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Abstract: Emerging applications in fields such as extended reality require both a high throughput
and low latency. The millimeter-wave (mmWave) spectrum is considered because of the potential
in the large available bandwidth. The present work studies mmWave Wi-Fi physical layer latency
management mechanisms, a key factor in providing low-latency communications for time-critical
applications. We calculate physical layer latency in an ideal scenario and simulate it using a tailor-
made simulation framework, based on the IEEE 802.11ad standard. Assessing data reception quality
over a noisy channel yielded latency’s dependency on transmission parameters, channel noise, and
digital baseband tuning. Latency in function of the modulation and coding scheme was found to span
0.28–2.71 ms in the ideal scenario, whereas simulation results also revealed its tight bond with the
demapping algorithm and the number of low-density parity-check decoder iterations. The findings
yielded tuning parameter combinations for reaching Pareto optimality either by constraining the bit
error rate and optimizing latency or the other way around. Our assessment shows that trade-offs can
and have to be made to provide sufficiently reliable low-latency communication. In good channel
conditions, one may benefit from both the very high throughput and low latency; yet, in more adverse
situations, lower modulation orders and additional coding overhead are a necessity.

Keywords: physical layer; latency; millimeter-wave; Wi-Fi; WiGig; IEEE 802.11ad; time-critical
applications; Pareto optimality

1. Introduction

The number of connected devices is rising with a 10% compound annual growth rate
(CAGR) [1], causing ever higher interference levels in the already saturated sub-6 GHz
wireless spectrum. Leveraging multipath signal components and spatial diversity increases
communication reliability; however, a large deal of the interference can be avoided by
exploiting the 30–300 GHz millimeter-wave (mmWave) spectrum. The 270 GHz wide
mmWave spectrum also allows wireless waveforms to occupy larger bandwidths. For ex-
ample, the IEEE 802.11ad standard (WiGig), situated around the 60 GHz central frequency,
wields 1.76 GHz wide channels [2]. In comparison, the 5 GHz IEEE 802.11ac (Wi-Fi 5)
channel bandwidth is only 160 MHz [3]. Consequently, WiGig achieves data rates surpass-
ing 8 Gbps at its highest modulation and coding scheme (MCS) setting—an enviable feat
that makes mmWave Wi-Fi a perfect fit for data-hungry applications such as interactive
video streaming.

1.1. The Millimeter-Wave Spectrum for Time-Critical Applications

Emerging time-critical applications in entertainment, the automotive sector, Industry
4.0 (i4.0), and healthcare require low communication latency, summarized in Table 1. Two
types of latency are addressed, depending on the use case: end-to-end (E2E) latency,
the communication latency between the application layers of two devices and round-trip
time (RTT), the E2E delay with the addition of a response.
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Table 1. Use cases imposing strict latency constraints.

Industry Application Max. Latency (ms) Latency Type Ref.

XR
VR entertainment 20 RTT and E2E [4,5]
Professional AR/MR
usage 10 RTT and E2E [6,7]

V2X, UVs Platooning 25 RTT [6,8,9]
and Remote control 10 E2E [6–9]

drones Cooperative
driving/flight 10 RTT [6–9]

i4.0
Remote control and
monitoring 50 E2E [10]

Cooperative robots 1 RTT [10]

Comprised of interactive and immersive applications, extended reality (XR) requires a
large throughput. Rendering scenery in life-like detail, and depending on external factors
such as video resolution and compression, the requirements range from tens of Mbps [5]
to several Gbps [11,12]. While XR devices can compensate low data rates with elastic
services [13], having a human in the loop means they have to always comply with a
certain latency constraint. The latter ranges roughly from 100 to 1 ms, depending on the
user mobility [14,15], XR device [16], and physiological parameters [17]. However, most
of the XR applications have either got a 20- or 10 ms latency constraint. Two examples
are virtual reality (VR) entertainment and telesurgery using augmented reality (AR) or
mixed reality (MR).

Following the growing amount of real-time data sharing fuelled by the pursuit for
the widespread edge- and fog computing adoption, mmWave frequencies are increasingly
being considered by other emerging applications. Among them are vehicle-to-everything
(V2X), unmanned vehicle (UV) and drone communications. Their further dissection yields
specific allowed latency regions, for instance, in platooning, remote control, cooperative
driving, and collective information sharing scenarios as shown in Table 1.

The same applies to i4.0 where, for example, numerous collaborating robots on a
factory floor can leverage highly directive mmWave data links to avoid interference. Digital
twins and real-time control, on the other hand, are examples of applications requiring
a high throughput. Whether XR, V2X, or i4.0, all the above-mentioned applications can
benefit from mmWave communication systems, given they provide low-latency operation.

1.2. Related Work on Latency Reduction

WiGig’s contribution to latency has already been debated in several other works
in the past. For example, in mapping the E2E latency between the application layers
of two devices, the authors of [18] established that 10–15 ms time delays are typically
encountered in indoor scenarios with a direct line-of-sight between the two communicating
devices. The results obtained using the ns-3 network simulator are roughly similar to the
experimental findings in [19–22]. All of these studies elaborate on the appropriateness
of WiGig for serving XR applications, receiving high-resolution video streams over the
network. Their approach to latency reduction includes combining WiGig with sub-6 GHz
Wi-Fi [22], dynamically tuning the video encoder [20], synchronising data transmission
with application-specific events [21], and leveraging user pose information for quicker
beam- and access point (AP) switching [19]. As a result of these latency mitigation strategies,
the range of expected latency values of individual video frames gets extended to 5–50 ms.
Regardless of how successful such top-down approaches are in latency reduction, they are
all limited by the underlying network layers. As demonstrated in [23], even sub-10 ms
session transfer time delays in the MAC layer generate up to two orders of magnitude
higher delays in the transport layer. Hence, optimizing the lower network layers is crucial
both for reducing overall latency and understanding the recorded time delays, when
looking from the top down.
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The above-mentioned AP hand-offs and session transfers between WiGig and Wi-Fi
are one of the more commonly-optimized IEEE 802.11 MAC layer mechanisms, influencing
transmission time delays. Others include augmenting the automatic repeat request (ARQ)
scheme [24], leveraging aggregation of frames and of the already aggregated data to
decrease the overhead [25], and using multiple distributed APs for even higher data
rates [5]. However, except for associating the finite physical layer (PHY) data rates with
transmission delays [26], there is a general lack of IEEE 802.11 PHY latency models and
understanding of the underlying latency management mechanisms.

Broader studies discussing the implications of the PHY on transmission latency [27]
note the importance of adaptively setting the MCS based on the latest channel state informa-
tion (CSI). Doing so increases the average throughput and, therefore, reduces transmission
times. The authors also elaborate on the importance of short packets in view of timely data
delivery, although, the approach may not be entirely applicable to the likes of XR video
streaming applications because of their high throughput demands. Among other radio
access technology (RAT) options, 5G new radio (5G NR) has been putting increased em-
phasis on the PHY and its role in ultra-reliable and low-latency communications (URLLC).
It aims for a 1 ms small packet latency while keeping bit error ratio (BER) values below
10−5 [28]. The main challenges 5G NR URLLC faces are reducing the transmission time of
a single packet and achieving better control over individual packet processing times [29].
Although 5G NR URLLC tackles latency reduction by introducing new packet formats, it
has several things in common with IEEE 802.11ad. For example, both standards employ
iterative low-density parity-check (LDPC) decoding, which makes up a substantial part
of the packet processing time and is identified as both a key enabler of 5G NR URLLC
systems [30] and one of the potential optimization points [29].

1.3. Physical Layer Latency Probing

Providing sufficient latency containment mechanisms for tomorrow’s real-time ap-
plications is not a trivial task. Every layer in the communication stack has its own level
of flexibility. Sometimes, the latency accumulated in a single layer is also dependent on
other layers. Starting from the bottom up, the present work studies latency accumulation
from the perspective of the PHY. It considers both transmitter (TX) and receiver (RX)-based
latency management mechanisms to determine the resulting range of expected latency
values. The PHY component performance figures are derived from research efforts con-
cerning integrated circuit (IC) design and are implemented in a tailor-made 802.11ad PHY
simulation framework. Alongside the time delay results, the effects of latency mitiga-
tion on data integrity are evaluated. The three-fold contribution of the present work is
summarized below.

1. PHY latency analysis: The dependency of time delays on PHY protocol data unit
(PPDU) payload length, PPDU aggregation, the selected MCS, the employed demap-
ping algorithm, and the number of LDPC decoding iterations is established.

2. Latency management mechanisms: Data transmission over an additive white Gaus-
sian noise (AWGN) channel is carried out to study the trade-offs between the incurred
latency and the resulting BER. The lowest achievable latency is determined in relation
to PHY tuning parameters and using 10−5 as the BER constraint. Moreover, Pareto op-
timality in achieving minimal BER is addressed in light of different latency thresholds.

3. Simulation framework: An open-source IEEE 802.11ad PHY latency and BER sim-
ulation framework has been designed during the course of the study. It closely
complies with the WiGig standard, offers flexibility for future studies, and is shared
in open access.

The target latency performance metric and the derivation of the ideal case time delay,
assuming infinite processing speed, is presented in Section 2. Associating the PHY’s
components with realistic performance figures sourced from state-of-the-art literature is
described in Section 3, while Section 4 touches upon the inner workings of the simulation
environment and outlines the workflow adopted for the purpose of generating the latency
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and BER results. The simulation results are contained within Section 5, whereas their
inter-dependencies are discussed in Section 6. Finally, Section 7 summarizes the findings
and highlights potential future research prospects.

2. Latency Definition and the Ideal Case Study

Ideal case latency is studied initially, evaluating the effects of TX tuning—MCS se-
lection, payload length, and PPDU aggregation—on time delays. However, the latency
performance metric is defined first.

2.1. Physical Layer Latency

The present work defines PPDU payload latency as the target performance metric,
focusing solely on latency incurred in the PHY. This encompasses the processing time
at the TX and RX digital basebands (DBBs) and includes data propagation through the
channel. It is analogous to tracking the E2E delay of individual MAC layer protocol data
units (MPDUs) (the terms PPDU payload and MPDU are used interchangeably in the
manuscript). from entering the TX PHY, to exiting the RX PHY and heading upwards
through the network stack. Marking the timing start and stop points, Figure 1 depicts
MPDU propagation and the latency it encounters through the PHY.

PHY

MAC

PHY

MAC

MPDUPPDU

tstart tstop

PHY latency

TX RX

Figure 1. Observed latency: from an MPDU entering the PHY at the TX to its hand-off between the
RX’ PHY and MAC layer.

2.2. Analytical Derivation of Latency in the Ideal Scenario

The only contribution to latency in an ideal scenario is caused by the finite signal
bandwidth and the propagation speed of electromagnetic waves. All data processing in
the PHY is assumed to be instantaneous. The data propagation speed through the channel
comes close to 3 × 108 ms−1 when traveling through air. The resulting time delays are
less than 100 ns at practical mmWave indoor communication distances of up to 30 m.
Consequently, electromagnetic wave propagation delays are discarded early on.

The remaining delay is attributed to the finite symbol rate of the communication
standard. With the IEEE 802.11ad channels occupying 2.16 GHz of the spectrum and
providing 1.76 GHz of usable bandwidth, the symbol rate is limited to 1.76 Gsps. As a
result, individual symbols take up roughly 0.57 ns of airtime. The otherwise small delay is
magnified by long symbol sequences, prepended to the packet payload. The 4416-symbol
long preamble, header, and initial guard interval (GI) cause a 2.5 µs delay to the first data
payload symbol. This delay further increases for each succeeding symbol by the sum of
individual symbol delays before it, which also include a GI, prepended to every block of
448 data symbols. The worst case symbol delay dictates the total packet delay. Depicted in
Figure 2, the waiting time for a single PPDU is associated with the reception of all of its
data bits and the corresponding overhead. The preamble is skipped in aggregated PHY
protocol data units (A-PPDUs).
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Preamble Header

toverhead

tPPDU

GI Data bits Parity bits

A-PPDU
+ header ...

tA-PPDU

Figure 2. Schematic view of a PPDU, including aggregated PPDUs.

Reducing the MPDU delay is directly achieved by shortening the MPDU itself. Sec-
ondly, switching the modulation and coding scheme (MCS) will provoke different amounts
of coding overhead and determine the number of bits carried per symbol. The ideal sce-
nario analysis initially studies the combined MPDU length and MCS effects on MPDU
latency. Equations (1) and (2) describe the incurred latency:

LatencyPPDU =
(LP + LH + LD + 64)

1.76 Gsps
(1)

LD = dd l
672 · Rc

e 672
448 · Rm

e · 512 (2)

where LP, LH , and LD represent the length of the preamble, header, and data in symbols.
Together with the final GI, and divided by the symbol rate, they yield the packet’s la-
tency. The length of LD is calculated on the basis of the payload data length (l), code rate
(Rc), and modulation rate (Rm). LP and LH take up 3328 and 1024 symbols, accordingly.
The evaluated MCSs are listed in Table 2.

Table 2. MCSs associated with different modulation and code rates.

BPSK QPSK 16QAM 64QAM

1/2 2 6 10 /
5/8 3 7 11 12.3
3/4 4 8 12 12.4

13/16 5 9 12.1 12.5

Following the first part of the ideal case study, the payload length has been set to
the highest value supported by the IEEE 802.11ad PHY, 262.143 kB. This applies to all
subsequent study steps. Long PPDU payloads are studied with the goal of analyzing
high-throughput low-overhead transmission in more detail. Moreover, emphasis is put on
XR use cases, where the data-hungry interactive streaming applications require multi-Gbps
data rates. This is also the worst-case latency, as longer packets inherently feature longer
transmission delays. Therefore, time-critical applications that require shorter payload trans-
mission are expected to achieve lower latency. Given a 10−5 BER, every 262 kB packet on
average includes 21 bit errors. Real-time streaming applications in general allow for a cer-
tain extent of erroneous data as long as their throughput and latency requirements are met.
Consequently, the 10−5 BER threshold is kept as a reference throughout the manuscript.

In PPDU aggregation, multiple PPDUs and their headers are appended to a single
preamble. This decreases the relative overhead, while latency is described by Equation (3):

LatencyA−PPDU =
(LP + N · (LH + LD))

1.76 Gsps
, (3)

where N stands for the total number of aggregated packets preceding the observed
A-PPDUs.
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3. Latency-Inducing Receiver Digital Baseband

The TX and RX both need to comply with the IEEE 802.11ad PHY standard, which
is especially important for the TX as it should correctly prepare packets for transmission,
use the appropriate waveform, and stay within transmission power limitations. Its main
contribution to latency is the 1.76 Gsps finite transmission data rate. This study assumes
that data are prepared for transmission using high-throughput components [31], avoiding
any potential bottlenecks. Moreover, any processing delay is compensated for by formatting
the data during preamble and header transmission, filling the transmission buffer with
payload symbols in real-time.

The RX, on the other hand, is only responsible for correct data reception; the path it
takes to achieve this goal is left to the system designers to determine. Several common
RX DBB design solutions exist, depending on how the RX DBB blocks are organized, which
signal domains are used, and how timely or accurate data reception is. The RX DBB used in
this work operates in single carrier (SC) mode and employs frequency domain equalization
(FDE). It is roughly based on the work presented in [32], while Figure 3 outlines its design.

2176 sym. 1152 sym.

1 sym.

512 sym.

672 bits

1 bit

PayloadSTF CES

1 MPDU

Detection, coarse
CFO est., and  sync

Joint CFO and IQ
imbalance estimation

1 sym.

Noise and channel
estimation

Joint IQ imb. and
CFO compensation

Channel
equalization

Decoding

Descrambling

Output (PHYSAP)Demapping

1152 sym.

Figure 3. IEEE 802.11ad PHY receiver digital baseband. Above each component lies its input buffer with the corresponding
base unit size noted on its left. Solid connections show data propagation paths, while dashed lines correspond to flag
indicators. The processing operations contributing to latency beyond the finite symbol rate are written in bold. Those with
additional control over the inflicted latency are colored in blue.

3.1. Two Distinct Time Delays

Latency incurred in the RX DBB originates from data propagation time delays and
finite throughput values of individual components. The former represents the time a
data unit, e.g., a bit, has to spend in the component before exiting it, while the latter
stands for the elapsed time between two consecutive data units entering the component.
The finite throughput delay is only applied to data arriving at a busy component, where
the waiting time is a multiple of the throughput delay and the number of queued data
elements. Only data propagation delays apply for data passing through otherwise idle
components. For example, the first data element in a stream. Figure 4 illustrates both
delays on a simplified example. The input data units can be symbols, bits, or data blocks,
depending on the assessed component. A component’s throughput must reflect the rate
of incoming data to avoid becoming a bottleneck, while data propagation delays will add
latency to the entire stream of data. The work at hand models individual components as
black boxes, with the finite throughput and data propagation delay influencing the flow of
data through it. The interplay of multiple components and their time delay performance
figures yields the total latency incurred in the RX DBB.
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Data propagation
Finite

throughput

Input

Output

Figure 4. Component time delay performance figures, illustrated on an example.

3.2. Performance Figure Derivation

The RX DBB components are in the present study based on best-in-class 65 nm IC
designs found in literature, except for the exact- (28 nm) and approximative demap-
per (90 nm)—elaborated on in the corresponding subsection. The reported data prop-
agation delays and finite throughput values are associated with the components mak-
ing up the assessed RX DBB. However, other IC component implementations exist and
might yield different latency results. The present work acknowledges IC design is a fast-
evolving field and instead focuses on studying latency mitigation mechanisms, which are
universally applicable.

Given the separation of input data in Figure 3 into three types—short training field
(STF), channel estimation sequence (CES), and payload—and the performance of the
corresponding ingress components, the following sections assume their negligible contri-
bution to latency. The remaining components contribute to MPDU latency through the
data propagation time delay and finite throughput performance metrics. Except for the
(de)scrambler, which does not significantly contribute to latency owing to the simplicity of
the (de)scrambling function and state-of-the-art component throughput values surpassing
25 Gbps [33].

3.2.1. Noise and Channel Estimator

The channel and noise estimation block’s primary purpose is to estimate the minimum
mean square error (MMSE) channel equalization tap weights, achieved by uniting several
operations. Its noise estimates are also an important factor in soft-decision demapping.
The noise and channel estimation tasks include:

• Using the fast Golay correlation (FGC) algorithm [34] to calculate the cross-correlation
between the received signal and the two known complementary Golay sequences
Gv512 and Gu512. The process is repeated twice—once for each Golay sequence—and
ultimately yields the channel input response (CIR).

• Converting the FGC results to the frequency domain via a fast Fourier transform
(FFT) block, weighing them with 1

2 , and adding them together, forming the channel
frequency response (CFR).

• Calculating the signal-to-noise ratio (SNR) using the CFR and the frequency-domain
correlation results.

• Finally, obtaining the MMSE matrix using the CFR and SNR.

The above tasks are illustrated in Figure 5, which roughly outlines their time delays
and parallel execution possibilities. Based on these, the study assumes the FFT is the most
time-consuming factor in the noise and channel estimation block. The FFT’s throughput
and propagation delay are derived from [35], where the authors report a 2.64 Gsps output
sample rate and a latency from the input to the output of 63 cycles. Using the same clock
frequency as in their work—330 MHz—results in a 191 ns propagation time delay.
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FGC
Gv512

FGC
Gu512

FFT

FFT

S

N

HMMSEH

Figure 5. Task execution flow in the channel and noise estimation block. Vertical task stacking
represents parallel execution.

3.2.2. Channel Equalizer

The discussed RX DBB employs single carrier frequency domain equalization (SC-
FDE). However, before neutralizing the channel effects, the received symbols must be
transformed to the frequency domain. Once a block of 448 data symbols and its 64-symbol
long cyclic prefix (CP) have accumulated at the input of the channel equalization block,
they are transferred to the frequency domain using the same 512-point FFT [35] component,
as described in Section 3.2.1. Multiplying the inverse of the CFR with a block of received
symbols in the frequency domain, the equalization itself takes the form of parallel complex
multiplications. Executing the multiplication and corresponding summations alleviates
most of the time delays, making the FFT the main factor contributing to latency. Lastly,
the 512 equalized symbols are transferred back to the time domain by an inverse fast Fourier
transform (IFFT). Given the same processors are often used for both time-to-frequency and
frequency-to-time domain transformation, the same performance metrics are associated
with both the FFT and the IFFT component. Thus, the total propagation delay of the
channel equalization block is that of two FFT/IFFT components. Its throughput is limited
by that of a single FFT/IFFT component.

3.2.3. Symbol Demapper

The described RX DBB employs one of three demapping algorithms. All of them
convert a single received symbol into a sequence of log-likelihood ratio (LLR) values. These
represent the probability that the corresponding bit in the symbol constellation is a one or
a zero. The length of the output LLR sequences is equal to the modulation rate.

The three algorithms and their performances for 16QAM are listed in Table 3, where
δ2 is the noise variance, M the constellation size, and r the received symbol. The i-th con-
stellation point where the k-th LLR is either 0 or 1 is represented by Ci,0 or Ci,1, respectively.

Table 3. Throughput performance metrics and demapping algorithms associated with the three different demapper
instances. The throughput applies to five parallel demappers, as described in the corresponding references. All throughput
values and the set of demapping equations in the last row correspond to 16QAM mapping.

Name Throughput ( MLLR
s ) Demapping Algorithm Ref.

Exact 800 LLR[k] = ln
∑2M−1

i=0 exp(− 1
2σ2 · ‖r− ci,1‖2)

∑2M−1
i=0 exp(− 1

2σ2 · ‖r− ci,0‖2)

[36]

Approximative 3030 LLR[k] = 1
2σ2 · [min(‖r− ci,0‖2)−min(‖r− ci,1‖2)] [37]

Decision threshold 6640

LLR[0] = 1
2σ2 · Re(r)

LLR[1] = 1
2σ2 · (2− |Re(r)|)

LLR[2] = 1
2σ2 · Im(r)

LLR[3] = 1
2σ2 · (2− | Im(r)|)

[38]

The first equation represents the exact LLR calculation algorithm. Since the authors
used a field-programmable gate array (FPGA) for the purpose of their study, the through-
put has been increased by a factor of 3.2—the average increase in application throughput
when migrating from an FPGA to an application-specific integrated circuit (ASIC) imple-
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mentation [39]. This is the only time when the normalization factor was applied, as all
other component performance figures correspond to ASIC-based designs. The difference
in process nodes between the demappers was not compensated due to the lack of an
explicit scaling factor. Note should be taken that the approximative demapper is imple-
mented in 90 nm technology, and its implementation using a 65 nm process could increase
transistor density [40] and decrease propagation delays [41]. Consequently, the approx-
imative demapper latency results should be assessed with some reserve since a 65 nm
implementation could increase the component’s throughput. The opposite is true for the
exact demapper, deriving its throughput from a 28 nm implementation. Next from top
to bottom is the approximative algorithm. Although simplified, the algorithm still needs
to iterate over all the constellation points for every received symbol. Lastly, the decision
threshold algorithm simplifies the demapping procedure by grouping constellation points
into clusters and working only on the basis of those. This makes it the fastest of the three.

In the studied demapper implementations, only the throughput delay is considered
since it is the main performance metric noted in [36–38]. The delay manifests itself as
the time between the processing of consecutive input symbols. Consequently, a symbol
rate higher than the demapper’s throughput will cause symbols to start piling up at the
demapper’s input. This would prevent the RX DBB from processing input symbols at the
standardized 1.76 Gsps rate. Therefore, the simulated RX DBB uses 5 demappers in parallel.
After removing the GIs, the parallel decision threshold demapper manages to surpass the
data symbol rate by a small margin. The remaining two parallel demappers—exact and
approximative—rely on more complex processing, reflected in their lower throughput.

3.2.4. LDPC Decoder

The decoder leverages redundant parity bits within each codeword for iterative
forward error correction (FEC), operating on the received LLR values. Increasing the
number of iterations decreases the probability of bit error propagation further through the
RX DBB [42,43]. However, fewer iterations yield shorter time delays.

The IEEE 802.11ad LDPC codewords consist of 672 bits, whereas the resulting data-
word length at the decoder’s output depends on the code rate. To accurately model the
corresponding delays, the performance figures are derived from [44], where the authors
report a 5.3 Gbps throughput and a latency of 150 ns for 5-iteration 13/16-code-rate decod-
ing. They also make note of the number of processing cycles consumed per iteration for
all code rates, except 7/8. The latter is thus not part of the present study. The described
performance figures lead to the delay functions contained in Equations (4) and (5):

TD(Rc, i) =
(

5.3 Gbps · 10−9 · 13
C(Rc)

)−1
· i

5
(4)

PD(Rc, i) = 150 ns ·
(

1
4
+

3
4
· C(Rc)

13
· i

5

)
(5)

where TD and PD represent the throughput- and data propagation delay, Rc is the selected
code rate, C(Rc) stands for the number of incurred processing cycles, and i marks the
number of incurred decoding iterations. TD and PD both depend on the ratio between
C(Rc) and the number of iterations for the reference code rate, 13 when Rc =

13
16 . Moreover,

they are governed by the quotient between i and 5, the reference number of iterations
studied in [44]. A constant 25% of the reported propagation delay is assumed to be latency
caused by buffering, memory access, and I/O operations. The remaining propagation
delay factor scales with the code rate and number of iterations.

4. Simulation Environment

A simulation framework has been designed as part of the present work. It consists
of both latency probing, described in [45], and data transmission over a noisy channel.
Together, they allow joint latency and BER analysis.
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The RX DBB, discussed in Section 3.2, is implemented alongside the TX DBB, forming
the IEEE 802.11ad transmission chain together with an AWGN channel (CH). The TX
includes scrambling, encoding and mapping of the data bits, while providing all addi-
tional PPDU overhead structures in preparing PHY frames for transmission. The AWGN
CH adds noise, and the inverse of PPDU generation is carried out at the RX. The latter
also implements the time delay functionalities of individual components, described in
Sections 3.2.1–3.2.4. The simulation framework is written in Python, and apart from SimPy,
relies on conventional scientific computing libraries such as Numpy, Pandas, and Xarray.
It implements unit tests to verify the correctness of individual component definitions.
Where possible, the results of these are evaluated against those obtained using MATLAB’s
Communication Toolbox.

Transmitting millions of data bits upon every possible change in the TX-CH-RX chain
can be a daunting task. The use of the SimPy discrete-event simulation framework may
provide accurate latency tracking, yet, it further increases the already long computation
time. We have split the simulation into error tracking and separate latency probing to
accelerate execution. Moreover, it provides easier reproducibility of results by allowing
better control over the simulated scenario and its input arguments. Summarized in Figure 6,
the first part tracks the quality of the received data in different channel conditions while
also storing the number of incurred decoding iterations. These are then used to initialize
the latency simulation. The decoupled approach alleviates the need to run numerous
event-based packet transmission simulations for each input parameter combination.

Max bits 
or min errors

reached?

Simulate
TX - CH - RX

Set new simulated
combination

Exhausted all
combinations?

Init
TX - CH - RX

Look up
iterations 

Save errors and
iterations

Simulate single
packet latency Save time delay Exhausted all

 combinations?

False

Tracking bit errors

Latency probing

False

False

Set new simulated
combination

Figure 6. Two-part error and latency simulation framework. Blocks with a dashed outline change depending on the study
step, while the number of decoder iterations is passed on between the two parts.

Figure 6 shows the simulation workflow for assessing PHY latency. It is initially used
to assess latency and the incurred BER in presence of an AWGN CH, using the decision
threshold demapper and limiting the number of decoding iterations to 10. It is afterwards
used in an exploratory study, focusing on RX tuning by switching the demapping algorithm
and allowing up to 100 iterations. In sequence, the ideal scenario study is referred to as
study step 1, while the two simulation steps are referred to as steps 2 and 3. The naming is
used in the following subsections to describe how the simulations are configured during
the different study steps. The simulation framework is publicly accessible (individual
repositories are located at https://github.com/PhyPy-802dot11ad, accessed on 31 May
2021) and consists of: IEEE 802.11ad component functionalities, the latency simulator,
and the BER simulator.

https://github.com/PhyPy-802dot11ad
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4.1. Tracking Bit Errors

The first part of the simulation process is conceived of encapsulating an MPDU in a
PPDU, before exposing it to AWGN. The distorted sequence is then demapped, decoded,
descrambled, and compared to the initial sequence. The process is repeated till an adequate
number of bit errors is reached or the maximal allowed number of bits has been transmitted.
The two values are set to 100 and 108, respectively. The only exception is that at least
3 PPDUs must be successfully received before the simulation is allowed to terminate.
This results in the generation of up to 48 random MPDU sequences spanning the longest
supported PPDU data payload length (262 kB). The Monte Carlo simulation is repeated for
each input MCS and Eb

N0
combination. Upon every PPDU transmission, the number of bit

errors, the individual packet error, and the average number of decoder iterations over all
codewords is stored.

Pointed out by Figure 7, two blocks in the simulation framework change between the
two study steps. In step number 2, the decoder may execute up to 10 decoding iterations,
and exit prematurely if the early exit criterion is met. The criterion allows the decoder to
stop execution if no bit errors are detected in the received codeword [46]. It is not altered
during the simulation, as only the MCS and Eb

N0
combinations are changed. Step 3 adds

decoder tuning, sweeping the number of allowed decoding iterations between 1 and 100.
Regardless, the decoder verifies the early exit criterion upon every iteration. After PPDU
transmission, the number of incurred iterations is always stored, as it is a vital part of the
succeeding time-based simulation. Both steps 2 and 3 use decision threshold demapping
during bit error tracking.

MCS and Eb/N0 MCS, Eb/N0, 
dec. iterations

Set new simulated
combination

Dec. thr.
demapper, 10 iter

MSA decoder
MSA decoder

Init
TX - CH - RX

2nd 3rd2nd 3rd

Figure 7. Difference between the blocks in the bit error simulation process, dependent on the
study step.

4.2. Latency Probing

After obtaining the average number of decoder iterations for each simulated combi-
nation, the obtained values are forwarded to the time-based simulation. A new PPDU is
spawned for each available combination. Its length depends on the selected MCS, while the
number of decoder iterations, and with the incurred decoding delay, it is set according to
the observations made during the bit error simulation. The latter depends on both the MCS
and the Eb

N0
. Furthermore, step 3 also studies RX demapping delays. Figure 8 demonstrates

how the first latency probing simulation block changes in accordance with the study step.

MCS, Eb/N0, 
and demapper 

MCS and Eb/N0 Set new simulated
combination

2nd 3rd

Figure 8. Dependence of the first latency probing simulation block on the study step.

Apart from simulating PPDU delays, the latency probing simulations also provide
insight into how individual symbols and other data units propagate through the PHY.
The framework is, therefore, capable of identifying individual bottlenecks in the RX DBB.
With reference to Figure 3, such conclusions are drawn on the basis of data accumulation
in the component input buffers.
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5. Results

Packet latency is first calculated in the ideal scenario. The only delay is caused by
the finite throughput, 1.76 Gsps. Processing delays in the RX DBB are added, as data
transmission using a latency inducing PHY is simulated. Further simulations are carried
out by relaxing the number of allowed LDPC decoder iterations to 1–100 and by substituting
the demapper with one of three possible instances.

5.1. Steering the Physical Layer in an Ideal Scenario

Figure 9a shows how the PHY’s finite data rate affects single packet latency. The
time delays are inversely proportionate to the MCS index, while the transmission time
difference when selecting either the highest or the lowest MCS escalates as the payload
length increases. Consequently, the most pronounced dependency of latency on the selected
MCS appears during the transmission of the largest allowed payload, approx. 262 kB,
where MPDU latency spans 0.28–2.71 ms. Figure 9b reveals that the decreasing cost of
each additional kB of payload starts to stagnate at large payload lengths. The difference
between consecutive values becomes less than 1% beyond 3 kB.

Figure 9. From left to right: latency’s dependency on the MCS and payload length (a); Increase in latency per each additional
kB of data, dependent on the MCS (b). White curves represent latency isohypses.

While increasing payload length reduces the relative contribution of preamble and
header overhead to PPDU length, aggregation enables several packets to share the same
preamble and further reduces its share in PPDU length. However, the latency analysis
results, given in Table 4, demonstrate that PPDU aggregation does not bring any significant
benefits when transmitting 262 kB long payloads. Even at high MCS indexes, the limited
preamble overhead is several orders of magnitude shorter than the data payload. Therefore,
including PPDU aggregation doubles the incurred latency in comparison to individual
PPDU transmission.
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Table 4. Total MPDU latency without aggregation (0) and when appending a single A-PPDU (1), per MCS index. All values
are in milliseconds.

A-PPDU 2 3 4 5 6 7 8 9 10 11 12 12.1 12.3 12.4 12.5

0 2.73 2.18 1.82 1.68 1.36 1.09 0.91 0.84 0.68 0.55 0.46 0.42 0.37 0.31 0.28
1 5.45 4.36 3.63 3.36 2.73 2.18 1.82 1.68 1.37 1.09 0.91 0.84 0.73 0.61 0.56

5.2. Including Physical Layer Latency and Channel Noise

The next step in the analysis includes RX DBB data processing, further increasing
latency in addition to the finite transmission rate. The decoder may execute up to 10 itera-
tions and conclude codeword processing at any time if the early exit criterion is met. Only
decision threshold demapping is used.

Figure 10a builds on the ideal case results by inducing additional delays within the
PHY and studying the quality of the data, received over the AWGN channel. The observed
BER values indicate that (a) while transmission at MCSs with higher indexes is less latent,
it may provoke data loss and (b) below 3.5 dB Eb

N0
, the received data is highly erroneous.

The BER results and the incurred number of LDPC decoder iterations together demonstrate
that in the presence of fewer errors, the decoder is more likely to conduct fewer iterations.
This is the case of the early exit stop criterion, mentioned in Section 4.1, terminates ex-
ecution when it does not detect any more errors in the received codeword. The results
are lower data propagation delays and a higher decoder throughput, in accordance with
Equations (4) and (5). The manifestation on MPDU latency is more pronounced at MCSs
with higher indexes, where the decoder persists at conducting a high amount of iterations
till relatively high Eb

N0
values. An example is the rightmost cluster consisting of three

curves in Figure 10b. The three are associated with 64QAM modulation. The middle
cluster is associated with 16QAM, while the leftmost contains both QPSK and BPSK curves.
Figure 10c shows how decoder time delays are reflected in MPDU latency. Excluding MCS
at index 9, illustrated in olive green, the MCSs at the nine highest indexes can all become a
bottleneck. The latency curve clusters, affected by the bottleneck, are in accordance with
those in Figure 10b. The largest difference is that BPSK modulated data is not affected and
that, when using QPSK modulation, only the curves corresponding to MCS indexes 7 and
8 show a visible increase in latency. This is due to a combination of already relatively low
MPDU latency and a high delay caused by the decoder at lower code rates. All latency
values in Figure 10c stabilize towards 15 dB, where the average amount of iterations for all
MCSs in Figure 10b falls to 1.

In time-critical applications where latency is the main optimization metric, the bot-
tleneck decoder makes transmission at MCS 12.5 a viable option only beyond 11 dB Eb

N0
,

after the intersection with MCS 12.4. A similar pattern repeats itself for all 9 MCSs that suf-
fer from the decoder becoming a bottleneck during the reception of 262 kB long payloads.
Transmission at other MCSs also suffers from the decoder inducing a data propagation
delay. However, it never becomes a bottleneck, as the major part of latency originates from
the finite transmission rate. This is reflected in the seemingly horizontal lines associated
with MCS indexes 2–6 and 9. Note should be taken, that the decoder’s data propagation
delay during short sequence reception may become significant in comparison to the total
packet latency. Furthermore, the number of decoder iterations is in practice limited to
about 5 [44,47] to help avoid the decoder becoming a bottleneck.
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Figure 10. Counterclockwise from top left: incurred BER during transmission (a); average number of executed decoding
iterations (b); resulting MPDU latency (c). Obtained using the decision threshold demapper and allowing up to 10 LDPC
decoding iterations. The dashed line in (a) represents the 10−5 BER limit, as defined by 5G NR.

5.3. Tuning the RX DBB Components

The final part of the analysis explores the latency management mechanisms in the
PHY, in addition to MCS switching. It firstly focuses on the demapper instance switching
to establish the effects of different demapping algorithms on latency. Figure 11 shows the
exact demapping algorithm noticeably delays data reception, especially when employing
64QAM. The latency peaks at MCS indexes 10 and 12.3 correspond to an increase in
constellation size from 4- to 16- and from 16- to 64 symbols. The switch from MCS index
5 to 6 does not add to latency because of similar demapper performance in both cases.
Approximative demapping manages to substantially reduce the incurred latency and
achieve equally low time delays at higher MCS indexes as decision threshold demapping.
It does, however, include similar peaks at the points of constellation size increase as exact
demapping. Increasing the number of parallel demappers would improve the throughput;
yet, it would also bring with it unwanted effects such as larger area occupation, increased
complexity, and higher cost. As discussed in Section 3.2.3, implementing the approximative
demapper in 65- instead of in 90 nm technology could benefit its throughput and prevent it
from becoming a bottleneck. On the other hand, decision threshold demapping reliably
outpaces the approximative algorithm up to MCS index 10. From there on, it shows a
higher spread of latency values, which are in some cases as high as those incurred during
approximative demapping. However, the additional latency is generated by the decoder,
posing a bottleneck at high MCS indexes and low Eb

N0
values, as demonstrated in Figure 10c.

Hence, the decision threshold algorithm is the most timely of the three.
The second part of the RX DBB tuning consists of incrementally setting the number

of allowed LDPC decoder iterations. This is done in steps 1, 5, and 10 in iteration ranges
1–10, 1–50, and 50–100, respectively. Figure 12 summarizes the incurred MPDU latency and
BER results for the corner case when allowing up to 100 iterations. The MCS-dependent
latency values follow a similar trend to those presented in Figure 10c. The main difference
is that there are no more linear dependencies at 100 allowed iterations. Consequently,
achieving minimum latency at different Eb

N0
values requires even more frequent MCS

switching. Maximum latency per-MCS in Figure 12a is observed at 100 incurred iterations;
in the descending part of each curve, the number of iterations gradually falls towards 1.
The corresponding BER values benefit from a maximum 1 dB coding gain when allowing
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up to 100 decoding iterations instead of 10. The results serve an exploratory purpose
since the return on investment in terms of lower BER might not justify the higher power
requirements for performing extra decoding iterations in practice.

2 3 4 5 6 7 8 9 10 11 12 12.1 12.3 12.4 12.5
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Suboptimal
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Figure 11. MPDU latency for exact, approximative, and decision threshold demapping. The maximum number of decoding
iterations is 10.

Figure 12. From left to right: incurred MPDU latency (a) and BER (b) when setting the largest allowed number of LDPC
decoding iterations to 100. MCS colour codes are the same as in previous figures. The white region on the left subplot
represents the expected latency region, governed by MCS and Eb

N0
.

Minimal achievable MPDU latency is further elaborated in Figure 13. With reference
to Figure 12a, only the lowest latency values and their corresponding MCSs are illustrated.
This is repeated for 1 to 100 allowed decoding iterations. For a small number of iterations,
the decoder never becomes a bottleneck and, therefore, MCS 12.5 always yields the lowest
latency. The first improvements at other MCSs start to appear at 10 iterations. This is a
consequence of the MCSs at higher indexes less likely to satisfy the early exit criterion—
absence of detected bit errors within individual codewords—in presence of high noise
levels, therefore, the RX must execute more time-consuming decoding iterations.
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Figure 13. Minimal achievable latency at different channel noise levels and maximum allowed
number of LDPC decoding iterations. The colour represents the MCS at which minimal latency
was achieved.

6. Discussion

The following subsections explore the benefits of PHY tuning for reduced latency and
BER. They are based on the results presented in Section 5.

6.1. Allowing More Iterations for Using up Additional Time

Reducing communication latency is of paramount importance for real-time applica-
tions; however, when there is additional time available, the PHY can use it for increasing
the quality of the received data. An example is adjusting the number of allowed decoding
iterations per MCS. Depicted in Figure 14a, every MCS can allow the decoder to execute
a given number of iterations before it becomes a bottleneck. For example, allowing it to
conduct 20- instead of 10 iterations, during transmission at MCS 2.0, will take up approxi-
mately the same amount of time. Beyond that point, the RX can dynamically decide and
allow the decoder to consume more time based on the momentary latency constraint. This
is especially useful for MCSs with higher indexes, where the decoder becomes a bottleneck
at a considerably lower number of iterations. For instance, beyond three iterations for all
three of the highest MCS indexes (64QAM). As noted in Section 5.2, making the decoder a
bottleneck is not sustainable and is avoided in practice.

Figure 14b illustrates several MCS and Eb
N0

combinations where increasing the number

of allowed iterations has a considerable effect on the BER. The Eb
N0

values are derived from
the BER curves in Figure 10a, and they represent the points with the most negative slope.
The benefit of executing additional iterations is most visible in those regions of the BER
curves. Contrarily, improvements at Eb

N0
values with highly erroneous data or with a 0 BER

are negligible. These would result in horizontal lines on Figure 14b and have been omitted
in view of better visibility of the existing results.

Allowing additional iterations for the MCS— Eb
N0

combinations causes a steep decline
in BER from 1 to 5 iterations and a moderate improvement in data integrity from 5 to
20 iterations. The observations are further backed by Figure 14c,d. These show a high
improvement in terms of BER decrease between 1 and 10 iterations, and somewhat less
profitable results when comparing BER values at 10 and 100 iterations. Therefore, selecting
the highest possible MCS index that the channel conditions allow will reduce latency, while
allowing between 3 and 20 decoding iterations can reduce the amount of erroneous data
while sustaining a high enough throughput.



Electronics 2021, 10, 1599 17 of 23

Figure 14. From the top down and left to right: incurred latency when increasing the number of allowed decoding iterations
(a); resulting BER for given MCS and Eb

N0
combinations—the latter is represented by line width (b); BER difference when

comparing 1- to 10- (c) and 10- to 100 decoding iterations (d).

6.2. Latency Versus Bit Error Rate

As mentioned in Section 6.1, latency’s dependency on the BER is most visible in the
parts of individual BER( Eb

N0
) curves with the steepest negative slope. For example, 3.5-

and 11 dB on the two curves associated with MCS 2 and 12.4 in Figure 10a, where every
additional decoding iteration will considerably reduce the BER. Figure 15 demonstrates
how additional iterations are reflected both in terms of latency and BER; however, the rela-
tive change in latency heavily varies between MCSs. In Figure 15a the average number of
conducted iterations at MCS 2 varies between 1 and 4.75. The result is a considerable BER
reduction, yet, latency only increases by 0.13 µs or 0.005 %. Contrarily, executing between
1 and 3.5 iterations on average at MCS 12.4 will significantly increase latency, illustrated
in Figure 15b. The 60 µs (16.2 %) higher latency is a direct consequence of the decoder
beginning to act as a bottleneck at more than 3 iterations. The two corner cases show that
allowing more decoding iterations at lower MCS indexes significantly reduces BER, while
negligibly influencing latency during the reception of 262 kB long payloads. Code rates
with less coding overhead benefit less from additional iterations, and MCSs on the other
end of the scale can only run a limited amount of decoding iterations before stalling PHY
throughput. The horizontally-spread BER values at the highest latency values in Figure 15
are attributed to the stochastic nature of the AWGN channel. The number of incurred itera-
tions is averaged over an entire 262 kB payload, relating to roughly 4000–6000 codewords,
depending on the MCS.
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a b

Figure 15. Trade-off between latency and BER at two distinct MCS and Eb
N0

combinations. Marker size represents the average
number of incurred iterations, ranging from 1 to 4.75. The grey curve represents a reference 1

x function fitted to the data
points. Both Y-axes are rounded to two decimal points. The 0.13 µs MCS 2 latency difference from top to bottom is contained
within the roundoff.

6.3. Pareto Optimality

Considering only latency as the optimization metric is often insufficient in practice.
A hastily delivered erroneous MPDU might require retransmission, which will further
increase the time delay. Hence, applications will in practice impose combined latency and
data integrity requirements. Approaching Pareto optimality is achieved by setting the
highest allowed BER value and selecting the MCS that generates the least latency. In our
case study, the BER limit is set to 10−5. Decision threshold demapping is used and up to
10 decoding iterations are allowed. The 10−5 threshold value is based on the short packet
transmission requirements in 5G NR URLLC. While shorter packets with a 10−5 BER are
likely error-free, 262 kB long payloads will on average include 21-bit errors. As reasoned in
Section 2.2, the constraint value is kept as a reference since XR video streaming applications
are error-tolerant to some extent. Any data points surpassing the BER constraint are
discarded; among those in accordance with it, the minimal achieved MPDU latency is
extracted. Repeating the process across all Eb

N0
values yields a set of minimal latency points,

illustrated in Figure 16a. It demonstrates that communication below 3 dB Eb
N0

is not feasible
when applying the 10−5 BER constraint, marking the point at which a session transfer to a
more robust RAT must take place. The remaining points show that single MPDU latency
may range from 0.28 to 1.37 ms between 3- and 15 dB.

Figure 16b contains Pareto optimal curves when the constraint and optimization
variable are inverted. The curves apply to four distinct maximal PHY latency constraints,
and the data points on them represent the proposed MCS for provoking the smallest
BER at different noise levels. All BER results converge towards zero beyond a certain
Eb
N0

value. The curves corresponding to stricter latency constraints are offset towards the
right, where noise levels are lower. This is due to the transmission taking place at higher
MCS indexes, making it more prone to errors. The two curves corresponding to latency
constraints 0.5- and 0.75 ms only exist beyond 5.75- and 6.75 dB. As per to Figure 10c in
Section 5.2, the decoder could become a bottleneck at lower Eb

N0
values and compromise the

latency constraint.
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Figure 16. From left to right: Pareto optimal latency points with regard to the 10−5 BER constraint; Pareto optimal curves
for achieving minimal BER at different maximal latency constraints. Colours represent the MCS at which the Pareto optimal
points are achieved.

The lowest achievable latency is further evaluated in Figure 17, where the number of
allowed decoding iterations is swept from 1 to 100. The data points show considerable
similarity to the non-optimized version in Figure 13, except for the results obtained using
only a few decoding iterations. Due to the high bit error count at high MCS indexes,
these are substituted with their more robust counterparts. Two communicating devices
may also agree on the ideal transmission and reception parameters based on momentary
channel conditions. The collective approach assumes the RX’ MAC layer has control over
the number of PHY LDPC decoding iterations and a parallel communication channel
between the two devices exists, avoiding additional time delays. The result is a set of
optimal MCS and allowed iteration count combinations, yielding minimal PHY latency.
The newly-defined set of points, also outlined in Figure 17, show that switching to a higher
indexed MCS at the cost of additional decoding iterations is often beneficial. Most of these
switches occur either below 8 dB Eb

N0
or at less than 20 decoding iterations. The outliers at

80 iterations and 12–14 dB exist due to an early exit criterion stepping in at fewer executed
iterations, far less than the maximal allowed number. The number of allowed iterations
can be reduced to reflect the Pareto optimal points below 12- and beyond 14 dB.

6.4. Summary of Simulation Results

A brief summary of the latency and BER values achieved during individual parts of
the study is provided in Figure 18. In accordance with Section 4, steps 1–3 in Figure 18a
respectively apply to the ideal case scenario, simulated PHY with 10 allowed decoding
iterations, and simulated PHY with 100 allowed decoding iterations. Decision threshold
demapping is used in the latter two.

Only minute differences, well below 1 ms, are present between steps 1 and 2. On the
other hand, step 3 exhibits far higher latency values with more outliers, which are compen-
sated by the lower achieved BER values. These are presented alongside step 2 BER results
in Figure 18b. The higher concentration of BER values towards the bottom of the right part
of the distribution plots show how the increase in time is used up for reducing the amount
of erroneous data at the RX-side.
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Figure 17. Selection of points with minimal latency that satisfy the 10−5 BER constraint. Colours
represent the MCS at which the Pareto optimal points are achieved, the expected latency region is
highlighted by the white polygon on the back plane, and iteration-independent optimal points are
circled in grey.
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Figure 18. Left to right: comparison of expected latency regions (a); BER comparison for the two PHY simulation cases (b),
with the left and right parts of the distributions corresponding to study steps 2 and 3, respectively.

7. Conclusions

The present work studies PHY latency in mmWave Wi-Fi networks. It considers both
an ideal scenario and a simulated latency-inducing IEEE 802.11ad PHY based on perfor-
mance figures reported in state-of-the-art literature. Moreover, the simulations include
BER results for transmission over an AWGN channel and give insight into individual PHY
component data, such as the number of incurred LDPC decoding iterations. The ideal case
results show a dependency of the MPDU latency on the employed MCS that grows stronger
with the increase in MPDU length. Consequently, the remaining parts of the study focus
on the largest allowed payload lengths (262 kB), also emphasizing data-hungry real-time
XR applications. Aggregating PPDUs shows a high increase in latency and is discarded
during the ideal case study. Evaluating PHY simulation results reveal that latency induced
by the RX DBB is highly dependent on the number of incurred decoding iterations, further
governed by the amount of noise in the wireless channel. The resulting latency is evaluated
for 1–100 decoding iterations, with a closer look at both BER and latency values at 10 and
100 iterations. Three different demapping algorithms—exact, approximative, and decision
threshold—are also studied, with the latter yielding the most timely data reception.
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In regard to BER, the largest benefits in allowed decoding iteration tuning are identi-
fied at 3–20 iterations. The exact tuning region further depends on the available time and
the MCS in use. Although the smallest achievable latency values and the MCSs for reaching
them are discussed during the evaluation of decoding iterations on latency, the results
are revisited in search of Pareto optimality. A set of optimal points is identified in accor-
dance with the 10−5 BER constraint, that generate between 0.28- and 1.37 ms of latency,
depending on the selected MCS in Table 2. The lower limit, 0.28 ms, is also the lowest
achievable latency during the transmission of 262 kB long payloads. Reducing latency be-
low it would require shortening the payload if the application allows it. In error-intolerant
applications, the 10−5 BER constraint may be insufficient and cause retransmission; hence,
they would need stricter constraints to avoid generating more latency. In addition to
latency-oriented optimization, a group of Pareto curves for generating the least amount
of bit errors and complying with four discrete latency constraints is determined. These
show the attainable BER regions per latency constraint and can be used in applications
emphasizing low-latency operation before reliable data delivery. A final comparison of the
studied values is conducted. While latency reduction below that of the ideal case is not
possible, parallel MCS and decoder iteration tuning can reduce data loss. These dynamic
latency management mechanisms can also work towards lowering the BER by leveraging
redundant time when available.

The presented results are all based on 262 kB long PPDU payloads, except for the ideal
scenario analysis. The transmission of long sequences inherently takes up a large amount
of time, often surpassing the latency generated in the RX DBB. The 2.71 ms latency incurred
at MCS index 2—offering the highest reliability—is far from the 1 ms latency constraint
imposed by some latency-sensitive applications. Such applications often also feature much
shorter payloads. Therefore, more case studies need to be conducted on short payload
transmission over WiGig to better understand the relative impact of the RX DBB and to
propose adequate latency mitigation mechanisms. Furthermore, transmitting the entire
payload using only one of the 15 discussed MCSs results in a limited amount of discrete
data transmission latency and reliability outcomes. Splitting the payload in arbitrary
lengths and transmitting them at different MCSs could provide fine-grained control over
latency and BER.
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