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Abstract: Discovering periodic-frequent patterns in temporal databases is a challenging problem of
great importance in many real-world applications. Though several algorithms were described in
the literature to tackle the problem of periodic-frequent pattern mining, most of these algorithms
use the traditional horizontal (or row) database layout, that is, either they need to scan the database
several times or do not allow asynchronous computation of periodic-frequent patterns. As a re-
sult, this kind of database layout makes the algorithms for discovering periodic-frequent patterns
both time and memory inefficient. One cannot ignore the importance of mining the data stored
in a vertical (or columnar) database layout. It is because real-world big data is widely stored in
columnar database layout. With this motivation, this paper proposes an efficient algorithm, Periodic
Frequent-Equivalence CLass Transformation (PF-ECLAT), to find periodic-frequent patterns in a
columnar temporal database. Experimental results on sparse and dense real-world and synthetic
databases demonstrate that PF-ECLAT is memory and runtime efficient and highly scalable. Fi-
nally, we demonstrate the usefulness of PF-ECLAT with two case studies. In the first case study, we
have employed our algorithm to identify the geographical areas in which people were periodically
exposed to harmful levels of air pollution in Japan. In the second case study, we have utilized our
algorithm to discover the set of road segments in which congestion was regularly observed in a
transportation network.

Keywords: data mining; pattern mining; periodic-frequent patterns; columnar databases

1. Introduction

Depending on the layout of recording data on a storage device, databases can be
broadly classified into two types, namely row databases and columnar databases (row and
columnar databases are also referred to as horizontal and vertical databases, respectively).
Row databases organize data as records, keeping all of the data associated with a record
next to each other in a storage device. These databases are mostly based on ACID (ACID
stands for Atomicity, Consistency, Isolation, and Duration) properties and are optimized for
reading and writing rows efficiently. Examples of horizontal databases include MySQL [1]
and Postgres [2]. Columnar databases organize data in the form of fields, keeping all of
the data associated with a field next to each other in a storage device. These databases are
mostly based on BASE (BASE stands for Basically Available, Soft state, and Eventually
consistent) properties and are optimized for reading and computing on columns efficiently.
Examples of columnar databases include Snowflake [3] and BigQuery [4]. Row databases
and columnar databases have their own merits and demerits. As a result, there exists
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no universally accepted best data layout for any application. Selecting an appropriate
database layout depends on the user and/or application requirements. In general, row
databases are suitable for online transaction processing (OLTP), while columnar databases
are suitable for online analytical processing (OLAP). Since an objective of OLAP involves
finding useful information in the data, the supportive move has been made in this paper to
find user interest-based patterns in a columnar database. For the pattern mining algorithms,
the columnar databases provide an advantage of cutting off several costly operations such
as pattern support counting and candidate pruning as these operations become simple
binary operations.

Frequent pattern mining is an important knowledge discovery technique with nu-
merous practical applications such as market-basket analysis [5], air pollution analysis [6],
and congestion analysis [7]. This technique was initially proposed by Agarwal et al. [8] to
discover the set of frequently purchased itemsets (or patterns) in a super-market database.
Several competent techniques were discussed in the literature [9–11] to enumerate all
frequent patterns from a transactional database. Luna et al. [12] recently presented a
survey on the advances that happened in the past 25 years of frequent pattern mining.
The popular adoption and the successful adoption of this technique has been hindered
by its limitation to discover regularities that may exist in a temporal database. When con-
fronted with this problem in real-world applications, researchers have generalized the
frequent pattern model to discover periodic-frequent patterns in a temporal database.
This generalized model involves discovering all patterns in a temporal database that satisfy
the user-specified minimum support (minSup) and maximum periodicity (maxPer) constraints.
The minSup controls the minimum number of transactions that a pattern must cover in
the database. The maxPer controls the maximum time interval within which a pattern
must reoccur in the data. A classical application of periodic-frequent pattern mining is air
pollution analytics. It involves identifying the geographical areas in which people were
regularly exposed to harmful levels of air pollution. A periodic-frequent pattern discovered
in our air pollution database is as follows:

{1197, 1631, 1156} [support = 54%, periodicity = 6 hours].

The above pattern indicates that the people living close to the sensor identifiers, 1197,
1631, and 1156, were frequently and regularly (i.e., at least once every 6 hours) exposed
to harmful levels of PM2.5. The produced information may help the users for various
purposes, such as introducing location-specific pollution control policies and suggesting
alternative residential areas for people with healthcare issues.

Several algorithms (e.g., PFP-growth [13], PFP-growth++ [14], and PS-growth [15])
have been described in the literature to find periodic-frequent patterns in a row database.
To the best of our knowledge, there exists no algorithm that can find periodic-frequent
patterns in a columnar temporal database. We can find periodic-frequent patterns by
transforming a columnar temporal database into a row database. However, we must
avoid such a naïve transformation process due to its high computational cost. With this
motivation, this paper makes an effort to find periodic-frequent patterns in a columnar
temporal database effectively.

Finding periodic-frequent patterns in columnar databases is non-trivial and challeng-
ing due to the following reasons:

1. Zaki et al. [16] first discussed the importance of finding frequent patterns in columnar
databases. Besides, a depth-first search algorithm, called Equivalence CLass Transfor-
mation (ECLAT), was also described to find frequent patterns in a columnar database.
Unfortunately, this algorithm cannot be directly used to find periodic-frequent pat-
terns in a columnar temporal database. It is because the ECLAT algorithm completely
disregards the temporal occurrence information of an item in the database.

2. The space of items in a database gives rise to an itemset lattice. The size of this lattice
is 2n − 1, where n represents the total number of items in a database. This lattice
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represents the search space for finding interesting patterns. Reducing this vast search
space is a challenging task in pattern mining.

Example 1. Figure 1a shows the itemset lattice of the three items a, b, and c. The size of this
itemset lattice is 23 − 1 = 7. The mining algorithm has to effectively search this huge lattice to find
all desired partial periodic patterns in a columnar temporal database.

a b c

ab ac bc

{}
null

abc

a b c

ab ac bc

{}
null

abc

(a) (b)

Figure 1. Search space of the items a, b, and c. (a) Itemset lattice and (b) Depth-first search on
the lattice.

Against this background, we propose a novel and generic ECLAT algorithm to find all
periodic-frequent patterns in a columnar temporal database. We call our algorithm Periodic
Frequent-Equivalence CLass Transformation (PF-ECLAT). This paper is a substantially
extended version of our conference paper [17] which reports a preliminary version of
PF-ECLAT. In this paper, we have extended the related work by extensively understanding
current literature. More importantly, the experimental results section (Section 5) has been
greatly expanded by considering additional databases and algorithms. In this paper,
we show that PF-ECLAT not only outperforms PFP-growth++ [14] but also outperforms
PS-growth [15] on all databases irrespective of maxPer and minSup values. Finally, an
additional case study on traffic congestion analytics was also presented to demonstrate our
patterns’ usefulness.

The main contributions of this paper are summarised as follows:

• This paper proposes a novel algorithm, called PF-ECLAT, to find periodic-frequent
patterns in a columnar temporal database.

• To the best of our knowledge, this is the first algorithm that aims to find periodic-
frequent patterns in a columnar temporal database. A key advantage of this algorithm
over the state-of-the-art algorithms is that it can also be employed to find periodic-
frequent patterns in a horizontal database.

• Experimental results on synthetic and real-world databases demonstrate that our
algorithm is memory and runtime efficient and highly scalable.

• Finally, our algorithm’s usefulness was demonstrated with two case studies. The first
case study is air pollution analytics, where the proposed algorithm was used to identify
geographical areas in which people were regularly exposed to harmful air pollutants
in the whole of Japan. The second case study is traffic congestion analytics, where our
algorithm was employed to find the set of road segments in which congestion was
regularly observed in a transportation network.

The rest of the paper is organized as follows. Section 2 reviews the work related to our
method. Section 3 introduces the model as a periodic-frequent pattern. Section 4 presents
the proposed algorithm. Section 5 shows the experimental results. Section 6 concludes the
paper with future research directions.

2. Related Work
2.1. Frequent Pattern Mining

Frequent pattern mining was introduced by Agarwal et al. [8] to identify interesting
items (called frequent patterns) appearing in many transactions of the market-basket
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database. However, later on, it has been used to disclose the correlation between different
items according to their co-occurrence in a database. Apriori [8] algorithm is the first
frequent pattern mining algorithm. It generates one-length frequent patterns after a single
scan of the database, and these patterns will be used to generate the subsequent length
patterns (called candidate patterns). These candidate patterns will be scanned against the
database to extract the frequent patterns. Even though Apriori is a complete algorithm,
it will take several database scans to generate the complete set of frequent patterns. As a
result, it is a time-consuming algorithm. This issue has been resolved in ECLAT [16] and
AprioriTID [8] algorithms, which will scan the entire database once and stores it in a vertical
data layout format. Each row consists of two columns: the first column represents an item,
and the second column stores the transaction number in which the item has appeared in the
database. Based on this data layout, we can calculate the frequency of each item without
scanning the database. Even though the vertical data layout format is used in both ECLAT
and AprioriTID, both follow different strategies during generating frequent patterns. In
particular, ECLAT follows a depth-first search strategy, while AprioriTID follows a breadth-
first strategy to find frequent patterns. Several other algorithms were also developed in the
literature [9–11,18] to find frequent patterns. Luna et al. [12] conducted a detailed survey
on frequent pattern mining and presented the improvements that happened in the past
25 years. However, frequent pattern mining is inappropriate for identifying patterns that
are regularly appearing in a temporal database.

2.2. Periodic-Frequent Pattern Mining

Tanbeer et al. [13] introduced the idea of periodic-frequent pattern mining. A highly
compacted periodic frequent-tree (PF-tree) was constructed and applied a pattern growth
technique to generate all periodic-frequent patterns in a database based on the user-
specified minSup and maxPer constraints.

Amphawan et al. [19] designed an efficient best-first search-based algorithm named
Mining Top-K Periodic-frequent Patterns (MTKPP) without using the user-specified minSup
constraint. Authors have introduced a list-based data structure named the top-K list to
maintain k periodic-frequent patterns with the highest support. These top-K lists have been
used during the mining process in the MTKPP algorithm to generate candidate patterns.
If the candidate patterns periodicity is less than the user-specified maxPer and support is
greater than the support of the kth pattern in the top-K list, it will be included in the top-K
periodic-frequent patterns list.

Uday et al. [20] introduced an extended multiple minimum support and multiple
maximum periodicity model to efficiently discover periodic-frequent patterns consisting of
both frequent and rare items. Authors have used two different constraints: minimum item
support and maximum item periodicity, to identify useful patterns. Each pattern satisfies
different minimum support and maximum periodicity based on the items available in it.
Authors have also introduced a pattern-growth algorithm to discover the complete set
of frequent and rare items using a novel and efficient tree-based data structure, called a
multi-constraint periodic-frequent tree.

Amphawan et al. [21] introduced a novel technique to discover periodic-frequent
patterns in a transactional database named approximate periodicity. It is used to reduce the
time to calculate the periodicity of an item. Authors have introduced a novel and efficient
tree-based data structure, called the Interval Transaction-ids List tree (ITL-tree), to maintain
the occurrence information of an item in a compact manner using an interval transaction-
ids list. A pattern-growth mining technique is also used to discover the complete set of
periodic-frequent patterns by a bottom-up traversal of the ITL-tree based on the user-
defined minSup and maxPer thresholds.

Uday et al. [22] introduced an interesting novel measure to discover periodic-frequent
patterns in a transactional database named periodic-ratio. The authors have identified
some of the interesting patterns which are almost periodically appearing in the database.
A frequent pattern’s periodic interestingness is calculated as the proportion of its periodic
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occurrences in a database. A potential pattern is defined as a pattern whose periodic
interestingness is greater than the user-specified minimum periodic-ratio, and support is
greater than the user-specified minSup. These potential patterns were used to construct an
extended periodic-frequent tree. Authors have also introduced an extended pattern-growth
algorithm to discover the complete set of periodic-frequent patterns.

Rashid et al. [23] introduced an interesting novel measure for mining regularly
frequent patterns in a transactional database named maximum variance (maxVar). A highly
compacted regularly frequent pattern tree was constructed and applied a pattern growth
technique to generate the set of regularly frequent patterns in a database based on the user-
specified minSup and maxVar constraints. The minSup controls the minimum number of
transactions that a pattern must cover in the database. The maxVar controls the maximum
variance of intervals at which a pattern reoccurs in a database.

Uday et al. [14] introduced a novel greedy approach to discover periodic-frequent
patterns. Authors have designed a two-phase architecture named expanding and shrinking
to store all the patterns with support and periodicity efficiently. Where these phases have
effectively utilized the newly introduced local periodicity concept. Finally, created a PF-
tree++ and applied a pattern growth technique to generate periodic-frequent patterns in a
database based on the user-specified minSup and maxPer.

Anirudh et al. [15] introduced a novel concept of periodic summaries to find the
periodic-frequent patterns in temporal databases. Authors have introduced a novel concept
called periodic summaries-tree to maintain the time stamp information of the patterns
in a database and designed a pattern growth algorithm to generate a complete set of
periodic-frequent patterns.

Unfortunately, all of the above algorithms have used the concept of a row database.
As a result, these algorithms cannot be directly applied to a columnar database.

3. Periodic-Frequent Pattern Model

Let I be the set of items. Let X ⊆ I be a pattern (or an itemset). A pattern containing
β, β ≥ 1, number of items is called a β-pattern. A transaction, tk = (ts, Y), is a tuple,
where ts ∈ R+ represents the timestamp at which the pattern Y has occurred. A temporal
database TDB over I is a set of transactions, i.e., TDB = {t1, · · · , tm}, m = |TDB|, where
|TDB| can be defined as the number of transactions in TDB. For a transaction tk = (ts, Y),
k ≥1, such that X ⊆ Y, it is said that X occurs in tk (or tk contains X) and such a timestamp
is denoted as tsX. Let TSX = {tsX

j , · · · , tsX
k }, j, k ∈ [1, m] and j ≤ k, be an ordered set of

timestamps where X has occurred in TDB.

Example 2. Let I = {a, b, c, d, e, f } be the set of items. A hypothetical row temporal database
generated from I is shown in Table 1. Without loss of generality, this row temporal database can
be represented as a columnar temporal database as shown in Table 2. The temporal occurrences of
each item in the entire database are shown in Table 3. The set of items ‘b’ and ‘c’, i.e., {b, c} is a
pattern. For brevity, we represent this pattern as ‘bc’. This pattern contains two items. Therefore,
it is a 2-pattern. The pattern ‘bc’ appears at the timestamps of 1, 3, 4, 6, 9, and 10. Therefore, the
list of timestamps containing ‘bc’, i.e., TSbc = {1, 3, 4, 6, 9, 10}.

Table 1. Row database.

ts Items ts Items

1 abcf 6 abcd
2 bd 7 ab
3 abcd 8 cd
4 abce 9 abcd
5 cef 10 bcf
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Table 2. Columnar database.

ts
Items

ts
Items

a b c d e f a b c d e f

1 1 1 1 0 0 1 6 1 1 1 1 0 0
2 0 1 0 1 0 0 7 1 1 0 0 0 0
3 1 1 1 1 0 0 8 0 0 1 1 0 0
4 1 1 1 0 1 0 9 1 1 1 1 0 0
5 0 0 1 0 1 1 10 0 1 1 0 0 1

Table 3. List of ts of an item.

Item TS-List

a 1, 3, 4, 6, 7, 9
b 1, 2, 3, 4, 6, 7, 9, 10
c 1, 3, 4, 5, 6, 8, 9, 10
d 2, 3, 6, 8, 9
e 4, 5
f 1, 5, 10

Definition 1 (The support of X). The number of transactions containing X in TDB is defined as
the support of X and denoted as sup(X). That is, sup(X) = |TSX |.

Example 3. The support of ‘bc,’ i.e., sup(bc) = |TSbc| = |{1, 3, 4, 6, 9, 10}| = 6.

Definition 2 (Frequent pattern X). The pattern X is said to be a frequent pattern if sup(X) ≥
minSup, where minSup refers to the user-specified minimum support value.

Example 4. If the user-specified minSup = 5, then bc is said to be a frequent pattern because of
sup(bc) ≥ minSup.

Definition 3 (Periodicity of X). Let tsX
q and tsX

r , j ≤ q < r ≤ k, be the two consecutive
timestamps in TSX . The time difference (or an inter-arrival time) between tsX

r and tsX
q is defined as

a period of X, say pX
a . That is, pX

a = tsX
r − tsX

q . Let PX = (pX
1 , pX

2 , · · · , pX
r ) be the set of all

periods for pattern X. The periodicity of X, denoted as per(X) = maximum(pX
1 , pX

2 , · · · , pX
r ).

Example 5. The periods for this pattern are: pbc
1 = 1 (= 1− tsinitial), pbc

2 = 2 (= 3− 1), pbc
3 =

1 (= 4− 3), pbc
4 = 2 (= 6− 4), pbc

5 = 3 (= 9− 6), pbc
6 = 1 (= 10− 9), and pbc

7 = 0 (=
ts f inal − 10), where tsinitial = 0 represents the timestamp of initial transaction and ts f inal =
|TDB| = 10 represents the timestamp of final transaction in the database. The periodicity of bc,
i.e., per(bc) = maximum(1, 2, 1, 2, 3, 1, 0) = 3.

Definition 4 (Periodic-frequent pattern X). The frequent pattern X is said to be a periodic-
frequent pattern if per(X) ≤ maxPer, where maxPer refers to the user-specified maximum
periodicity value.

Example 6. If the user-defined maxPer = 3, then the frequent pattern ‘bc’ is said to be a periodic-
frequent pattern because per(bc) ≤ maxPer. Similarly, bca and ba are also periodic-frequent
patterns because TSbca = {1, 3, 4, 6, 9}, TSba = {1, 3, 4, 6, 9, 10}, sup(bca) = 5, sup(ba) =
6, per(bca) = 3, and per(ba) = 3. The complete set of periodic-frequent patterns discovered from
Table 3 are shown in Figure 3f without (i.e., Strikethrough) mark on the text.

Definition 5 (Problem definition). Given a temporal database (TDB) and the user-specified
minimum support (minSup) and maximum periodicity (maxPer) constraints, the aim is to
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discover the complete set of periodic-frequent patterns that have support no less than minSup and
periodicity no more than the maxPer constraints.

4. Proposed Algorithm

In this section, we first describe the procedure for finding one length periodic-frequent
patterns (or 1-patterns) and transforming row database to columnar database. Next, we will
explain the PF-ECLAT algorithm to discover a complete set of periodic-frequent patterns
in columnar temporal databases. PF-ECLAT algorithm employs depth-first search (DFS)
and the downward closure property (see Property 1) of periodic-frequent patterns to reduce
the huge search space effectively.

Property 1 (The downward closure property [13]). If Y is a periodic-frequent pattern, then
∀X ⊂ Y and X 6= ∅, X is also a periodic-frequent pattern.

4.1. PF-ECLAT Algorithm
4.1.1. Finding One Length Periodic-Frequent Patterns

Algorithm 1 describes the procedure to find 1-patterns using PFP-list, which is a
dictionary. We now describe this algorithm’s working using the row database shown in
Table 1. Let minSup = 5 and maxPer = 3.

Algorithm 1 PeriodicFrequentItems(Row database (TDB), minimum support (minSup),
maximum periodicity (maxPer)

1: Let PFP-list = (X, TS-list(X)) be a dictionary that records the temporal occurrence
information of a pattern in a TDB. Let TSl be a temporary list to record the timestamp
of the last occurrence of an item in the database. Let Per be a temporary list to record
the periodicity of an item in the database. Let support be another temporary lists to
record the support of an item in the database.

2: for each transaction tcur ∈ TDB do
3: Set tscur = tcur.ts;
4: for each item i ∈ tcur.X do
5: if i does not exit in PFP-list then
6: Insert i and its timestamp into the PFP-list. Set TSl [i] = tscur and Per[i] =

(tscur − tsinitial);
7: else
8: Add i’s timestamp in the PFP-list. Update TSl [i] = tscur and Per[i] =

max(Per[i], (tscur − TSl [i]));
9: for each item i in PFP-list do

10: support[i] = length(TS-list(i))
11: if support[i] < minSup then
12: Prune i from the PFP-list;
13: else
14: Calculate Per[i] = max(Per[i], (ts f inal − TSl [i]));
15: if Per[i] > maxPer then
16: Prune i from the PFP-list.
17: Sort the remaining items in the PFP-list in ascending order or descending order of their

support. Call PF-ECLAT(PFP-List).

We will scan the complete database once to generate 1-patterns and transforming
the row database into a columnar database. The scan on the first transaction, “1 : abc f ”,
with tscur = 1 inserts the items a, b, c, and f in the PFP-list. The timestamps of these
items are set to 1 (= tscur). Similarly, Per and TSl values of these items were also set to 1
and 1, respectively (lines 5 and 6 in Algorithm 1). The PFP-list generated after scanning
the first transaction is shown in Figure 2a. The scan on the second transaction, “2 : bd”,
with tscur = 2 inserts the new item d into the PFP-list by adding 2 (= tscur) in its TS-list.
Simultaneously, the Per and TSl values were set to 2 and 2, respectively. On the other
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hand, 2 (= tscur) was added to the TS-list of already existing item b with Per and TSl
set to 1 and 2, respectively (lines 7 and 8 in Algorithm 1). The PFP-list generated after
scanning the second transaction is shown in Figure 2b. The scan on the third transaction,
“3 : bcd”, updates the TS-list, Per and TSl values of b, c, and d in the PFP-list. The PFP-list
generated after scanning the third transaction is shown in Figure 2c. The scan on the
fourth transaction, “4 : abce”, with tscur = 4 inserts the new item e into the PFP-list by
adding 4 (= tscur) in its TS-list. Simultaneously, the Per and TSl values were set to 4 and
4, respectively. On the other hand, updates the TS-list, Per, and TSl values of already
existing items a, b, c, and e in the PFP-list. The PFP-list generated after scanning the
fourth transaction is shown in Figure 2d. A similar process is repeated for the remaining
transactions in the database. The final PFP-list generated after scanning the entire database
is shown in Figure 2e. The pattern e and f are pruned (using Property 1) from the PFP-list as
its support value is less than the user-specified minSup value (lines 10 to 15 in Algorithm 1).
The remaining patterns in the PFP-list are considered periodic-frequent patterns and sorted
in descending order of their support values. The final PFP-list generated after sorting the
periodic-frequent patterns is shown in Figure 2f.

P TSlTS-list 

a 1

1

1

(a) (b) 

P TSlTS-list 

a 1

2

1

P TSl

a 3

b 3

d

3

f

c

(c) 

P TSlTS-list Per
a 4

f 1

b 4

e
3d

4c

4

(d) 

P TSlTS-list Per

a 9

f 10

b 10

e
9d

10c

5

(e) 

P TS-list

d

b
c

a

(f) 

TS-list Per

0

0

0

1

1,3,4,6,7,9

1,5,10

1,2,3,4,6,7,9,10

2,3,6,8,9

1,3,4,5,6,8,9,10

4,5

2,3,6,8,9

1,2,3,4,6,7,9,10

1,3,4,5,6,8,9,10

1,3,4,6,7,9

1

b

c

f 1 0 1

1,3

1,2,3

1,3

1

2,3

1

3

2

1

2
0

1

1,3,4

1,2,3,4

1,3,4

1

2,3

4

2

1

2

0

1

4

1

1

b

c

f

d

1

1,2

1

2

Per Per

0

1

0

0

2

1

2

2

2

2

5

3

5

Figure 2. Finding periodic-frequent patterns. (a) after scanning the first transaction, (b) after scanning
the second transaction, (c) after scanning the third transaction, (d) after scanning the fourth transac-
tion, (e) after scanning the entire database, and (f) final list of periodic-frequent patterns sorted in
descending order of their support (or the size of TS-list).

4.1.2. Finding Periodic-Frequent Patterns Using PFP-List

Algorithm 2 describes the procedure for finding all periodic-frequent patterns in a
database. We now describe the working of this algorithm using the newly generated PFP-list.

We start with item b, which is the first pattern in the PFP-list (line 2 in Algorithm 2).
We record its support and periodicity, as shown in Figure 3a. Since b is a periodic-frequent
pattern, we move to its child node bc and generate its TS-list by performing intersection of
TS-lists of b and c, i.e., TSbc = TSb ∩ TSc (lines 3 and 4 in Algorithm 2). We record support
and periodicity of bc, as shown in Figure 3b. We verify whether bc is a periodic-frequent or
uninteresting pattern (line 5 in Algorithm 2). Since bc is the periodic-frequent pattern, we
move to its child node bca and generate its TS-list by performing intersection of TS-lists
of bc and a, i.e., TSbca = TSbc ∩ TSa. We record support and periodicity of bca, as shown in
Figure 3c, and identified it as a periodic-frequent pattern. We once again, move to its child
node bcad and generate its TS-list by performing intersection of TS-lists of bca and bcd,
i.e., TSbcad = TSbca ∩ TSbcd. As support of bcad is less than the user-specified minSup, we
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will prune the pattern bcad from the periodic-frequent patterns list as shown in Figure 3d.
As bcad is the leaf node in the set-enumeration tree (or as there exists no superset of bcad),
we construct bcd with TSbcd = TSbc ∩ TSd. As support of bcd is less than the user-specified
minSup, we will prune the pattern bcd from the periodic-frequent patterns list as shown in
Figure 3e. A similar process is repeated for remaining nodes in the set-enumeration tree to
find all periodic-frequent patterns. The final list of periodic-frequent patterns generated
from Table 1 is shown in Figure 3f. The above approach of finding periodic-frequent
patterns using the downward closure property is efficient because it effectively reduces
the search space and the computational cost. The correctness of our algorithm is based on
Properties 2–4, and shown in Lemma 1.

Algorithm 2 PF-ECLAT(PFP-List)

1: for each item i in PFP-List do
2: Set pi = ∅ and X = i;
3: for each item j that comes after i in the PFP-list do
4: Set Y = X ∪ j and TSY = TSX ∩ TSj;
5: if sup(TSY) ≥ minSup and per(TSY) ≤ maxPer then
6: Add Y to pi and Y is considered as periodic-frequent itemset;
7: PF-ECLAT(pi)

Property 2. Let X, Y, Z ⊂ I be three patterns such that X 6= ∅, Y 6= ∅, Z 6= ∅, X ∩ Y = ∅
and Z = X ∪ Y. If TSX and TSY denote the set of timestamps at which patterns X and Y have
respectively occurred in the database, then the set of timestamps at which Z has appeared in the
database, i.e., TSZ = TSX ∩ TSY.

Property 3. If minSup > |TSX |, then X cannot be frequent pattern. Moreover, ∀Z ⊃ X, Z
cannot be a frequent pattern.

Proof. If X ⊂ Z, then TSX ⊇ TSZ. Thus, minSup > |TSX | ≥ |TSZ|. Thus, Z cannot be a
frequent pattern. Hence proved.

Property 4. If per(TSX) > maxPer, then X cannot be periodic pattern. Moreover, ∀Z ⊃ X , Z
cannot be a periodic pattern.

Proof. If X ⊂ Z, then TSX ⊇ TSZ. Thus, per(TSZ) ≥ per(TSX) > maxPer. Thus, Z cannot
be a periodic pattern. Hence proved.

Lemma 1. Let X, Y, Z ⊂ I be three patterns such that X 6= ∅, Y 6= ∅, Z 6= ∅, X ∩ Y = ∅
and Z = X ∪Y. If X or Y is not periodic-frequent patterns, then Z cannot be a periodic-frequent
pattern. In other words, we do not need to check whether Z is a periodic-frequent pattern if any one
of its supersets is not a periodic-frequent pattern.

Proof. The correctness of the above statement is straightforward to prove from Properties 2–4.
Hence proved.
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Figure 3. Mining periodic-frequent patterns using DFS: (a) identifying ‘b’ is periodic-frequent pattern
or not, (b) identifying ‘bc’ is periodic-frequent pattern or not, (c) identifying ‘bca’ is periodic-frequent
pattern or not, (d) identifying ‘bcad’ is periodic-frequent pattern or not, (e) identifying ‘bcd’ is periodic-
frequent pattern or not, and (f) final list of periodic-frequent patterns shown without Strikethrough
mark on the text..

5. Experimental Results

In this section, we first compare the PF-ECLAT against the state-of-the-art algorithms
(E.g., PFP-growth [13], PFP-growth++ [14], and PS-growth [15]) and show that our algo-
rithm is not only memory and runtime efficient, but also highly scalable as well. Next, we
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describe the usefulness of our algorithm with two case studies: traffic congestion analytics
and air pollution analytics.

5.1. Experimental Setup

The algorithms PFP-growth, PFP-growth++, PS-growth, and PF-ECLAT, were de-
veloped in Python 3.7 and executed on Intel(R) Core i5-3230M CPU between 2.6 GHz
to 3.2 GHz, as base frequency and Turbo Boost, respectively with 4GB RAM machine
running Ubuntu 18.04 operating system. The experiments have been conducted on both
real-world (BMS-WebView-1, Pollution, Drought, Congestion, BMS-WebView-2, and
Kosarak) databases and synthetic (T10I4D100K).

The T10I4D100K is a sparse synthetic database generated using the procedure de-
scribed in [8]. This database was widely used to evaluate various pattern-mining algorithms.
The BMS-WebView-1 and BMS-WebView-2 are real-world sparse databases containing
clickstream data of an anonymous eCommerce company. These databases were used in
KDD Cup 2000. Both of these databases contain very long transactions. The Kosarak
is a real-world, massive sparse database. This paper employs this database to evaluate
the scalability of PFP-growth, PFP-growth++, PS-growth, and PF-ECLAT algorithms. All
of the above databases have been downloaded from Sequence Pattern Mining Frame-
work (SPMF) [24] repository. The Drought [25] is a very high-dimensional real-world
dense database.

Monitoring traffic congestion in smart cities is a challenging problem of great impor-
tance in Intelligent Transportation Systems. In this context, JApan Road Traffic Information
Center (JARTIC) [26] has set up a nationwide sensor network to monitor traffic congestion
throughout Japan. In this network, each sensor means congestion on a road segment at
5-min intervals. The big data generated by this network naturally represents a quantitative
(or non-binary) columnar temporal database. We have converted this database into a binary
columnar database by specifying a threshold value of 200 m. It is because congestions
lengths less than 200 m are often due to waiting time at a red signal. In this expert, we
use the binary columnar traffic Congestion database produced in Kobe, the 5th largest city
in Japan.

Air pollution is a significant cause of the cardio-respiratory problems reported in Japan;
on average, 60,000 people die in Japan annually [27]. To confront this problem, The Ministry
of Environment, Japan, has set up a sensor network system, called SORAMAME [28], to
monitor air pollution throughout Japan. Each sensor in this network collects pollution
levels of various air pollutants at hourly intervals. This experiment uses the 3-month data
of PM2.5 pollutants generated by all sensors situated throughout Japan. The Pollution
database is a high-dimensional and dense database containing many long transactions.

The statistics of all the above databases were shown in Table 4. The complete evalua-
tion results and the databases and algorithms have been provided through GitHub [29] to
verify the repeatability of our experiments. We are not providing the Congestion databases
on GitHub due to confidential reasons.

Table 4. Statistics of the databases.

S. No Database Type Nature
Transaction Length

Total Transactions
Min. Avg. Max.

1 BMS-WebView-1 Real Sparse 1 3 267 59,602
2 Pollution Real Dense 11 460 971 720
3 Drought Real Dense 6289 8341 10,122 766
4 Congestion Real Sparse 1 58 337 8928
5 BMS-WebView-2 Real Sparse 2 5 161 77,512
6 T10I4D100K Synthetic Sparse 2 11 29 100,000
7 Kosarak Real Sparse 2 9 2,499 990,000
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5.2. Evaluation of PFP-Growth, PFP-Growth++, PS-Growth, and PF-ECLAT Algorithms by
Varying maxPer Constraint

In this experiment, we evaluate PFP-growth, PFP-growth++, PS-growth, and PF-
ECLAT algorithms’ performance by varying only the maxPer constraint in each of the
databases. The minSup value in each of the databases will be set to a particular value.
The minSup in BMS-WebView-1, Pollution, Drought, Congestion, BMS-WebView-2, and
T10I4D100K databases has been set at 0.07(%), 51(%), 57(%), 30(%), 0.2(%), and 0.1(%),
respectively.

First, the runtime of the PF-ECLAT algorithm is compared with PFP-growth, PFP-
growth++, and PS-growth algorithms. Figure 4 shows that PF-ECLAT outperforms the
compared state-of-the-art algorithms on all databases. The vertical and horizontal axes
represent the runtime (in milliseconds) and maxPer threshold values in each subfigure,
respectively. (i) It can be observed that the PF-ECLAT runs faster than the PS-growth
algorithm. It means that periodic calculation of the PF-ECLAT algorithm is very effective
and can prune many non-periodic patterns as fast as possible. In addition, the results
show that the PF-ECLAT runs faster than the PFP-growth++ algorithm. (ii) In general,
for all databases, when the maxPer threshold value is increased, the running time of
the algorithms is also increased. In that case, PF-ECLAT can be much more efficient
than the remaining algorithms, especially on BMS-WebView-1, Pollution, Drought, and
Congestion databases. (iii) We observed a marginal runtime difference between PF-ECLAT
and remaining algorithms in BMS-WebView-2 (sparse nature with short transactions) and
T10I4D100K (sparse nature with short transactions) databases. Our investigation into
the marginal runtime improvement cause has revealed that PS-growth summarised the
database to quickly generate periodic-frequent patterns when the database base sparse
nature with short transactions. (iv) Generally, the PFP-List structure used in the PF-ECLAT
algorithm is more compact and efficient than the one used in all the other state-of-the-
art algorithms.
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Figure 4. Runtime evaluation of algorithms at constant minSup.

Second, the memory consumption of the PF-ECLAT algorithm is compared with
PFP-growth, PFP-growth++, and PS-growth algorithms. Figure 5 shows that PF-ECLAT
outperforms the compared state-of-the-art algorithms on all databases. The vertical axis
and horizontal axis represent the memory (in Kilobytes) and maxPer threshold values
in each subfigure, respectively. The subsequent observations may be drawn from this
figure: (i) Raise in maxPer increases PFP-growth, PFP-growth++, PS-growth, and PF-
ECLAT algorithms’ memory requirements. (ii) In every database (i.e., sparse or dense
database containing either short or long transactions), PF-ECLAT consumed considerably
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less memory over all other state-of-the-art algorithms at any given maxPer value. More
importantly, the difference was significantly high at high maxPer values. (iii) In addition,
the PF-ECLAT consumes less memory than PS-growth, although they are very close in
some cases. Thus, the PFP-List structure used in the PF-ECLAT algorithm helps reduce the
proposed algorithm’s memory usage.

Finally, the number of patterns was measured for various maxPer threshold values
on each database. In Figure 6, vertical axes denote the number of patterns, and horizontal
axes indicate the corresponding maxPer threshold values. In general, PFP-growth, PFP-
growth++, PS-growth, and PF-ECLAT generate the same number of periodic-frequent
patterns in each of the databases. It can be observed that an increase in maxPer has increased
the number of periodic-frequent patterns. With an increase in the maxPer threshold, most
of the patterns have become periodic patterns.
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Figure 5. Memory evaluation of algorithms at constant minSup.
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5.3. Evaluation of PFP-Growth, PFP-Growth++, PS-Growth, and PF-ECLAT Algorithms by
Varying minSup Constraint

We have evaluated PFP-growth, PFP-growth++, PS-growth, and PF-ECLAT algo-
rithms’ in the previous subsection by varying only the maxPer value. We now evaluate
PFP-growth, PFP-growth++, PS-growth, and PF-ECLAT algorithms performance by vary-
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ing only the minSup constraint in each of the databases. The maxPer value in each of the
databases will be set to a particular value. The maxPer in BMS-WebView-1, Pollution,
Drought, Congestion, BMS-WebView-2, and T10I4D100K databases has been set at 40%,
51%, 5%, 35%, 54%, and 20% respectively.

First, the runtime of the PF-ECLAT algorithm is compared with PFP-growth, PFP-
growth++, and PS-growth algorithms. Figure 7 shows that PF-ECLAT outperforms the
compared state-of-the-art algorithms on all databases. The vertical axis and horizontal axis
represent the runtime (in milliseconds) and minSup threshold values in each subfigure,
respectively. The subsequent observations may be drawn from this figure: (i) Raise in
minSup decreases the runtime requirements of all PFP-growth, PFP-growth++, PS-growth,
and PF-ECLAT algorithms. However, PF-ECLAT requires considerably less runtime over
PFP-growth, PFP-growth++, and PS-growth on any database at any given minSup value.
(ii) In every database, PF-ECLAT completed the mining process much faster than the
PFP-growth++ algorithm. More importantly, PF-ECLAT was several times faster than PFP-
growth++, especially at high minSup values. (iii) We have observed a marginal runtime
difference between PF-ECLAT and PS-growth algorithms in BMS-WebView-2 (sparse
nature with short transactions) and T10I4D100K (sparse nature with short transactions)
databases. Our investigation into the marginal runtime improvement cause has revealed
that PS-growth summarised the database to quickly generate periodic-frequent patterns
when the database base is sparse with short transactions. However, in BMS-WebView-1,
Pollution, Drought, and Congestion databases, PF-ECLAT was an order of magnitude time
faster than the PS-growth. More importantly, PF-ECLAT was several times faster than
PS-growth, especially at high minSup.
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Figure 7. Runtime evaluation of algorithms at constant maxPer.

Second, the memory consumption of the PF-ECLAT algorithm is compared with
PFP-growth, PFP-growth++, and PS-growth algorithms. Figure 8 shows that PF-ECLAT
outperforms the compared state-of-the-art algorithms on all databases. The vertical axis
and horizontal axis represent the memory (in Kilobytes) and minSup threshold values
in each subfigure, respectively. The subsequent observations may be drawn from this
figure: (i) Raise in minSup decreases PFP-growth, PFP-growth++, PS-growth, and PF-
ECLAT algorithms’ memory requirements. (ii) In every database (i.e., sparse or dense
database containing either short or long transactions), PF-ECLAT consumed considerably
less memory over all other state-of-the-art algorithms at any given minSup value. More
importantly, the difference was significantly high at low minSup values. (iii) It is evident
that the PFP-List structure used in the PF-ECLAT algorithm is very effective and able to
reduce the memory usage of the proposed algorithm.
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Finally, the number of patterns was measured for various minSup threshold values
on each database. In Figure 9, vertical axes denote the number of patterns, and horizontal
axes indicate the corresponding minSup threshold values. In general, PFP-growth, PFP-
growth++, PS-growth, and PF-ECLAT generate the same number of periodic-frequent
patterns in each of the databases. It can be observed that an increase in minSup has
decreased the number of periodic-frequent patterns. It is because several patterns fail to
fulfill the minSup constraint with an increase in the minSup value.

From the above two Sections 5.2 and 5.3, it is evident that the PFP-List structure
used in the PF-ECLAT algorithm helps to eliminate many non-candidate patterns from the
search space and thus reduce the runtime and memory usage of the PF-ECLAT algorithm.
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Figure 8. Memory evaluation of algorithms at constant maxPer.
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Figure 9. Patterns evaluation of algorithms at constant maxPer.

5.4. Scalability Test

The Kosarak database was divided into five portions of 0.2 million transactions in each
part. Then we investigated the performance of PFP-growth, PFP-growth++, PS-growth, and
PF-ECLAT algorithms after accumulating each portion with previous parts. Figure 10 show
the runtime and memory requirements of all algorithms at different database sizes when
minSup = 1 (%) and maxPer = 0.1 (%). The following two observations can be drawn from
these figures: (i) Runtime and memory requirements of PFP-growth, PFP-growth++, PS-
growth, and PF-ECLAT algorithms’ increase almost linearly with the increase in database
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size. (ii) At any given database size, PF-ECLAT consumes less runtime and memory as
compared to the remaining algorithms.

5.5. A Case Study 1: Finding Areas Where People Have Been Regularly Exposed to Hazardous
Levels of PM2.5 Pollutant

The Ministry of Environment, Japan has set up a sensor network system, called SORA-
MAME [28], to monitor air pollution throughout Japan, as shown in Figure 11a. The raw
data produced by these sensors, i.e., quantitative columnar database (see Figure 11b) can be
transformed into a binary columnar database, if the raw data value is ≥15 (see Figure 11c).
The transformed data is provided to the PF-ECLAT algorithm (see Figure 11d) to identify
all sets of sensor identifiers (patterns) in which pollution levels are high (see Figure 11e).
The spatial locations of interesting patterns generated from the Pollution database are
visualized in Figure 11f. It can be observed that most of the sensors in this figure are
situated in the southeast of Japan. Thus, it can be inferred that people working or living
in the southeast parts of Japan were periodically exposed to high levels of PM2.5. Such
information may be useful to the Ecologists in devising policies to control pollution and
improve public health. Please note that more in-depth studies, such as finding high pol-
luted areas on weekends or particular time intervals of a day, can also be carried out with
our algorithm efficiently.
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Figure 10. Scalability of PFP-growth, PFP-growth++, PS-growth, and PF-ECLAT.

Figure 11. Finding periodic-frequent patterns in the Pollution database. The terms ‘s1’, ‘s2’, · · · ‘sn’ represents ‘sensor identifiers’.



Electronics 2021, 10, 1478 17 of 20

5.6. A Case Study 2: Traffic Congestion Analytics

Typhoon Nangka struck Kobe, Japan, on 17-July-2005. This typhoon dropped 29
inches of rainfall, causing floods. Almost 350,000 people were asked to flee to high-level
areas to protect themselves from surges. Thus, causing significant congestion in the
traffic network. To monitor the traffic congestion, JApan Road Traffic Information Center
(JARTIC) [26] had deployed a sensor network to monitor congestion throughout Japan. The
road network covered by the traffic congestion measuring sensors in Kobe, Japan, is shown
in Figure 12a. The raw data produced by these sensors, i.e., quantitative columnar database
(see Figure 12b) can be transformed into a binary columnar database, if the raw data value
is ≥15 (see Figure 12c). The transformed data are provided to the PF-ECLAT algorithm (see
Figure 11d) to discover all sets of sensor identifiers (patterns) in which traffic congestion
is very high. The spatial locations of interesting patterns generated from the Congestion
database are visualized in Figure 12e. In this case study, we have also demonstrated the
usefulness of the discovered patterns using Nangka’s rainfall data. When the rainfall data
of the typhoon in the respective hour is overlaid on the discovered patterns as shown in
Figure 12f, it can be observed that the generated information may additionally determined
to be extremely useful to the users in the traffic control room to take effective decisions,
such as diverting the traffic and suggesting police patrol routes to the users. In Figure 12f,
road segments that need considerable attention are indicated with a black circle. It can
be observed that the black circle moved from left to right in 4 h. Such information can be
found to be very useful in traffic management.

Figure 12. Finding periodic-frequent patterns in the Congestion database. The terms ‘s1’, ‘s2’, · · · ‘sn’ represents ‘road
sensor identifiers’.

6. Conclusions and Future Work

This paper has proposed an efficient algorithm named Periodic Frequent-Equivalence
CLass Transformation (PF-ECLAT) to find periodic-frequent patterns in columnar temporal
databases. Two constraints, minimum support and maximum periodicity, were utilized to
discard uninteresting patterns. The PFP-List structure used in the PF-ECLAT algorithm
helps to eliminate many non-candidate patterns from the search space and thus reduces
the runtime and memory usage of the PF-ECLAT algorithm. The performance of the
PF-ECLAT is verified by comparing it with other algorithms on different real-world and
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synthetic databases. Experimental analysis shows that PF-ECLAT exhibits high perfor-
mance in periodic-frequent pattern mining and can obtain periodic-frequent patterns faster
and with less memory usage against the state-of-the-art algorithms. Finally, we have
presented our model’s usefulness with two case studies: air pollution analytics and traffic
congestion analytics.

Future work may be expanded as follows, but the scope is not limited: We would like
to extend our algorithm to the distributed environment to find periodic-, partial- and fuzzy
periodic-frequent patterns in very large temporal databases. In addition, we would like
to investigate novel measures or techniques to reduce further the computational cost of
mining the periodic-frequent patterns.
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