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Abstract: With collaborative robots and the recent developments in manufacturing technologies,
physical interactions between humans and robots represent a vital role in performing collaborative
tasks. Most previous studies have focused on robot motion planning and control during the execution
of the task. However, further research is required for direct physical contact for human-robot or robot-
robot interactions, such as co-manipulation. In co-manipulation, a human operator manipulates
a shared load with a robot through a semi-structured environment. In such scenarios, a multi-
contact point with the environment during the task execution results in a convoluted force/toque
signature that is difficult to interpret. Therefore, in this paper, a muscle activity sensor in the form
of an electromyograph (EMG) is employed to improve the mapping between force/torque and
displacements in co-manipulation tasks. A suitable mapping was identified by comparing the root
mean square error amongst data-driven models, mathematical models, and hybrid models. Thus, a
robot was shown to effectively and naturally perform the required co-manipulation with a human.
This paper’s proposed hypotheses were validated using an unseen test dataset and a simulated
co-manipulation experiment, which showed that the EMG and data-driven model improved the
mapping of the force/torque features into displacements.

Keywords: human-robot collaboration; human-human co-manipulation; data-driven modelling;
mathematical modelling; object manipulation; impedance control

1. Introduction

Robots in the industry are starting to transfer from confined spaces into areas that
are shared with humans, which reduces the operational cost for several industrial appli-
cations [1]. The co-existence of the human and the robot, however, raises many critical
challenges regarding the safety of the human, tasks scheduling, and system evaluations [2].
To tackle these challenges, researchers in human-robot collaboration (HRC) focus on im-
proving the production efficiency, safety, and collaboration quality between humans and
robots.

Until now, the human often remains in a superior guidance role, which is due to
human perception, cognition, and dexterity exceeding the capability of robots [3]. Robots,
on the other hand, cope well with high payloads and repetitive tasks, while delivering
high precision. Henceforth, several approaches established a combination of both human
cognitive and perceptual abilities with the robot’s endurance to perform a collaborative
task. This included intended physical contact between humans and robots during actions,
such as hand-overs, co-manipulation, co-drilling, and many other applications [4,5].

To ensure human health and safety in such scenarios, robots operate at limited speeds
and torque settings and perform a full stop in the case of a collision [6]. According to [5],
however, these collisions are permissible when limiting the impact forces. Therefore,
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another group of researchers proposed to control unavoidable collision by limiting the
impact forces, such as the work presented by [7]. These methods rely on the kinematic
and dynamic behaviour of the robot and human during the task. Such approaches require
accurate models of the given setup [7–9]. Thus, there is a growing interest in measuring
physical interactions between humans and robots [10]. Moreover, these interfaces have
been utilised to establish intuitive human-robot interactions.

This paper presents a novel approach based on human-human co-manipulation to
teach an industrial robot how to react to a human leader in a co-manipulation task. The
main benefit of such an approach is the intuitive modelling that allows the robot to have
similar behaviour to the human. This also allows the robot to isolate human haptic input.
Hence, it is possible to estimate the force originating from the human guidance and the
forces caused by contact with the environment (third contact point).

This paper’s proposed approach is based on two hypotheses investigated and vali-
dated on unseen test datasets. The first hypothesis includes adding a muscle activity sensor,
namely an electromyograph (EMG), to improve the data-driven model quality. The second
hypothesis is that data-driven approaches can achieve higher accuracy compared with
mathematical modelling and hybrid modelling approaches, despite adding the complexity
of human data processing. In order to validate the hypotheses, a simple leader–follower
demonstration scenario was conducted. It provided the required data to model the follower
behaviour and, thus, allowed teaching the robot to react similarly.

The paper is structured as follows: a brief literature review is presented in Section 2,
Section 3 describes the co-manipulation problem from a mathematical point of view. Then,
Section 4 details the equipment utilised during the human-human demonstration and data
collection. The adopted research methodology in this research is outlined in Section 5,
followed by the simulation setup and control-loop scheme in Section 6. Section 7 presents
the results and discussion of the obtained outcome from the conducted experiment. Finally,
the conclusions and future work are drawn in Section 8.

2. Literature Review

HRC is widely considered a critical concept to advance the quality and performance
in several domains [9]. However, despite intensive research in this field, there are still
many unsolved challenges that must be tackled to fully establish a safe and effective
collaboration [11]. This includes vital questions such as: How can a robot predict human
intentions? What role should the robot perform? At what time? Finally, how can a
HRC setup be evaluated [12]? Whereas some companies have invested in HRC and have
collaborative robots (cobots) on their manufacturing lines; many others are still waiting for
more mature solutions.

The authors in [13] claimed that the reason behind this is the lack of knowledge
when integrating cobots into manufacturing and business. Therefore, Ref. [13] examined
current training programs that inform manufacturers about finances and tools that support
decision makers to analyse assembly workstations and determine whether HRC would be
beneficial to their applications. The study concluded with the fact that there is a lack of
knowledge about the integration of cobots into the manufacturing processes. This could
also be due to several definitions of HRC being available. In some cases, HRC is treated as
a synonym for human-robot interaction in general.

In order to distinguish different kinds of human-robot interactions, Ref. [14] estab-
lished criteria, such as a workplace, working time, aim, and contact. At the lowest level,
human-robot coexistence includes a shared working environment, where tasks of the hu-
man and the robot do not interfere [15]. In addition to a shared working environment
and working time, human-robot cooperation also includes a shared aim of the overall
task [14]. On the highest level in HRC, physical contact between humans and robots is also
permitted, which makes it the most challenging method of interaction among the three [15].
Hence, human-robot mutual awareness is required, as well as the exact timing of tasks and
activities [11].
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To understand the required mutual awareness, Ref. [16] introduced a generic definition
of several types of human-human and human-robot interactions, in which interaction was
considered as a function of physical distances between the human and the robot. Therefore,
these interactions were categorised into avoiding, passing, following, approaching, and
touching. Hence, the parties in a co-manipulation context can be two humans, a human and
a robot, or two robots who manipulate a shared object from point A in the workspace to
point B. According to [16], this concept can be extended to multiple humans with a single
robot (multiple–single) or multiple humans with multiple robots (multiple–multiple).

Using this analogy, therefore, human-human co-manipulation can provide useful
insights on how humans perform a task and consequently teach robots to perform such
tasks with humans. Subsequently, various controllers have been designed to allow multiple
robots to work together when manipulating an object [17]. Other researchers proposed
controllers that are inspired by human anatomy and behaviour, and such research takes
the damping and impedance characteristics of human movement into consideration [18].
The authors in [19] stated that human-friendly robot cooperation requires an adaptive
impedance control that adjusts the robot impedance based on human characteristics. Hence,
motion data from a human-human co-manipulation experiment was conducted.

Using dynamic model identification techniques, damping and stiffness factors have
been estimated based on a simplified mathematical model (MM). The method mentioned
above, however, requires an accurate MM to be conceived, which is often complicated
and time-consuming. The collected data only contains position, speed, and acceleration,
while the forces are estimated accordingly. Another approach to model human-human
co-manipulation, similar to [18,19], can be found in [20]. An analysis was performed on
the leader and follower human, in which one human provided the haptic guidance and the
other human followed the haptic clues. The study concluded that most forces originated
from the leader, while the follower focused on tracking the co-manipulated object.

A control scheme that enables a humanoid robot to perform a co-manipulation task
with a human partner was proposed by [21]. The proposed control scheme consisted of
three phases. At first, the robot predicted the human’s intentions to move based on a
Force/Torque (F/T) sensor attached to the robot. In a second phase, the human and the
robot switched roles, where the robot provided guidance and the human followed. In the
third phase, the robot was controlled remotely with a joystick. The main problem with this
work that it ha a discrete nature, and it required initiation through a joystick.

Since HRC requires the human and the robot to be co-existing in the same workspace,
the design and development of a suitable HRC space is still an open challenge [22]. The
authors in [23] examined the HRC shared workspace requirements based on a case study
of disassembling press fitted components using collaborative robots. The study concluded
that the compliance behaviour of a collaborative robot enabled the operator to work closely
with the robot, which means lower installation costs and increasing efficiency as the robot
and the human can work simultaneously.

However, many challenges need to be addressed regarding the performance eval-
uation, task assignments, and role management. Researchers proposed to equip the
workspace with sensors that can improve the communication between the human and the
robot to address the workspace challenges. These sensors can be classified as contextual
sensors, such as cameras, motion trackers, biomechanical and psychological sensors, and
motion sensors. These combined sensors are believed to improve human-robot commu-
nication as they can be used to infer the physical and psychological states of the human
during the execution of the HRC task.

In more recent years, approaches have utilised Machine Learning (ML), including ad-
vanced classifiers such as Artificial Neural Networks (ANNs), to process sensory data [24].
In [25], an ANN was employed in human-human co-manipulation to predict the required
motion based on the F/T input from the leader. The controllers used in this approach fol-
lowed the desired trajectory to some degree of accuracy. However, the predicted trajectory
was described as jerky, and the maximum error reached was 0.1–0.2 m. In further research,
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Ref. [26] investigated human-human co-manipulation and proposed the use of a Deep
Neural Network (DNN) to accurately estimate the velocity and acceleration of the human
over 50 time steps of 0.25 s. The trained model showed higher accuracy in comparison
with the work presented in [25], although it was prone to noise interference.

In addition to haptic interfaces and F/T sensors, a growing interest in wearable
sensors can be observed, which is intended to improve communication between humans
and robots [27]. These approaches also aim to improve the mutual awareness of both
parties in HRC [28]. Combining wearable sensors with existing technologies is believed
to significantly improve HRC, as they can be used to infer the physical and psychological
states of the human during the execution task [29,30].

However, processing signals originating from wearable sensors is considered chal-
lenging due to large amounts of subject-specific noise within the data. For example EMG
signal depends on the individual internal structure, such as skin temperature, blood flow
rate, muscle structure, and many other factors [31]. Moreover, signals can even vary during
different recording sessions for the same individual [32]. Nevertheless, advanced ML
classifiers can be deployed to demonstrate their characteristic strengths of coping well with
noise [33].

A common wearable sensor for detecting muscular fatigue, as well as applied mus-
cular contraction, can be found in EMGs. The EMG signal directly correlates with the
forces applied [34]. For instance, Ref. [35] proposed the use of EMG to estimate the re-
quired stiffness during HRC tasks since stiffness is an essential component in cooperative
leader–follower tasks. The estimated stiffness was employed in a hybrid force/impedance
controller. EMG signals in conjunction with an Online Random Forest were used to detect
muscular fatigue/or a human operator struggling with a high payload in order to trigger
an assistance request for a cobot [27].

Additionally, Brain-Computer Interfaces (BCIs) have gained research interest in HRC.
In one approach, a BCI was utilised for communicating human movement intentions to a
robot [36]. A DNN was deployed to process electroencephalogram (EEG) signals, which
allowed for measuring and classifying human upper-limb movements up to 0.5 s prior to
the actual movements. A similar result have also been reported in [37]. Another approach
based on a DNN to predict human intentions to move a limb was presented by [38]. In this
paper, the human limb position was estimated based on torque readings collected from a
F/T sensor attached to the robot end-effector. In general, estimating human-intention-based
different sensors is still at an early stage, and further research is required.

Overall, there is an eminent research interest in HRC, of which co-manipulation can
be viewed as a small building block. Strategies for classical co-manipulation control vary
between force-based and motion-based; however, almost all are limited as they require
accurate mathematical modelling pre-knowledge about the desired trajectory. Nevertheless,
based on the literature, promising potential towards more accurate models can be found in
ML, including ANNs.

Advanced ML algorithms enable the classification of bio-sensory data, such as EMGs.
Utilising EMGs, in conjunction with F/T data to predict human motions for co-manipulation
tasks is still at an early stage. This would allow the collaborative robot to learn a behaviour,
based on human-human co-manipulation within different data-driven models. Moreover,
the performance of such data-driven models can be compared with previous mathematical
models and hybrid models. This paper provides a comprehensive study on human-human
co-manipulation, including a data-driven model, which also considers EMG signals.

3. Problem Definition

The human-human co-manipulation problem can be defined as transporting an object
by at least two humans through unstructured/structured environments. In such a task, the
human (leader) uses his/her perception to navigate the surroundings while communicating
with others (followers) using haptic forces and verbal and gesture clues. The main focus
of this paper is the haptic communication between the leader and the follower. Figure
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1 depicts the fundamental concept of the co-manipulation task, in which two human
operators are carrying out a co-manipulation task of handling a shared weight. The
influential factors in such a scenario are the muscle stiffness, resultant forces, object mass,
and object displacements in the 3D space.

Force Force

Figure 1. Human-human co-manipulation problem.

The problem at hand can be described as a one-to-one mapping that aims to map
follower displacement, and directions with the muscle EMG signal in response to the leader
F/T input. Formally, the input data are the F/T data and follower EMG signal, while the
output is the displacement of the load in the 3D space. Equations (1) and (2) depict the
mathematical definition of the mapping problem.

Input =
{

F, F ∈ R6×m

emg, emg ∈ R2×m (1)

Output =


xd, xd ∈ R1×m

yd yd ∈ R1×m

zd, zd ∈ R1×m
(2)

Henceforth, the problem can be mathematically defined as finding the mapping
between the input (Equation (1)) and the output (Equation (2)) as shown in Equation (3).

M(F, emg) = Input→ Output (3)

Such a problem can be considered as a regression problem [39] that can be solved
using ML approaches to identify suitable mapping while minimising the error.

4. Experimental Setup and Data Collection

To test the proposed hypotheses in this paper, an instrumented load was used to
collect data during the co-manipulation task, as shown in Figure 2. Two sEMG sensors
were utilised, which were fitted on the arm and the forearm as illustrated in Figure 3. For
the biceps muscle, the electrodes of the sensors must be aligned with the muscle axial,
which was identified as shown in Figure 3a, while the reference electrode must be shifted
away from the muscle axial.

Similarly, the sensor electrodes on the forearm muscle must be fitted on the forearm
muscle, specifically on the brachioradialis muscle [40], while the reference electrode placed
on the outside of the forearm close the bone side; as illustrated in Figure 3b. The Myoware
sensor used in this paper has on-board functionality that permitted the reading of the
rectified signal, making the signal suitable to be integrated with the presented setup.
The signals were sampled using a 12-bit Analogue-To-Digital Converter with a ∼85 Hz
sampling frequency. The instrumented load is a wooden board with a 5.0 kg weight
attached to it in the centre. The following sensors were utilised:

1. A six-axis F/T (F/T) sensor [41].
2. Surface electromyography (sEMG). [42], which is worn by the follower human
3. Motion tracker markers: eight cameras—VICON Vantage 5, https://www.vicon.com/

hardware/cameras/vantage/.

https://www.vicon.com/hardware/cameras/vantage/
https://www.vicon.com/hardware/cameras/vantage/
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The F/T, VICON, and sEMG sensors were sampled at different frequencies; there-
fore, these sensory data were synchronised using an adaptive algorithm implemented in the
messageFilter-ApproximateTime tool (http://wiki.ros.org/message_filters/ApproximateTime).
The bottleneck of this tool is the slowest signal, the sEMG. Thus, the synchronised data
will almost have the same frequency as the sEMG, which is around (∼85 Hz).

Weights
VICON

Markers

Force/Torque
Sensor

Muscle Activity
Sensors

Leader
Handle

Figure 2. Experimental setup.

Myoware sensor

Reference Electrode

(a)
Inside Forearm Outside Forearm

(b)

Figure 3. Fitting sEMG (Surface electromyography) sensors on (a) biceps and (b) forearm.

For the experiment presented in this paper, two participants were asked to co-
manipulate the load described above while avoiding an obstacle within the workspace.
Figure 4 depicts the floor plan for the experiment and the path that the leader and the
follower had to follow. The participants were assigned a leader or follower role and were
not allowed to communicate during the experiment. This prevents the participants from
verbally sharing their intention. The follower was equipped with muscle activity sensors,
which were integrated with the Robot Operating System (ROS) network [43].

The 5.0 kg load, in this scenario, provided some resistance while manipulating the
object to emulate a realistic scenario. Additionally, each participant was only permitted to
use one arm whilst carrying the object. This enabled the F/T readings to be mapped to

http://wiki.ros.org/message_filters/ApproximateTime
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a single local reference point. The leader guided the manipulation within the workspace
while avoiding the obstacle and towards the endpoint. At the same time, the follower
reacted to the leader’s movements and mimicked his/her motions until the endpoint
was reached. The experiment was designed in this way to replicate human-robot co-
manipulation.

Figure 4. Floor plan, human-human.

Sensor Placement

The F/T sensor was placed on the follower side in the centre of the object. The correct
EMG sensor placement is essential as the quality of the signal can be affected. As such,
the sensor must be placed over the centre of the muscle as shown in Figure 3 [42]. Finally,
the motion capture reference point was placed on the leader’s side in the object’s centre,
while the F/T sensor was located between the leader’s handle and the load. Hence, a
transformation between the F/T coordinate into the workspace coordinate is required.
Figure 5 illustrates the required transformation; also, it can be noticed that the coordinate
system of the F/T sensor in which the Z-axis is aligned with the handle axial and XY plane
was parallel to the surface of the sensor.

Ts
v

VICON

Co-ord System 

F/T Sensor

Co-ord System 

Object

Co-ord System 

Figure 5. Coordinate system transformations: F/T sensors into VICON system.

5. Methodology

Four different sets of features were used to predict the required displacements based
on leader guidance to validate the proposed hypotheses. The fitted models were evalu-
ated based on unseen test datasets using the root mean square error (RMSE). An over-
all displacement error (overall RMSE) was calculated to determine the resultant error

(
√

RMSE2
x + RMSE2

y + RMSE2
z). The employed feature sets are shown in Table 1.
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Table 1. Feature sets utilised to fit data-driven models.

Feature Set Features Set Dimension

Features 1 (F1) normalised F/T, normalised EMG
(arm/forearm), previous 3D displacements R11

Features 2 (F2) F/T, previous 3D displacements R9

Features 3 (F3) F/T, EMG (arm/forearm), previous 3D
displacements R11

Features 4 (F4) normalised F/T, EMG (arm/forearm),
previous 3D displacements R9

The F/T features were the F/T data (F = {Fx, Fy, Fz, Tx, Ty, Tz} ∈ R6), EMG arm and
forearm (EMG = {emgarm, emg f orearm} ∈ R2, respectively) and previous 3D displacement,
which is the displacement from thge previous timestamp (∆ = {δx, δy, δz} ∈ R3). Then,
the performance of the fitted models on the unseen test dataset was calculated using RMSE.
This allows for testing the impact of including EMG sensory data in such a context. Finally,
the performance of the best data-driven model was compared against the performance of
the MM and the hybrid model. Another important feature in the co-manipulation tasks is
the time, in which the human intention to move the shared object at time point t not only
depends on the F/T and EMG at the same point but also depends on the displacements at
the previous timestamp (t− 1), as summarised in Equation (4).

∆(t) = M(F(t), EMG(t), ∆(t− 1)) (4)

where M(−) is the mapping function of the given features to the intended displacement
∆. The displacement ∆(t− 1) is measured using the VICON system by comparing the
Cartesian position at t with the Cartesian position at t− 1.

5.1. Mathematical Modelling

The problem described in Section 3, can be simplified as a mass–spring–damper
system, as shown in Figure 6. The human arms can be simplified as a spring–damper on
both sides of the transported object in 3D space.

kf

bf

kl

bl

M

Ff Fl

Figure 6. Simplified mathematical system, where Ff , Fl are the follower and leader forces, respec-
tively; K f , Kl are the follower and leader muscle stiffness, respectively; b f , bl are the follower and
leader damping factor, respectively; and M is the mass of the shared load.

Using Newton’s second law (∑ F = m a), the problem in Figure 6 can be described as
shown in Equation (5).

m∆a(t) + (b f + bl)∆v(t) + (k f + kl)∆X = 0 (5)

The superposition concept can be used for further simplification, as the 3D space
system can be split into three separated equations (vector form), as shown in Equation (6).
Based on the experimental setup and the problem at hand, the resultant force is measured
using the F/T sensor. Furthermore, the total mass of the moving object is known; thus,
the model described in Equation (5) can be simplified by omitting the muscle stiffness and
damping effect as shown in Equations (5) and (6). To determine the displacements based
on the measured forces, Equation (6) can be rewritten as in Equation (7).
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 fx
fy
fz

 = m

axs
ays
azs

 (6)

∆xs
∆ys
∆zs

 =
∫∫ 

fx
m
fy
m
fz
m

∂2t (7)

In Equation (7), ∆xs, ∆ys, and ∆zs are the displacements in the F/T sensors. Therefore,
they must be transformed into the VICON coordinate system using a transformation matrix
that was calculated based on the alignment of the F/T sensor with respect to the VICON
markers (Figure 2). The final MM is shown in Equation (8), where Tv

s is the transformation
matrix from the F/T sensor into the VICON coordinate system.∆xv

∆yv
∆zv

 = Tv
s

xv
yv
zv

 = Tv
s

∫∫ 
fx
m
fy
m
fz
m

∂2t (8)

5.2. Model-Free Approaches: Data-Driven Models

Modern manufacturing systems are complicated since they integrate a wide variety of
equipment that extends from machinery and automation equipment on the shopfloor up to
cloud systems and data-acquisition tools. In addition, the complexity on the shopfloor level
due to the fast development of communication is exponentially increasing, which means
higher data flows between different elements on the shopfloor. Consequently, equipment
has higher nonlinearities, disturbances, and uncertainties. Therefore, it is almost impossible
to describe these complicated systems using conventional mathematical models, such as
differential equations or statistical models, in real applications. Nonetheless, with the
fast advancement of sensing technology and data collection technologies, data-driven
modelling (DDM) becomes more feasible in comparison with mathematical modelling [44].

Based on the regression problem explained in Section 3, we propose the use of Lin-
ear Regression (LR), Random Forest (RF) regression, Boosted-Trees (BT), and Recurrent
Neural Networks (RNN) as these methods represent state-of-the-art approaches [45]. LR is
well-known for simplicity and its ease of use. In contrast, BT and RF are ensemble ML ap-
proaches that are powerful and have shown high performance on several datasets. Finally,
an RNN as part of a Deep Learning Neural Network is utilised. Hence, in this paper, we
compared the performance of each ML algorithm and the performance of the data-driven
approaches with the mathematical and hybrid models. In the following subsection, the
data-driven approaches are explained in the co-manipulation context.

5.3. Hybrid Modelling Approach (HM)

As described in the mathematical modelling section, mathematical models are often
derived from the fundamental laws of physics, such as Newton’s laws of motion. Physical
models extrapolate well by design and, therefore, are preferred for model-based control
approaches. In realistic scenarios, however, modelling errors exist due to omitted dynamics,
modelling approximations, lack of suitable friction models, backlash, or unmodelled
elasticity in the mechanism. Classically, these problems can be tackled with assumptions,
linearisation around an operation point, and enhancing the model parameters based on
theoretical or experimental methods. In the case of a very complex mechanism, however,
these solutions might not be feasible.

On the contrary, data-driven modelling approaches utilise the behavioural response
of the system for different inputs and then extract a set of generic rules that describe
the correlations amongst the inputs and outputs without omitting or simplifying the
system. The main drawback of such systems is that they are not always interpretable as in
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physical/mathematical modelling. The quality of the data-driven model depends on the
size and quality of the collected data.

Furthermore, data can barely ever deplete all possible configurations. Thus, a hybrid
model can be used that combines simplified MM with a data-driven error model [46].
The target is to capture the main physical attributes of the given system (e.g., the robot)
while substituting for model approximations and inaccuracies. Hence, the hybrid model
has a grey-box character due to the mixture of a physical and data-driven (black-box)
error model. In this paper, we decided to model the error within a mathematical model,
Section 5.1, using the best data-driven approach from the previous section. Then, the
problem description can be now rewritten, as shown in Equation (9).∆xs

∆ys
∆zs

 =
∫∫ 

fx
m
fy
m
fz
m

∂2t + E(emg, F) (9)

where E(emg, F) is the error between the real displacement measured using VICON and
the estimated displacement using the mathematical models. The error function E(−) can
be seen as a regression problem that can be tackled using the best data-driven approach.
Consequently, the final model is a combination of MM and data-driven models. For
evaluation purposes, the hybrid model was compared with all the approaches above on
unseen test data.

6. Simulation Setup

A simulated UR10 robot with a 5.0 kg load was exploited to evaluate the different
methods mentioned above. Hence, the output from these methods was used with a
Proportional–Integral–Derivative (PID) controller, as depicted in Figure 7. In this control
scheme, the output disp(t) can be seen as a feedforward control scheme, in which the
prediction of error (disp(t)) can be added to the error from the previous action (feedback-
loop).

The inner loop is also a position control loop that attempts to maintain a precise
position given the prediction from the data-driven models combined with the position
error. The outer loop can be seen as a force-based control loop in which the robot must
react to human EMG and forces in a spring–damper manner. Therefore, this control scheme
is an Impedance Controller.

The simulation setup composed of a Workstation that runs Ubuntu 18.04 (developed
by Canonical Ltd.), ROS-Indigo (Developed by Willow Garage, Menlo Park, CA, USA)
with 100 Hz simulation frequency and the models developed earlier. The PID parameters
were experimentally chosen, and similar settings were implemented to test the methods
highlighted earlier.

Data-Driven

Models

PID

Controller

Force/Torque

EMG

position

_

e(t)

+

Pref(t-1)
e(t-1)

dis(t)

Figure 7. UR10 Position Control-Loop.

7. Results and Discussion
7.1. Results

During the human-human demonstration, two participants performed the
co-manipulation task, while data, from the F/T sensor, EMG sensor, and VICON, were
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collected, filtered, and synchronised. The total number of collected data points was 5125.
The EMG signal was collected only from the follower; one could argue that the sEMG
data are insufficient to draw a generalised solution. However, studies revealed that the
pattern of sEMG was comparable amongst different individuals; and hence, magnitude
normalisation allows us to generalise the findings of this paper [47].

Out of the 5125 data points, 4212 data points were used for training and validation
and 513 data points were used for testing. The synchronised data frequency was ∼80 Hz,
in which sensory data were synchronised using an approximation time tool developed for
ROS. The F/T sensory data were filtered using a low-pass filter with a cut-off frequency
at 50 Hz. The VICON data were filtered using moving-window-average and the manual
removal of anomaly data that occurred due to flip [48]. The collected data included the
F/T signal, the Cartesian position of the co-manipulated object, and the sEMG muscle
activity signal of the follower’s right arm. As highlighted in the problem definition section,
the goal is to find the mapping between relevant features and the displacements on the
Cartesian space.

For training the models, four different sets of features were used as illustrated in
Table 1, and these sets can be summarised as follows: normalised F/T signals and nor-
malised EMG signals (F1), F/T signals (F2), F/T signals and EMG signals (F3), and nor-
malised F/T signals (F4). The main reason behind this choice of features was to test
the proposed hypotheses that the use of EMG signals can improve the accuracy of the
data-driven models.

Figure 8 shows the accuracy of each predicted displacement in the X, Y, and Z
directions for the data-driven models. The best model shown in Figure 8d was the RNN
model based on feature set F1, which had the lowest RMSE with about 0.025 m on all axes
and about 0.045 m overall error. The remaining data-driven approaches did not show the
same impact of including the EMG data as illustrated in Figure 8a–c.

(a) LR models (b) RF models

(c) BT models (d) RNN models

Figure 8. RMSE (root mean square error) scores of different models using the sets of features F1, F2, F3, and F4.
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In terms of accuracy, however, the RF models showed tangent accuracy to the RNN
models with an overall RMSE of around 0.05 m. Finally, the BT and LR models had similar
performance with an overall RMSE of around 0.07 m as depicted in Figure 8a–c. Another
significant result is that sEMG features did not necessarily improve the quality of the
data-driven models, especially in the LR and BT models, in which the performance was
almost constant regardless of the feature set.

The general trend regarding the accuracy in the X−Y− Z direction is that the RMSE
in the Y direction was higher than the RMSE in X and Z across all models and feature sets,
as illustrated in Table 2. The Z axis models had the lowest RMSE but were still very close to
the X axis RMSE values. This performance variation on the X−Y− Z models is believed
to be due to the quality of the VICON data, which could be degraded due to reflective
objects, obstacles, and light variations.

Table 2. Accuracy (m) in X−Y− Z directions.

Model X Y Z

LR 0.032 0.060 0.027
RF 0.030 0.060 0.026
BT 0.030 0.054 0.025

RNN 0.026 0.037 0.021

Models with the lowest RMSE were chosen and compared with the MM and HM, as
shown in Figure 9. This figure shows that the RMSE values for the MM were (0.75, 1.34, 1.0)m.
The HM (Figure 10) RMSE values were (0.051, 0.056, 0.051)m, which is comparable to the
data-driven approach. We propose that these results occur due to the unknown dynamics
naturally originating from the human body that allow for an adaptive non-linear change of
stiffness and compliance, which is not captured in the simplified MM.

Figure 9. The best RMSE scores for data-driven models vs. the mathematical models.

As the RMSE scores for the MM were very large, it is not easy to compare amongst
different models in Figure 9. Therefore, Figure 10 illustrates the accuracy of the data-driven
models in comparison with HM, where it is clear that the RNN models had the lowest
error (overall error 0.025 m) while the rest of the data-driven models had an error range
between (∼0.065 m for BT models) and (∼0.075 m for LR models). The RNN models had
the lowest variations on all axes variations in comparison with other methods.

This result is of tremendous importance, as in human-robot co-manipulation, move-
ment variation (fluctuation) might result in jerky movements that represent a safety issue,
especially if the human is physically interacting with the robot. By a closer look at how
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the models behave in X − Y − Z directions, all models had relatively larger error along
the Y directions. This indicates the lack of variation along the Y axis in the captured data.
Another possible explanation is that the participants blocked the VICON cameras’ field,
which reduced the quality of the data in a certain direction.

Figure 10. Data-driven models and hybrid-modelling (HM).

7.1.1. Simulation Results

The first 50 sampled points from the fourth trial were used to control a simulated
setup as described in Section 6. The overall displacements of these 50 points were ∼3.5 m,
and the predicted displacements were used as a set point for a PID controller as illustrated
in Figure 7. The displacement error per-sampling point of the best data-driven models
in comparison with MM and HM is depicted in Figure 11. It is obvious from this figure
that the data-driven models had an error less than (∼6%), the HM model had an error of
(∼7.8%), and the MM had an error of ∼11.9%.

This shows that data-driven models had higher accuracy in comparison with HM and
MM. The error of data-driven models, however, appeared to be tangibly similar (on average
∼4%), in which LR and BT had the lowest error followed by RF and RNN, respectively.
Since the co-manipulation and force control, in general, is a non-linear problem, these
results come as a surprise given the results in the previous section. The explanation for
these results could be that the non-linear behaviour was achieved through the control
scheme (a feedforward–feedback loop).

Another essential aspect in the human-robot co-manipulation task is the interaction
forces during the execution [49]. Hence, during the simulation, interaction forces based on
a dynamical model of the load (5.0 kg) were estimated, and then physical metrics, such as
the work and kinetic energy, were calculated as shown in Figure 12. The results show that
the force, work, and kinetic energy of MM and HM were very high (relatively) compared
to the data-driven approach.

This not only means that it is challenging to do co-manipulation based on these
approaches but also that it is not safe to do such a task due to the speed variation (acc 6= 0).
Jerky movements with some impact force can cause injuries to the human during co-
manipulation tasks. On the other hand, the data-driven approaches appeared to have
much smoother movements as illustrated by the lower interaction force, work, and kinetic
energy, which indicates that movements occurred at a constant speed (acc = 0) with less
jerky movements.
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Figure 11. Model accuracy per sampling point in (%).

Figure 12. Interaction force (N), work (N·m), and kinetic energy (kg·m·s−1) of the simulated setup.

7.2. Discussion

The results revealed that the RNN models with feature set F1 were the most accurate,
followed by the RF, BT, and LR models, respectively. However, the RNN and the RF
models had tangible results. This is particularly important when a data-driven approach
is adopted for a HRC system with limited computational resources. In that case, the
RF models can give very accurate results with much lower computational requirements.
Another important observation is that the RNN and RF models trained on normalised F/T
and EMG (F1) had the best performance amongst other models. However, RF does not
require normalised features, and the performance of RF models must be the same with
and without normalisation. We speculate that this is due to the combination of the features
within the F1 set, which resulted in better performance.

The second outcome in this paper is that data-driven models had higher accuracy in
capturing the human-human co-manipulation. Hence, it is expected to be more accurate in
the human-robot scenario. This points towards being correct since mathematical models
require an accurate dynamical description of humans and robots to build such a system.
Assuming that an accurate model is available of a given robot, building such a system will
be feasible without a data-driven model. The counterargument to this is that, even if it is
possible to obtain a very accurate mathematical model of the robotics system, this solution
is not generic enough and can only be applied on one robot and one type of load. In other
words, the model does not guarantee resilience to variations in the system.
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The simulation results unexpectedly revealed that LR had the lowest displacement
error, due to the combination of LR models with a feedforward control scheme as shown
in Figure 7. Nonetheless, displacement accuracy is not the only aspect that needs to be
considered. Once the human is physically in contact with the robot, the robot’s responses
must not cause any injuries to the human. In other words, for movements that require
high forces, jerkiness should be prohibited. Hence, even though LR models achieved the
most accurate displacements, they had the highest interaction forces between humans and
robots. This means that the human must do more work to co-manipulate an object with
the robot. Hence, it will be more exhausting for the human to perform the required task.

8. Conclusions and Future Work

This paper utilised a data-driven approach to extract and model a human-human
(demonstration) co-manipulation skill, which can be utilised to teach an industrial robot a
human-like behaviour. The collected experimental data included F/T data, the manipulated
object’s Cartesian position, and the EMG signal from the human muscles (follower). The
collected data were then used to fit an RNN, an RF, an LR, and BT using four sets of features
(F1, F2, F3, and F4). The accuracy of the fitted models was tested using unseen, randomly
split test data, which illustrated that the sequential RNN trained on F1 features had the
lowest RMSE compared to other ML models.

Moreover, this showed that the use of EMG sensory data positively impacted such a
model’s accuracy. After that, the best data-driven model was compared with a simplified
mathematical model. The results illustrated that the RNN outperformed the mathematical
model; in fact, all data-driven approaches outperformed the mathematical models. Finally,
the best data-driven models were validated in a simulated environment with an impedance
controller to evaluate these approaches compared to MM and HM in a more realistic
scenario. The results exhibited that data-driven models had higher accuracy and smoother
trajectories in comparison with HM and MM.

In order to extend the work completed in this paper, it is essential first to outline the
vision for the work. This project’s desired outcome was to create a controller that allowed
co-manipulation tasks, including multiple robots following a human leader. However,
substantial work needs to be completed until this vision can be established. The data-
driven approach offers promising potential for more intuitive interfaces in HRC and,
thus, more effective collaboration between humans and robots. Hence, testing the model
experimentally in a human-robot manipulation scenario will be conducted in the future.
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