix can be constructed. In this
paper, we use bilinear interpolation kernel to estimate the sub-pixel values of the reference
HR frame x. To be concrete, the warping matrix F

(
u f

k , v f
k

)
is a sparse matrix which can be

formulated as:

F
(

u f
k , v f

k

)
=

{
ω

j
i , if xj is one of the four neighbors of xi

0, otherwise
(23)

Here j denotes the integer location of x and i is the sub-pixel location computed from
the flow field

(
u f

k , v f
k

)
. The kernel weight ω

j
i is proportional to the distance between i

and j.

4.2. Robust SR Reconstruction

Given the estimated HR gradient field G̃, the warping matrix F, we study how to
reconstruct the HR image from the multiple LR frames in this section. The HR frame can
be estimated by solving the following Bayesian-based optimization function:

arg min
x0,σ0,σk

1
2σ2

0
‖y0 −DHx0‖2

2 + λ ∑
i

∣∣∇ix0 − G̃i
∣∣1+

M

∑
k=−M,k 6=0

√
2

σk
‖Wk(yk −DHFkx0)‖1

1 + N
M

∑
k=−M

logσk.
(24)

Here we assume the noise on the current frame is Gaussian noise. As described
previously, the errors caused by noise, outliers and occlusions of the reference frame is
modeled as Laplacian noise. We simultaneously estimate the HR frame and the noise/error
variance in an overall framework. Although the L1 norm can be robust to outliers to
some extent, we add a weight matrix Wk in the L1 norm to further exclude the unreliable
reference frame data in the reconstruction. Wk is defined as:

Wk = e−([u
f
k ,v f

k ]+[ub
k ,vb

k ])
2/h · e−div([u f

k ,v f
k ])

2/h (25)
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Figure 6 illustrate the effectiveness of the proposed weighting strategy. It can be seen
that adding Wk in the framework can occlude the contribution of the outlier data in the
reconstructed HR image.

Figure 6. Effectiveness of the weighting strategy for occluding the unreliable reference frame data.
(Left): without the weighting strategy. (Right): with the weighting strategy.

To solve the optimization function (24), we use Generalized Charbonnier (GC) function
(x2 + ε2)α with α = 0.55 for approximation to replace the L1 norm here. Then the objective
function can be efficiently solved by alternatively updating the following function via the
gradient descent algorithm:

min
x0

1
2σ2

0
‖y0 −DHx0‖2

2 + λ ∑
i

((
∇ix0 − G̃i

)2
+ ε2

)0.55

+
M

∑
k=−M,k 6=0

√
2

σk

(
(Wk(yk −DHFkx0))

2 + ε2
)0.55

.
(26)

where
(
(Wk(yk −DHFkx0))

2 + ε2)0.55 is pixel-wise now and the noise level:

σk =
√
‖yk −DHFkx0‖2

2/N (27)

5. Experimental Results

In this section, experiments are conducted to evaluate the proposed method. Color
RGB frames are converted to YCbCr color space and the proposed method is applied only
on the luminance component. Bicubic interpolation is used for the other components. Both
visual quality and quantitative quality comparisons are used for evaluation.

5.1. Experimental Settings

In our experiments, we focus on upscaling the input LR frames by factor of 4, which
is usually the most challenging case in super-resolution. Two commonly used degradation
models are evaluated in this paper: (1) The LR frames are generated by first applying a
Gaussian kernel with standard deviation 1.4 to the original image and then down-sampling;
(2) The LR frames are generated by down-sampling using the Matlab function imresize with
bicubic kernel. In our implementation, the frame number M is set as 15. In other words,
we fuse 30 reference LR frames with the current LR frame to reconstruct one HR frame. For
the estimation of the optical flow, β is set to 0.3 and h is set as 0.18. λ is set to 0.0002. We
set the maximum outer iteration number as 8 and the maximum inner iteration number
as 15. ε is set as 0.001. In SR reconstruction process, the step size of the gradient descent
algorithm is set as 0.03 to achieve good results.

5.2. Training Details

We use 91 images from Yang et al. [6] and 200 images from the training set of Berkeley
Segmentation Dataset as our training data. The validation data are 19 images from Set5 and
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Set14. For the network training, the data augmentation is first conducted on the training
dataset with (1) flipping images horizontally and vertically (2) randomly rotate image by
90, 180, and 270 rotations. Thus, eight different versions are obtained for every image.
Training images are split into patches of size 48× 48. We use the ADAM optimizer to train
our model and set β1 = 0.9, β2 = 0.999, ε = 10−8. The training mini-batch size is set to 32.
The learning rate is initialized as 10−4 and decreased by a factor of 10 for every 10 epochs.
The proposed network is trained with the MatConvNet package on a PC with NVIDIA
GTX1080Ti GPU, 64GB memory and Intel Core i7 CPU.

5.3. Comparisons with the State-of-the-Art Methods

In this section, both quantitative and qualitative results are given. We test our method
on seven videos: calendar (720× 576), city (704× 576), foliage (720× 480), walk (720× 480),
jvc009001 (960× 540), jvc004001 (960× 540) and AMVTG004 (960× 540), each of which
contains 31 frames. We compare our method with several recent image and video SR
methods: SRCNN [8], VDSR [13], Bayesian [23], Draft [27] and LTD [29] on the seven test
sequences, which include both deep learning-based methods and non-deep learning-based
methods. For SRCNN [8], VDSR [13] and Draft [27], we use the models provided by the
authors to generate the corresponding results, respectively. For Bayesian [23] and LTD [29],
the source code is not available. The results of calendar, city, foliage and walk are downloaded
from the authors’ websites. We use the re-implementation provided by Ma et al. [52] to
generate the rest of the test videos for Bayesian [23]. Only the center frames (# 15) of each
video sequence are reported in the paper. For fair comparison, we crop the image boundary
pixels before evaluation.

In Figures 7–10, visual results are shown to compare our SR method with other video
SR methods. Details of the output HR images are given for better illustration. We can see
that our method is able to produce more visually pleasant texture regions and with less
artifacts around the edge regions. In Figure 7, only our method reconstructs the letters
and digits clearly and with less artifacts. In Figure 9, most of the textures are smoothed
out by the compared methods. In contrast, our method can reconstruct more textures.
Although the outputs of the Bayesian [23] method look sharper than our method, visual
artifacts of Bayesian [23] are severe. In Figure 10, better edge regions and texture regions
are reconstructed by the proposed method compared with the state-of-the-art single image
SR methods. The most challenging video city is shown in Figure 8. We can see that all the
compared methods fail to recover the details of the building while our method can recover
most of the textures.

To evaluate the quantitative quality, PSNR and SSIM are adopted here. PSNR and
SSIM [53] results on the seven tested videos are respectively reported in Tables 2 and 3,
with the best results highlighted in bold. B and G refer to the bicubic kernel and Gaussian
+ downsample kernel, respectively. It can be seen that the proposed method achieves
the highest PSNR and SSIM among the compared SR algorithms over almost all the
benchmark videos. Our SR network significantly outperforms the state-of-the-art methods
Bayesian [23], Draft [27] and LTD [29], especially on the video city. Specifically, for video
calendar, the proposed method obtains 1.96 dB, 1.08 dB, 0.80 dB, 0.27 dB, 0.28 dB and 0.41 dB
PSNR gains over bicubic, SRCNN [8], VDSR [13], Bayesian [23], Draft [27] and LTD [29].
For video city, the proposed method obtains 1.72 dB, 1.31 dB, 1.11 dB, 1.36 dB, 0.47 dB and
0.53 dB PSNR gains over bicubic, SRCNN [8], VDSR [13], Bayesian [23], Draft [27] and
LTD [29]. For video jvc009001, the proposed method obtains 2.95 dB, 1.63 dB and 1.21 dB
PSNR gains over bicubic, SRCNN [8], VDSR [13].
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Super-resolution results of “calendar” with scaling factor of x4. (a) Bicubic, (b) SRCNN [8],
(c) VDSR [13], (d) Bayesian [23], (e) Draft [27], (f) LTD [29], (g) proposed method and (h) the
groundtruth. Please enlarge the figure for better comparison.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. Super-resolution results of “city” with scaling factor of x4. (a) Bicubic, (b) SRCNN [8],
(c) VDSR [13], (d) Bayesian [23], (e) Draft [27], (f) LTD [29], (g) proposed method and (h) the
groundtruth. Please enlarge the figure for better comparison.

5.4. Comparisons on Running Time

In this section, the computation time of the SR algorithms are evaluated. The experi-
ments are conducted with Matlab R2016b on a PC with Intel Core i7 3.6 GHz CPU, 16 G
memory and a GTX 760Ti GPU. Our scheme mainly includes two parts: (1) motion field
estimation; (2) HR image reconstruction. In Table 4, the running times of the compared SR
methods on video calendar with scaling factor of 4 are listed. Please note that VDSR [13]
and the gradient network of our method is running on the GPU. The rest of the compared
methods and reconstruction branch of the proposed method is running on the CPU. As il-
lustrated, the running time of the proposed method is relatively lower compared with other
multi-frame video super-resolution methods. The proposed method can be implemented
in C code to further accelerate its speed.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. Super-resolution results of “walk” with scaling factor of x4. (a) Bicubic, (b) SRCNN [8],
(c) VDSR [13], (d) Bayesian [23], (e) Draft [27], (f) LTD [29], (g) proposed method and (h) the
groundtruth. Please enlarge the figure for better comparison.

5.5. Ablation Study

The proposed SR scheme (24) in Section 4.2 contains components including learned
gradient prior G̃i and robustness weights Wk. To verify the effectiveness of the two
components, we compare the proposed scheme with its variants on the 7 test videos. The
comparison results are listed in Table 5. Base refers to our full baseline. Base-1 refers to
Base without G̃i. Base-2 refers Base without Wk. We can see that the full baseline achieves
the best SR performance.
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(a1) (b1)

(c1) (d1)

(a2) (b2)

(c2) (d2)

(a3) (b3)

(c3) (d3)

Figure 10. More super-resolution results with scaling factor of x4. (a) Bicubic, (b) VDSR [13],
(c) proposed method and (d) the groundtruth. Please enlarge the figure for better comparison.
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Table 2. Average PSNR for scale x4 on benchmark videos calendar, city, walk, foliage, jvc009001,
jvc004001 and AMVTG004.

Data Bicubic SRCNN [8] VDSR [13] Draft [27] LTD [29] Proposed Bayesian [23] Proposed
B B B B B B G G

calendar 20.55 21.43 21.71 22.23 22.10 22.51 24.08 24.35
city 24.57 24.98 25.18 25.82 25.76 26.29 27.46 28.82

walk 26.19 27.75 28.14 26.79 28.39 28.50 27.80 28.38
foliage 23.40 24.14 24.35 24.94 24.97 25.49 26.13 26.14

jvc009001 25.42 26.74 27.16 – – 28.37 – 29.34
jvc004001 26.19 28.20 28.94 – – 29.91 – 30.88

AMVTG004 23.57 24.65 25.15 – – 25.52 – 25.35

Table 3. Average SSIM for scale x4 on benchmark videos calendar, city, walk, foliage, jvc009001,
jvc004001 and AMVTG004.

Data Bicubic SRCNN [8] VDSR [13] Draft [27] LTD [29] Proposed Bayesian [23] Proposed
B B B B B B G G

calendar 0.568 0.647 0.677 0.710 0.702 0.737 0.824 0.833
city 0.573 0.615 0.638 0.697 0.694 0.735 0.811 0.844

walk 0.796 0.842 0.856 0.799 0.857 0.859 0.855 0.864
foliage 0.563 0.630 0.643 0.735 0.696 0.734 0.792 0.776

jvc009001 0.754 0.806 0.828 – – 0.867 – 0.900
jvc004001 0.884 0.919 0.936 – – 0.946 – 0.959

AMVTG004 0.557 0.621 0.650 – – 0.721 – 0.734

Table 4. Average Running time (in seconds) for scale x4 on benchmark video (1 frame) calendar.

Scale SRCNN [8] VDSR [13] Bayesian [23] Draft [27] LTD [29] Proposed

x4 12.32 1.5 (GPU) 633.91 2367.71 – 163.75

Table 5. The effectiveness of different components. The PSNR values are reported.

Data Base-1 Base-2 Base

calendar 22.39 22.42 22.51
city 26.18 25.77 26.29

walk 27.94 25.96 28.50
foliage 25.35 22.56 25.49

jvc009001 28.04 28.63 28.37
jvc004001 29.23 29.98 29.91

AMVTG004 25.11 25.50 25.52

6. Conclusions

This paper presents a robust multi-frame video super-resolution scheme. A deep
gradient-mapping network is trained to learn the horizontal and vertical gradients from
the external dataset. Then the learned gradients are used to assist the reconstruction of the
HR image. Instead of directly learning the mapping from the LR gradients to HR gradients,
we add the low-frequency information to the input of the network to stabilize the gradient
learning and boost the performance. The HR reconstruction branch takes the LR frames
as input, which provide the complementary information for the high-resolution frame.
In the fusion stage, the learned gradient field regularizes the reconstructed HR image to
be close to nature image. Experimental results show that our method outperforms many
state-of-the-art methods to a large margin on many benchmark datasets. For the future
work, apart from the current frame, we could also use the reference frames to learn the HR
gradients as the reference frames contain complementary information to the current frame.
Furthermore, deep learning-based optical flow algorithms can be considered to better deal
with the occlusion and the fast-moving scenes, which our work cannot handle very well.
The code is available at https://github.com/KevinLuckyPKU/VSR.

https://github.com/KevinLuckyPKU/VSR
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