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Abstract: Computer games have been regarded as an important field of artificial intelligence (AI) for a
long time. The AlphaZero structure has been successful in the game of Go, beating the top professional
human players and becoming the baseline method in computer games. However, the AlphaZero
training process requires tremendous computing resources, imposing additional difficulties for the
AlphaZero-based AI. In this paper, we propose NoGoZero+ to improve the AlphaZero process
and apply it to a game similar to Go, NoGo. NoGoZero+ employs several innovative features to
improve training speed and performance, and most improvement strategies can be transferred to
other nonspecific areas. This paper compares it with the original AlphaZero process, and results
show that NoGoZero+ increases the training speed to about six times that of the original AlphaZero
process. Moreover, in the experiment, our agent beat the original AlphaZero agent with a score
of 81:19 after only being trained by 20,000 self-play games’ data (small in quantity compared with
120,000 self-play games’ data consumed by the original AlphaZero). The NoGo game program based
on NoGoZero+ was the runner-up in the 2020 China Computer Game Championship (CCGC) with
limited resources, defeating many AlphaZero-based programs. Our code, pretrained models, and
self-play datasets are publicly available. The ultimate goal of this paper is to provide exploratory
insights and mature auxiliary tools to enable AI researchers and computer-game communities to
study, test, and improve these promising state-of-the-art methods at a much lower cost of computing
resources.

Keywords: artificial intelligence; deep learning; AlphaZero; NoGo games; reinforcement learning

1. Introduction

The successive appearance of AlphaGo [1], AlphaGo Zero [2], and AlphaZero [3],
achieving remarkable performance in one of the most complex games, Go, demonstrate
the capabilities of deep reinforcement learning.

In 2017, Deepmind’s AlphaGo Zero showed the possibility for computers to achieve
superhuman performance in Go without relying on human knowledge or pre-existing data.
Subsequently, AlphaZero made outstanding achievements in chess and shogi. However, a
large amount of computational resources was required. Deepmind ran the training progress for
Go for several days with 5000 TPUs, while Facebook’s ELF OpenGo used 2000 V100 GPUs to
achieve the top level of performance [4]. Therefore, it is an important and meaningful research
direction to improve AlphaZero with limited computational resources.

This paper introduces several methods to speed up the training process and improve
the final performance of the original AlphaGo Zero model (pipeline shown in Figure 1).
The reinforced model is called NoGoZero+. Although NoGoZero+ uses some domain-
specific features and optimization methods, it still starts from a random policy without
using external strategic knowledge or existing data. Additionally, techniques used in
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NoGoZero+ can be transferred to other nonspecific domains. By comparing the training
process under the same condition in NoGo, the training efficiency of NoGoZero+ was at
least six times that of the original AlphaZero.

Figure 1. AlphaZero’s pipeline. Self-play games’ data are continuously generated and collected
to train deep neural networks. After each round of training, the new model is compared with
the previous model. If the new model defeats the previous model, the training process continues.
Otherwise, the previous training result is discarded and the previous step is restarted.

NoGo is a new kind of board game that originated in 2005 [5]. Different than traditional
Chinese board game Go, it forbids players from capturing stones. Once a player has no
choice but to capture the counterpart’s stones, the player loses. The formal rules of NoGo
are shown below [6]:

• Board size is 9× 9.
• Black goes first, and both sides take turn in moving in the board. A stone cannot be

moved once the location is chosen.
• The goal of both sides is occupying areas instead of capturing counterpart’s stones.
• One side loses if it captures the other side’s stones or it suicides (deliberately makes

its own stone to be captured by their counterpart).

Because of NoGo’s novel rules and extremely limited background studies, NoGo
does not have a mature strategy. This paper creates a precedent of successfully applying
reinforcement learning to NoGo.

The main contributions are summarized as follows:
First, the paper proposes methods that can speed up the training progress and improve

the final performance. These methods can be either directly or indirectly applied to similar
AlphaZero training processes or general reinforcement-learning processes.

Second, the authors applied NoGoZero+ to the NoGo game and obtained better results
than those achieved by the original AlphaZero under the condition of limited resources.
This result shows the efficiency gap between AlphaZero’s general methods and indicates
the existence of better methods under specific conditions.

Third, to help research in this field, we provide the source code used to train the
model, some pretrained high-level models, and a comprehensive self-play dataset that
contains about 160,000 self-play games (available online: https://github.com/yifangao18/
NoGoZero (accessed on 20 June 2021)).

The rest of this paper is organized as follows. In Section 2, we present some closely
related works. The paper summarizes the basic architecture in Section 3 and describes the
proposed techniques. In Section 4, we introduce experimental settings, criteria, and details.
Section 5 reports the result and reviews the performance of NoGoZero+ in the competition.
Section 6 discusses the results obtained with our approach. Lastly, we conclude our work
and plan future works in Section 7.

https://github.com/ yifangao18/NoGoZero
https://github.com/ yifangao18/NoGoZero
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2. Related Work

In this section, we first go over the AlphaGo family, which first introduced deep
reinforcement learning (DRL) to board games with a large searching space, and some
famous board game AI based on AlphaGo-like methods. Then, we introduce early work
on the game of NoGo. Most of them achieved great success in the early years.

2.1. State of the Art in Board Game AI

The AlphaGo family, including AlphaGo, AlphaGo Zero, and AlphaZero [1–3], have
had great success in many complex board games such as Go and chess. Unprecedentedly,
AlphaGo family introduced DRL to board games, and DRL-based methods attracted many
researchers’ attention when AlphaGo beat top human player Lee Sedol. In particular, AlphaGo
Zero successfully trains a Go AI from scratch using only the rules of the game because of the
successful combination between Monte Carlo tree search (MCTS) [7,8] and deep neural network.
Furthermore, the so-called zero-learning method used by AlphaZero is a more general method
that can be used both in board games and other, more practical areas.

However, the large amount of computational resources consumed by the training pro-
cess of AlphaZero and the relatively immature network structures encouraged many re-
searchers to look into improved methods based on AlphaZero. An open-source project called
ELF OpenGo [4] reached superhuman level in the game of Go after two weeks of training
on 2000 GPUs (a relatively small number compared with the 5000 TPUs used by AlphaZero).
KataGo [9], a reimplementation of AlphaGo Zero, improved the learning process in many
ways, including using different optimization approaches to have more data about the value in a
shorter period of time and using additional training targets to speed up the training process.
Leela Zero [10], which is an open-source program trained with GPUs donated by a community
of contributors, mastered Go and chess. Morandin et al. [11] proposed a sensible artificial
intelligence (SAI) that plays Go to overcome the problem that AIs cannot target their margin of
victory, and this is the common problem shared by most of the famous early-game AIs based
on AlphaZero. Thus, the SAI successfully overcame the negative consequences: AIs often win
by a small margin, cannot be used with komi 6.5, and show lousy play in handicap games.

2.2. NoGo AI Research

NoGo, as opposed to the ancient game of Go, is becoming the new favorite in the
game AI community because of its relatively easy rules and lower computational resource
requirements. Some early studies on NoGo AI achieved great results. Lee et al. [12] proposed
an approach using ontologies, evolutionary computation, fuzzy logic, and fuzzy markup
language combined with a genetic-algorithm-based system. Their NoGo AI could analyze
the situation of the current board and play the next move to an inferred good-move position.
Sun et al. [13] put forward a static-evaluation method to accurately estimate the value of each
state of NoGo. Sun et al. [14] successfully used an improved pattern-matching algorithm to
find out the best move in the game of NoGo.

As far as we know, there are few studies about the combination of DRL or zero-
learning and the game of NoGo. Although former NoGo AI combined with traditional
methods achieved relatively good performance, the AlphaGo family showed that there is a
great performance gap between traditional methods and the DRL method. As a result, the
implementation of DRL and zero-learning method in the game of NoGo is necessary.

3. Methods

In this section, we introduce methods that we used to build up NoGoZero+.
We first go over the basic architecture of NoGoZero+. Then, we introduce the main
novel techniques that we used to improve the training process and the final performance
of NoGoZero+.



Electronics 2021, 10, 1533 4 of 16

3.1. Basic Architecture

While NoGoZero+ has various novel details and improvements, it has a similar
basic architecture to that of AlphaZero. We basically followed the parameters in [9]
because this study provides complete parameter information compared to other AlphaZero
implementations.

MCTS is the core searching method of AlphaZero, which is guided by a neural network.
NoGoZero+ uses it to play the game against itself to generate training data. It also uses a
variant of PUCT [15] to balance exploration and exploitation, and cpuct is a constant that
determines the importance of both. When cpuct is small, MCTS tends to exploit game states
with high value. Conversely, when cpuct is large, MCTS tends to explore unknown move
locations, and the exploration is guided by the policy prior outputs by the neural network.
With playouts repeating, the searching process continues, and the search tree grows. The
process of playouts starts from the root and goes down the tree, and each node n selects
child c with the largest PUCT(c) value:

PUCT(c) = V(c) + cpuctP(c)

√
∑c′ N

(
c′
)

1 + N(c)
(1)

where V(c) represents the average predicted score of all nodes in c’s subtree, P(c) represents
the policy prior of c from the neural network, N(c) represents the number of playouts that
are used to go through child c, and we set cpuct = 1.1. The Iteration of MCTS is terminated
after a certain amount, and generates new policies on the basis of the visit frequency of
their child nodes in the tree.

NoGoZero+ adds noise to the policy prior at the root to encourage exploration:

P(c) = 0.75Praw(c) + 0.25η (2)

where η is a draw from Dirichlet distribution on legal moves with parameter
α = 0.03 ∗ 92/N, where N is the number of legal moves, and Praw(c) is the policy prior at
the root.

The board of NoGo, unlike the traditional 19× 19 Go board, has a size of 9× 9, so the 92

part of parameter α corresponds to the NoGo board size. NoGoZero+ also applies a softmax
temperature at the root of 1.03 to improve policy convergence stability according to [11].

A convolutional residual network [16] with preactivation is used to guide the search.
The residual network has a trunk of b residual blocks with c channels. However, after
various improvements, our network structure was very different compared to that of
AlphaZero; see Figure 2. Furthermore, in the primary stage of training, inspired by
curriculum learning [17], we designed a method called network curriculum learning to
speed up the training progress. NoGoZero+ began with a relatively small residual network
and gradually improved the size of the network when it converged under the condition of
using the earlier residual network.

3.2. Techniques in NoGoZero+
3.2.1. Global Attention Residual Block

In general, the AlphaZero-based model has a strong ability to capture the local in-
formation of the board. However, due to the limited perceptual radius of the classical
convolution layer, global strategy prediction remains challenging. Some findings in previ-
ous studies on board games, such as the fatal ‘ladder failure’ that commonly occurs in Go,
support this view [4]. Therefore, we began exploring the attention-based structure. As a
popular design of computer vision, the attention mechanism can help models to globally
pay more attention to important information.
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Figure 2. Comparison of network architecture of AlphaZero and NoGoZero+ (5 residual blocks).

In this section, we propose the global attention residual block (GARB), a novel
attention-based structure based on the global pooling layer, as shown in Figure 3. The
global pooling layer was proposed in previous research on the game of Go [9]. The layer
enables the convolutional layers to condition in a global context, which can be hard or im-
possible for convolutional layers with limited perceptual radius. NoGoZero+ replaces parts
of the ordinary convolutional layers with the global pooling structure (GPS) to improve
the neural network’s ability of synthesizing the global context.

Figure 3. Proposed GARB. The structure globally aggregates values of one set of channels to bias
another set of channels, potentially providing the final output with information on the global
context in NoGoZero+.

Given a set of c channels, the global pooling layer computes the mean of each chan-
nel and the maximum of each channel. The whole process outputs a total of 2c values.
The global pooling layer is a part of the GPS. Given input X ∈ RC1×H×W and G ∈ RC2×H×W

(C1 and C2 represent the channel, H and W represent the height and width respectively),
the GPS includes the following components:

• Batch-normalization layer and rectified linear unit (ReLU) activation function applied
to G, output shape C2 × H ×W.

• Global pooling layer applied to G, output shape 2C2.
• Fully connected (FC) layer to G, output shape C1.
• Channelwise sum with X, output shape C1 × H ×W.
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Previous studies showed that avoiding dimensionality reduction in the FC layer is
crucial for learning channel attention [18]. Therefore, we set the value of C1 to twice
that of C2 to avoid performance degradation caused by dimensional changes. GPS was
inserted into a standard residual block and eventually constituted GARB. Given input
Xin ∈ RC×H×W of GARB, two independent convolutional layers decomposed the input
into X with channel dimension number 2C

3 , and G with channel dimension number C
3

before sending it to GPS.
Moreover, GARB is more focused on extracting long-range dependencies, and it

is insufficient for local-information extraction compared to the standard residual block.
In order to supplement local information, GARB alternates between two configurations in
consecutive residual blocks, as illustrated in Figure 2b.

3.2.2. Multitask Learning

AlphaZero has both a policy head and a value head at the end of its deep neu-
ral network. They contribute to the policy network and value network, respectively.
The policy head predicts potential good moves, and the value head predicts the final
result of the game.The deep neural network outputs policy and value on the basis of the
current state of the board. Two parallel networks can be regarded as two training tasks for
the neural network.

Such a multitask learning method [19] has had great success in training AlphaZero.
NoGoZero+ follows and expands the idea. The paper adds two other output heads,
dominion head and score head, which contribute to the two extra tasks (shown in Figure 4a).
In NoGo, dominion head predicts the ownership of each location on the board. The
ownership indicates the key locations that heavily impact the final result. In both computer
games and real world, the final result is suggested both by outputs of a prediction network
or noisy 1 and −1 (win and loss), and by more details observed during the game. The
neural network can have more insight into the cause of the final result, including the true
gap between the winner and loser in a playout round.

Our proposed dominion head architecture is shown in Figure 4b. It contains a convolu-
tional block, a global pooling convolutional block, and an output layer. The convolutional block
includes a batch-normalization layer, a ReLU activation layer, and a 3× 3 convolutional layer.
The global pooling convolutional block includes the GPS, a batch-normalization layer, a ReLU
activation layer, and a 1× 1 convolutional layer with 2 filters.

We assumed input feature map x ∈ RC×H×W , where C, H, and W are channel, height,
and width. First, the convolutional block is applied to x, output with the same size as that
of x. Then, the output of the convolutional block is passed through the global pooling
convolutional block, and the number of channel dimensions of x is reduced to 2. Lastly,
we apply a FC layer with sigmoid activation in the output layer that provides dominion
output yd ∈ RH×W .

Our proposed score-head architecture is shown in Figure 4c. The network structure of
the score head is similar to that of the dominion head, with two differences. The first is that
the 1× 1 convolutional layer of the global pooling convolutional block has only one filter,
so the output feature map is 1 in the channel dimension. The second is that the output
layer of the score head contains a FC layer with tanh activation, outputting a scalar in the
range of [−1, 1]. Lastly, we multiply it by the score factor to reflect the score gap between
the two players. In NoGo, since most score gaps are within 5 points, the score factor was
set to 5, and a larger score gap is regarded as 5 points once appearing. Therefore, output ys
is a scalar in the range of [−5, 5].
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Figure 4. (a) Multitask learning network structure. (b) Illustration of dominion head. (c) Illustration
of the score head. Except for the policy head and value head, which are also used in AlphaZero, we
added score head and dominion head to evaluate the gap of the performance of two players and the
key winning position, respectively. The two additional heads can effectively help the NoGoZero+
agent have insight into the game state and make full use of self-play data because of the more
detailed information.

3.2.3. Network Curriculum Learning

Curriculum learning is an important method in reinforcement learning [20,21].
To prevent the agent from being stuck at the early stage of training because of the
hard initial task or having dissatisfactory performance at the end of training because
of oversimplified tasks, we carried out curriculum learning by imitating the learning
process of humans and animals and gradually improve the model trough progressive
samples and knowledge.

In this paper, the idea of curriculum learning was extended to the neural network
and is called ‘network curriculum learning’. A ahallower and narrower structure leads
to a network with less complexity, but it converges more quickly. While the deeper and
wider network with more complexity is usually harder to be trained, network curriculum
learning tries to balance complexity and convergence rate. During NoGoZero+ training,
the process starts with a simpler network with fewer parameters. Self-play and training
data are generated by the shallow network, and used to train a deeper and more complex
network (and the simpler network itself), while the deeper network itself does not
generate new data. As soon as the simpler network meets its bottleneck, which means
that this network has converged, the whole training process is transferred to a larger
network. The process is repeated until the size and the performance of the network
satisfy our needs.
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Figure 5 shows the course of network curriculum learning. The whole process
of training the NoGoZero+ agent can be separated into three stages, and the number
of residual blocks (b in Figure 5) grew from 5 to 20, while the number of channels
(c in Figure 5) of each residual block grew from 32 to 128. With the help of network
curriculum learning, the agent avoids the stagnation of training in the early stage and
saves much training time.

Figure 5. Process of network curriculum learning. Data generated by the shallower network are used to
train both the shallow network itself and a deeper network. The whole process contains three stages, and
the network with b = 20, c = 128 was extracted as the final network that is used in the agent.

3.2.4. Advanced Specific Features

AlphaZero provides a universal method to train game agents. The method per-
forms perfectly on chess, shogi, and Go. However, a sea of computational resources
that make the universal method work. With limited resources, it is important for us to
add some advanced specific features to speed up the training process and make full use
of the obtained data from every game. Like other machine-learning methods [22], rein-
forcement learning also attaches much importance to well-designed specific features,
which can make a great difference to the speed of training process, as well as the final
performance of agents.

Similar to imitation learning, some domain-specific professional knowledge guides
the deep model to converge faster during the initial stage. Besides current and historical
steps, which are also the features used by AlphaZero, NoGoZero+ adds another kind of
advanced feature, liberty, which is also called ‘qi’. Four input layers are added on the
basis of the input layers of the network to show the features of liberty:

• Liberty locations belonging to our stones that have only one liberty.
• Liberty locations belonging to our stones that have two liberties.
• Liberty locations belonging to the counterpart’s stones that have only one liberty.
• Liberty locations belonging to the counterpart’s stones that have two liberties.

The four above features are (1) ‘half-dead’, (2) ‘near-dead’, (3) ‘half-kill’, and
(4) ‘near-kill’, respectively. One-hot encoding is used to represent the four advanced
features. The corresponding location in the input layer is set to 1 once a specific feature
appears. The corresponding features are schematically shown in Figure 6.
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Figure 6. Demonstration of advanced features. Location of existing features is marked with one-hot
encoding in the corresponding input layer. Four additional layers are added to the input layer set of
the original AlphaZero and provide the NoGoZero+ agent with additional advanced information
about the board state. Results in the next section show that such modification can obviously improve
training speed and final performance.

4. Experiments

In the two following sections, we use some control tests to verify the improvements
our techniques bring to the basic AlphaZero method, and use ablation experiments to
examine the contributions of each approach used in NoGoZero+. In this section, we
introduce the experimental settings, evaluation criteria, and training parameters to detail
the background and process of our experiments.

4.1. Experimental Settings

To look into the behavior of NoGoZero+ and demonstrate the effects of the unique
techniques introduced in the paper, two experiments were conducted.

First, we designed an experiment to show the significant speedups attributing to
adding extra training methods to the original AlphaZero theory by comparing three
models’ training processes on the NoGo:

• Training process of the original AlphaZero.
• Training process of AlphaZero with network-curriculum-learning technique.
• Training process of NoGoZero+.

Second, to explore the effects of every single technique, an ablation experiment was
conducted. To more clearly demonstrate the contributions of each technique to the final result,
all agents in the ablation experiment did not use the network-curriculum-learning method.

4.2. Evaluation Criteria

The Elo model [23] is an effective way to measure the level of game agents, widely
used to evaluate the performance of agents in, for example, chess, Go, basketball, and
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football. Assuming that the Elo ratings of Agents A and B are RA and RB, respectively, the
expected winning probability of A versus B is:

EA =
1

1 + 10
RB−RA

400

(3)

When Player A’s true score SA is different from its expected winning probability
(1 for win, 0 for loss, 0.5 for tie. There is no tie in NoGo.), its Elo rating should be adjusted as

R
′
A = RA + α(SA − EA) (4)

where R′A is the Elo rating of Player A after adjustment, and α is a weight that is often set
to 16 in master tournaments (α = 16 is also used in our experiment).

4.3. Training Parameters and Details

We set stochastic gradient descent (SGD) as the optimizer with a learning rate equal
to 0.001 and momentum equal to 0.8. Our experiments were performed on an NVIDIA
Tesla V100 GPU (with 32 GB GPU memory). The deep-learning models were implemented
using Pytorch. In training, the data-augmentation technique that we used includes all
eight reflections and rotations for each position. The entire training process took about
100 h, and most of the resources were consumed in self-play. Multithreading self-play is
recommended to make full use of GPU and CPU resources.

Considering the four output heads of the improved network structure, the loss func-
tion is the sum of the five following kinds of losses.

• Policy Loss
−∑

m
π(m) log (π̂(m)) (5)

where m is the set of the rest legal moves, π is the target policy derived from the
playouts of the MCTS search, and π̂ is the neural network’s prediction of policy π.

• Value Loss
− cg ∑

r
z(r) log (ẑ(r)) (6)

where r is the final result for the current player ((r ∈ {win, lost}), z is a one-hot
encoding function of r, ẑ is the neural network’s prediction of the final result. cg = 1.5
is a scaling constant.

• Dominion Loss

− cd ∑
m

γ(m) log (γ̂(m)) + (1− γ(m)) log (1− γ̂(m)) (7)

where m is the set of the moves in the board, γ is the final result for the current player
(r ∈ {dominion, not dominion}), ẑ is the neural network’s prediction of γ. cd = 0.5 is
a scaling constant.

• Score Loss
cs(v̂− v)2 (8)

where v is the scalar of score difference, v̂ is the prediction of the final result. cs = 0.25
is a scaling constant.

• L2 Penalty
cL2‖θ‖2 (9)

where cL2 = 10−5, so as to prevent the network from overfitting due to the relatively
deep neural network structure.
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5. Results

In this section, the experiment results are shown and discussed. Then, some interesting
playouts are displayed and explained to demonstrate the intelligence of NoGoZero+.
Lastly, we introduce the performance of NoGoZero+ in the competition and summarize
the possible reasons for not winning first place.

5.1. Experiment Results

The results of the first experiment are shown in Table 1. AlphaZero’s Elo rating reached
2500 after 120,000 self-play games, while it only took NoGoZero+ 20,000 self-play games to
reach an Elo rating of 2750, and NoGoZero+ defeated original AlphaZero with 81 wins and
19 losses in 100 playouts. The AlphaZero agent, with the help of the network-curriculum-
learning method, had a similar learning curve to that of NoGoZero+. However, an obvious
gap of Elo rating between the AlphaZero agent with network curriculum learning and
complete NoGoZero+ indicated that other techniques that we use make a great difference
in the behavior of the agent.

Table 1. Comparison of Elo ratings among original AlphaZero, AlphaZero with only network cur-
riculum learning, and complete NoGoZero+. NCL, network curriculum learning. NoGoZero+ had
advantages over the original AlphaZero in final performance (Elo rating) and training speed. More-
over, the obvious gap between complete NoGoZero+ and AlphaZero with only network curriculum
learning indicated the supplementary power of other techniques. Blocks represent the number of
residual blocks in the network.

Method Blocks NCL Games Elo Score

AlphaZero 20b 120k 2500
AlphaZero 5b X 3k 1800
AlphaZero 10b X 10k 2250
AlphaZero 20b X 20k 2350

NoGoZero+ 5b X 3k 2300
NoGoZero+ 10b X 10k 2625
NoGoZero+ 20b X 20k 2750

The results of the second experiment (ablation experiments) are shown in Table 2.
Comparing the final behavior of the agents with different parts weeded out, GARB had a
relatively larger influence on the final performance (the Elo rating of which dropped from
2300 to 2045 without it), while multitask learning and advanced features closely impacted the
performance of the agent. Adding advanced features was less influential because the main aim
of adding advanced features is to help the agent make full use of detailed information obtained
from one single playout to speed up the training process with relatively limited resources.
Overall, every technique used in the training process of NoGoZero+ had a positive effect, which
can effectively help to improve the Elo rating of the agent.

5.2. Strategies Learnt by the Agent

Unlike Go, which originated thousands of years ago and has been researched for quite
a long time, NoGo is a new board game with few mature strategies. However, with the help
of techniques shown in the previous sections, the NoGoZero+ agent developed a series of
inspirational strategies. The paper demonstrates and discusses some distinct, impressive
strategies shown by the NoGoZero+ agent in self-play games.
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Table 2. Comparison of Elo ratings among original AlphaZero, AlphaZero with only network
curriculum learning, AlphaZero using some of the techniques in this paper, and complete NoGoZero+.
ASF, advanced specific features; MTL, multitask learning network structure; 5b, number of residual
blocks in the network.

AlphaZero (5b) GARB MTL ASF Games Elo Score

X 3k 1800
X X X 3k 2174 ± 47.62
X X X 3k 2134 ± 52.24
X X X 3k 2045 ± 87.39
X X X X 3k 2300

5.2.1. Triangle Strategy

A triangle layout and a prismatic layout are two kinds of favorable layouts to players
because the central location of such layouts cannot be occupied by a counterpart’s stones. As a
result, such layouts can greatly help at the end of the game when there are few locations to place
a stone. At the beginning of a game, the agent tries to build as many triangle and prismatic
layouts as possible, if not disturbed by the counterpart player (see Figure 7). Moreover, the
agent sometimes manages to prevent its counterpart from successfully building a triangle or
a prismatic layout after weighing advantages and disadvantages. Such behavior is called the
‘triangle strategy’.

Figure 7. Demonstration of ‘triangle strategy’. Black successfully built a triangle structure in the
location marked by4, and white successfully prevented black from building triangle structure in
Step 4 because neither black nor white could occupy the location marked by ×. Moreover, the white
stone placed in Step 8 also tried to destroy a potential triangle structure that may have contained the
black stones placed in Steps 5 and 7.

5.2.2. Predictive Strategy

With the progress of the NoGoZero+ agent, it becomes harder for white to win (the
average win rate is 4.5) because black learns to make full use of the sente advantage.
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A typical situation is: white tries hard to prevent black from using the triangle strategy and
fails because black takes the lead in the order (Figure 8).

Figure 8. A typical situation where the white falls behind. Starting from Step 4, white tried hard
to prevent black from using the triangle strategy, but black always took the lead. Although white
made a wise choice in Step 14 and terminated the ‘chasing game’, black successfully built a triangle
structure in Step 7. The whole process indicates that black has an obvious advantage over white
when the NoGoZero+ agent is well-trained.

Since NoGo is considered to be a game where the black player is more likely to win,
the white player needs to adopt a more aggressive strategy to win the game. We looked
into games in which white won, and found that white seemed to gain foresight under
certain conditions.

Figure 9 shows a part of a game where the white player won. Instead of chasing black’s
steps and trying hard to stop black in a relatively small area, the white player controlled the
overall situation and successfully disturbed black’s deployment on a larger scale.

Such a decision shows a sense of prediction, so the behavior is called ‘predictive
strategy’. The sense of the overall situation and the prediction should be attributed to the
GARB, which gives the agent a high level of understanding of the whole situation, and
multitask learning makes the agent capable of predicting the behavior of its counterpart.

Although the white player did not fully understand the predictive strategy in the experi-
ment, it is impressive that the agent developed such a high-level tactic. Hopefully, after more
self-play games, the agent can master predictive strategy or even other high-level strategies.
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Figure 9. Demonstration of predictive strategy. When black tried to build a triangle structure in Step
3, instead of chasing black’s step like the behavior shown in Figure 8, white took Step 4 and built a
wider encirclement, thus rendering the triangle structure built by black (marked by ×) useless.

5.3. NoGoZero+ in CCGC

The China Computer Game Championship (CCGC) is the largest computer-game
competition in China, held annually since 2006. In 2020, a total of 18 teams entered
the national finals. Our team competed for the first time and unfortunately lost in the
finals to the KnighTeam-NG (KNG) program developed by the Chongqing University of
Technology. KNG has won consecutive championships in NoGo since 2014. As the code is
not open-source, we cannot know what kind of technology KNG uses.

One lesson is that we unreasonably allocated the game time. NoGoZero+ spent much time
in the first half of the game, and when the second half of the time was exhausted, some strange
and unreasonable moves appeared before it lastly lost the game. In addition, our equipment for
participating in the competition was not good enough. For each move, NoGoZero+ could only
perform 1400–1800 MCTS on average, which led to worse model performance.

6. Discussion

Although the main battlefield of NoGoZero+ is still the game of NoGo, the techniques
used by NoGoZero+ can be extended to other nonspecific areas to reduce resource con-
sumption caused by large search spaces. First, GARB is an efficient attention mechanism
that helps improve the network’s ability to perceive global information. Second, the suc-
cess of the multitask learning network structure proved that adding more output heads to
neural networks can efficiently help the training process. Third, the network-curriculum-
learning technique can help to balance the complexity and the rate of convergence of a
deep neural network. Fourth, adding moderate domain-specific knowledge to the training
process of neural networks can make full use of training data and reduce the training
period, especially when computational resources are limited.

The game of NoGo is becoming a useful tool for many researchers who are interested in
game AI but do not want to spend too much time learning the complex game rules to carry out
studies. On the basis of the NoGoZero+ result, they can quickly develop a basic structure of
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NoGo game AI and save time for further study. As a result, with the help of techniques used by
NoGoZero+, the game AI community benefits from the lower research thresholds.

Moreover, AlphaZero-based methods mainly use convolutional neural networks
(CNN) to capture board information, just like CNN captures information from pictures
in computer-vision tasks. This means that many tricks used in computer vision can
be transformed into AI training processes. The attention model, which is commonly
used to select the most crucial information from pictures during computer-vision tasks,
can be combined with the original CNN structure to improve efficiency in the usage of
computational resources, and further enhance the final performance of the AI. This method
is reasonable and needs further research because some positions are also more important
than others are in board games.

7. Conclusions and Future Work

This paper presented NoGoZero+, which efficiently masters the game of NoGo on the basis
of the improved AlphaZero algorithm. By using several techniques, the improvement is nearly
cost-free. The methods enable a unified reinforcement-learning-based system to be trained from
scratch to being a powerful agent in a few days. The techniques used in NoGoZero+ can easily
be extended to other areas to reduce computational-resource consumption and improve training
efficiency. Experiments showed that NoGoZero+ had six times better training speed and better
performance than those of the original AlphaZero. This study highlights the tremendous
potential of reducing computing resources in board-game AI.

Although the experiment results of this study are encouraging, there are still some
limitations. For example, we were only awarded second place in the CCGC. The future
of this study includes exploring more powerful neural-network architectures and more
efficient sample-utilization methods to further improve performance. Our ultimate goal
is to provide insights and additional tools for the community to explore large-scale deep-
learning methods of computer games. Our code and data are public to help researchers in
the game AI community.
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