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Abstract: This paper presents an invisible and robust watermarking method and its hardware
implementation. The proposed architecture is based on the discrete cosine transform (DCT) algorithm.
Novel techniques are applied as well to reduce the computational cost of DCT and color space
conversion to achieve low-cost and high-speed performance. Besides, a watermark embedder and a
blind extractor are implemented in the same circuit using a resource-sharing method. Our approach
is compatible with various watermarking embedding ratios, such as 1/16 and 1/64, with a PSNR of
over 45 and the NC value of 1. After Joint Photographic Experts Group (JPEG) compression with
a quality factor (QF) of 50, our method can achieve an NC value of 0.99. Results from a design
compiler (DC) with TSMC-90 nm CMOS technology show that our design can achieve the frequency
of 2.32 GHz with the area consumption of 304,980.08 µm2 and power consumption of 508.1835 mW.
For the FPGA implementation, our method achieved a frequency of 421.94 MHz. Compared with the
state-of-the-art works, our design improved the frequency by 4.26 times, saved 90.2% on area and
increased the power efficiency by more than 1000 fold.

Keywords: watermarking; embedder; blind extractor; invisible; robust; DCT; ASIC; FPGA

1. Introduction

With the rapid development of the Internet and social media, the spread of digital
photos around the world is becoming more and more convenient. Therefore, copyright
protection is of concern. Digital watermarking is the process of hiding information in
signals such as image, text, video and audio, and is used mainly for the copyright protection
of digital content [1].

In recent years, many researchers have been focusing on image watermarking tech-
niques because still images are shared widely throughout the Internet, and many image
watermarking methods can also be applied to video watermarking [2]. Generally, image
watermarking can be processed in two different domains: the spatial domain [3–6] and
the transform domain [1,7–17]. In the spatial domain, watermark data are directly embed-
ded to the pixel values of the host image [18]. Although spatial-domain watermarking
methods are easy to implement and usually require less computational resources, they
are not robust enough to attacks such as JPEG compression and geometry attacks [19].
As for the transform domain, image watermarking methods are mostly carried out in the
discrete cosine transform (DCT) domain [1,7,13], the discrete Fourier transform (DFT) do-
main [20–22] or the discrete wave transformation (DWT) domain [9,22–26]. Watermarking
in the transform domain is often based on the human vision system (HVS) [2,4,10,27,28]
model to achieve invisibility and robustness. For example, human vision is more sensitive
to low and middle frequency information [18], so most image compressiontechniques
remove the high-frequency components which are not perceptible to save space. As a
result, watermarks embedded in the low or middle frequencies are more robust against
attacks. For instance, in [16], a watermarking technique that adjusts the DCT low-frequency
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coefficients through the concept of mathematical remainders was proposed; it enables the
watermark to be almost fully extracted even under very high compression ratios.

In this paper, we propose a mixed-strength watermark-embedding approach based-
on the HVS model and the DCT approach. Theoretically, after the DCT, three types of
coefficient can be chosen:

1. If the DC component is chosen, as in this paper, then there is a risk of changing the
contrast of some blocks, as the DC is an average of luminance values.

2. If the low or mid-range frequency coefficients are chosen, the image quality could be
affected because the human eye is especially sensitive to these frequencies.

3. If high frequencies are used, they are likely to be removed at compression time.

By specifying the pixel changing values ({0, ±1} or {0, ±1, ±2}) before embedding,
we can strictly control the changes in the DC components. Any visible block artifacts
can be avoided in advance. Secondly, to eliminate the errors brought about by DCT
and IDCT, the optimized workflow conducts DCT and IDCT implicitly. Additionally,
computational effort could be saved with the hidden DCT and IDCT. Additionally, 5/6
of the color space conversion can be omitted using our DC component-based approach.
As a result, the proposed approach has an obvious advantage over previous works after
hardware implementation. Compared with the state-of-the-art works, our design improves
the clock frequency 4.26 fold [3], saves 90.2% on area and increases the power efficiency
by over 1000 fold [29]. Meanwhile, by changing the threshold and embedding strength
in our approach, users can easily modify the original method to make it suitable for
applications with different demands. For example, users can choose a low threshold and
high embedding strength to increase robustness, and choose low embedding strength to
pursue invisibility and high image quality.

The remainder of this paper is as follows. In Section 2, we list the related works
and the motivation for our work. Section 3 presents some background by way of basic
concepts. In Section 4, the proposed hidden DCT-based invisible watermarking method is
introduced. Section 5 presents experimental results of the proposed approach and attack
tests. In Section 6, we present the detailed hardware implementation results for both ASIC
and FPGA platforms. The elaborated comparison with the state-of-the-art works is shown
in Section 7. Section 8 gives a brief conclusion of our work.

2. Related Works and Motivation

Despite the advantages brought by transform-domain watermarking methods, the
computational overheads make them hard to implement in many applications, especially
on mobile phones where the computational resources are limited. Hence, many researchers
have been devoted to inventing low-cost, robust watermark embedding methods. Some
researchers focus on improvements in the spatial domain, and some others use novel
approaches to reduce the computational burden of transform-domain watermarking.

In [29], the authors proposed an optimized image and video watermarking method
using the spatial domain for low-cost applications such as wireless networks. The noise
visibility function (NVF)-based mask was adopted in this paper, and the hardware imple-
mentation results show that it has significant improvements over previous works in terms
of resource utilization and power consumption. However, the highest clock frequency
in 90 nm CMOS technology is relatively low due to the long critical path of the divider.
Additionally, one divider is shared in the whole process to save computational resources.
which limits the throughput of the proposed design.

In [12], the authors used a novel DCT-based approach to achieve fast and robust wa-
termarking. They calculated the DCT coefficient of a specific location, and watermarked
bits were embedded by directly modifying the pixel values without the full-frame DCT.
Test results proved that the proposed method performs well against noise attacks and com-
pression attacks. However, a detailed hardware implementation was not presented, so its
advantages over previous works in terms of area and power consumption remain unknown.
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The spatial-domain watermarking and transform-domain watermarking techniques
are both widely used in state-of-the-art works. Compared with transform-domain wa-
termarking, the spatial-domain watermarking approaches are very simple and computa-
tionally efficient. However, they have relatively low information-hiding capacities and
limited robustness to normal media operations, such as filtering or lossy compression.
Spatial-domain watermarking approaches also have limited defense against cropping,
during which some watermark information is lost [2]. The main focus of a watermarking
technique is to achieve robustness and high power efficiency at the same time.

In this paper, a hidden DCT-based invisible watermarking method for low-cost hard-
ware implementation is proposed. Traditionally, DCT-based watermarking methods are
supposed to insert the watermark bits in low or middle frequencies. However, the authors
of [30] argued that direct current (DC) components are more suitable for watermarking
for the following reasons. Firstly, the magnitudes of DC components are much larger than
those of any alternating current (AC) components in general, which makes the DC compo-
nents capable of containing more watermarking information. Secondly, DC components
are more robust to attacks such as data compression than the AC components. Meanwhile,
the challenges of embedding watermarks in DC components of DCT can be summarized
as follows:

1. Compared to doing so with AC components, embedding watermarks into the DC
components of the DCT is believed to cause visible block artifacts [30], thereby com-
promising the image quality. Hence, the first challenge is to embed the watermark
in DC components without bringing visible changes to the original picture. The-
oretically, any watermarking method would change the pixel values of the target
image; otherwise the watermark could not be inserted. From this perspective, if the
changing values are constrained to a certain small range, embedding the watermark
in the DC components will not necessarily cause more visible block artifacts than any
other methods.

2. For the hardware implementation, the fixed-point DCT and IDCT are not completely
reversible. DCT matrix elements contain real numbers represented by finite num-
bers of bits, which inevitably introduce truncation and rounding errors during com-
putation [31]. Conventionally, the longer the bit length, the more accurate the re-
sults [32,33]. In general, a longer bit length for the DCT coefficients leads to higher
energy consumption during the DCT compression process [34]. Even if we do not
apply any changes after the DCT and carry out the IDCT directly, pixel values would
also change by between 1 and 2 bits. Watermarks could be polluted by the errors
introduced by the DCT and IDCT. Hence, the second challenge is how to optimize the
watermark workflow to minimize or eliminate the errors in hardware implementation.

3. Introduction to Basic Concepts

In this section, we explain some fundamental concepts, including the DCT algorithm
and the conventional DCT-based approach for digital watermarking. Meanwhile, the
drawbacks of the regular approach will also be analyzed in this section.

3.1. The DCT Algorithm

The DCT algorithm is analogous to the discrete Fourier transform (DFT), but it only
involves real numbers. For most natural signals (sounds and images), their energies are
concentrated in the low-frequency domain after discrete cosine transformation, which is
the principle of JPEG (Joint Photographic Experts Group) compression. Hence, the DCT
algorithm is widely used in image processing.

The transformation formula of 2D-DCT is as follows:

F(u, v) =
2√
MN

C(u)C(v)
M−1

∑
x=0

N−1

∑
y=0

f (x, y)cos
(2x + 1)uπ

2M
cos

(2y + 1)vπ

2N
. (1)
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In Equation (1), f (x, y) is defined as { f (x, y)|x = 0, 1, 2, . . . , M− 1; y = 0, 1, 2, . . . , N − 1},
representing the matrix of a two-dimensional image block. C(u) and C(v) are the transfor-
mation coefficients defined as:

C(u) =


1√
2
, u = 0

1, u 6= 0
, and C(v) =


1√
2

, v = 0

1, v 6= 0
. (2)

Similarly, the 2D-IDCT (inverse DCT) representation is shown below:

f (x, y) =
2√
MN

C(u)C(v)
M−1

∑
u=0

N−1

∑
v=0

F(u, v)cos
(2x + 1)uπ

2M
cos

(2y + 1)vπ

2N
, (3)

where F(u, v) is defined as {F(u, v)|u = 0, 1, 2, . . . , M− 1; v = 0, 1, 2, . . . , N − 1}. C(u) and
C(v) are the same as before.

The 2D-DCT converts a picture from the spatial domain into the frequency domain.
Additionally, 2D-IDFT reverses the coefficients in frequency domain into their original
pixel values.

3.2. A Conventional DCT-Based Watermarking Approach

DCT-based watermarking should have the qualities of robustness and invisibility [16].
The typical workflow [1,7] of DCT-based watermark insertion can be summarized in
Figure 1. For example, an original image that is 512 × 512 is firstly divided into a series
of 8 × 8 RGB blocks. After color space conversion, the Y channel of the 8 × 8 block is
transformed into the frequency domain using the DCT. Meanwhile, the original watermark
is prepared and encrypted for embedding. Secondly, the watermark embedder inserts
the encrypted watermark data into the 8 × 8 block according to the texture, frequency
and direction of image block. If the size of watermark is 64 × 64, then one pixel of the
watermark will be inserted in each 8× 8 block. At last, the embedded Y channel is inversed
back into the spatial domain and converted into RGB color space along with the stored U
channel and V channel.

Figure 1. Traditional DCT-based watermarking workflow.

Traditional DCT-based watermarking techniques have the following three drawbacks:

1. The tradeoff between robustness and invisibility: According to the HVS theory,
people cannot tell the difference between two pictures as long as the changes of
pixel values are under a certain threshold. Much in the same way, there is also a
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threshold when it comes to watermarking. When the embedding strength exceeds
the threshold, changes of pixel values are visible and the picture begins to appear
distorted. However, if the embedding strength is not high enough, the embedded
watermark may not be extracted successfully because of the changes introduced to
the picture during the process of color space conversion and DCT/IDCT. Considering
the formulas of converting RGB signals to YUV signals: Y

U
V

 =

 0.299 0.587 0.114
−0.168 −0.3313 0.5

0.5 −0.4187 −0.0813

 R
G
B

+

 0
128
128

. (4)

Coefficients such as −0.3313 are not represented precisely due to the bit length limits
in digital signal processing systems. Pixel values may be different after color space
conversion, let alone the DCT and IDCT processes. Hence, it is necessary to strike a
balance between robustness and invisibility when using the DCT-based watermarking
methods, restricting the applicable scenarios.

2. Computational complexity: Figure 1 reveals that each 8 × 8 RGB block needs to
be converted twice between color spaces and twice between spatial and frequency
domain. Nine multiplications and eight additions are required for each pixel to
complete the conversion from RGB to YUV judging from Equation (5). For 8 × 8
2D-DCT, Equation (3) can be represented in matrix form as:

[F(u, v)] = [C][ f (x, y)][C]T , (5)

where

[C] =



C4 C4 C4 C4 C4 C4 C4 C4
C1 C3 C5 C7 −C7 −C5 −C3 −C1
C2 C6 −C6 −C2 −C2 −C6 C6 C2
C3 −C7 −C1 −C5 C5 C1 C7 −C3
C4 −C4 −C4 C4 C4 −C4 −C4 C4
C5 −C1 C7 C3 −C3 −C7 C1 −C5
C6 −C2 C2 −C6 −C6 C2 −C2 C6
C7 −C5 C3 −C1 C1 −C3 C5 −C7


, (6)

and
Ci =

1
2

cos
iπ
16

, i = 1, 2, . . . , 7. (7)

For each coefficient matrix, 64 multiplications and 56 additions are needed. Therefore,
128 multiplications and 112 additions are needed to complete a 8 × 8 2D-DCT. The
total numbers of calculations needed for changing color spaces, spatial and frequency
domain can be summarized as follows:

Additons = (8 + 112) × 2 = 240,

Multiplications = (9 + 128) × 2 = 274.
(8)

Additionally, the computational complexity will be dramatically increased when
the picture’s size increases. Take smart phones, for example: the most advanced
cell phones have up to 100 megapixel sensors. If we want to add watermarks to
the original pictures taken by these cell phones with 8 × 8 RGB blocks, more than
312 million multiplications and additions are required.

3. Unsuitability for higher embedding ratios: Although the 1/64 embedding ratio is
mostly applied in current works, a higher embedding ratio such 1/16 allows us to add
more information to the host picture. Current DCT-based watermarking techniques
usually add the watermark data to the low or middle frequency bands [18] after the
DCT transform. This works well for the 1/64 embedding ratio but fails to achieve
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satisfactory results when the embedding ratio is increased to 1/16. It can be deduced
that under the 1/16 embedding ratio, the accuracy losses brought by DCT and IDCT
are more severe, leading to failure of extracting the valid watermark.

4. The Proposed Method

In this section, the hidden DCT-based invisible watermarking method is proposed.
Detailed analysis and proof of our method are presented.

4.1. The Proposed Watermarking Method

As stated before, a low or middle frequency watermarking method is not suitable for
higher embedding ratios. Besides a low or middle frequency, watermarking information
can also be inserted into the DC component of a picture block. Our proposed method first
extracts the DC component. Then, the encrypted watermark is embedded into each picture
block according to the texture property of the image region. If the picture block belongs to
a flat region, weak embedding is adopted in order to make the watermark invisible. If the
picture block belongs to a texture region, strong embedding is adopted in order to make
the watermark robust. At last, the change to the DC component brought about by either
weak or strong embedding is reflected in RGB channels of the final image.

The workflow of our proposed method can be seen in Figure 2. Compared with
the traditional DCT-based process in Figure 1, our method removes the DCT and IDCT
steps and the conversion of 5/6 of the color space (our method only needs the RGB to
Y transformation).

Figure 2. The proposed hidden DCT-based watermarking working flow.

4.1.1. Elimination of DCT and IDCT

The DC component is usually calculated after the picture is transformed into the
frequency domain using DCT, which increases the overall computational cost. However,
after analyzing the equations to calculate the DC component, we found that the process
of DCT can be hidden. According to definitions of the direct current component and
Equations (1) and (2), the DC value is calculated through the following equation:

DC = F(0, 0) =
2√
MN

1√
2

1√
2

M−1

∑
x=0

N−1

∑
y=0

f (x, y). (9)
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Theoretically, the proposed approach can be applied to any kind of rectangular blocks.
For convenience, the N × N 2D-DCT is used to demonstrate our approach, so M in (9) is
replaced with N to get the following equation:

DC = F(0, 0) =
1
N

N−1

∑
x=0

N−1

∑
y=0

Y(x, y), (10)

where Y(x, y) stands for each pixel’s Y channel value.
In this way, after converting RGB signals to Y channels, it is effortless to get the DC

component by summing up the Y channels of the N × N block without going through the
computationally intensive DCT formula.

Watermark information is added to the DC component in our design. Assuming the
change to the DC component is ∆M, the DC value after the insertion is

DC′ = F ′(0, 0) = F(0, 0) + ∆M. (11)

Now we need to use 2D-IDCT to calculate the corresponding Y channel values after
adding the watermark. From (3), we can get that

Y′(x, y) =
2
N

C(u)C(v)
N−1

∑
u=0

N−1

∑
v=0

F′(u, v)cos
(2x + 1)uπ

2N
cos

(2y + 1)vπ

2N
. (12)

Since the watermark information is only added to the DC component, it can be
concluded that

F′(u, v) =


F(u, v) + ∆M, u = v = 0

F(u, v), other
, (13)

where F′(u, v) stands for the watermarked value and F(u, v) stands for the original value
without adding the watermark. After combining (12) and (13), the following equation can
be inferred:

Y′(x, y)−Y(x, y) = 2
N

N−1
∑

u=0

N−1
∑

v=0
C(u)C(v)(F′ (u, v)− F(u, v))cos (2x+1)uπ

2N cos (2y+1)vπ
2N

= 2
N C(0)C(0)(F′(0, 0)− F(0, 0)) = ∆M

N .
(14)

Hence, IDCT can be saved by adding ∆M
N to its original Y channels’ values. In conclu-

sion, the proposed hidden DCT-based approach can be used to embed the watermark into
the DCT domain without actually carrying out the DCT and IDCT operations.

4.1.2. Color Space Conversion

The watermark was inserted into the Y channels in the last step; now we need to con-
vert YUV to RGB. For example, YUV can be converted to RGB using the following formula: R

G
B

 =

 1 0 1.402
1 −0.344 −0.714
1 1.772 0

 Y
U − 128
V − 128

. (15)

From (15), it is obvious that the coefficients of Y and the R channel, G channel and
B channel all equal 1. This indicates that the changes to Y values brought about by the
watermark will be equally reflected to R, G and B channels. Hence, after calculating ∆M

N
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from the watermark, we can directly add it to R, G and B channels as listed in (16) without
first applying it to Y channel and then converting the color space. R′

G′

B′

 =

 R
G
B

+ δ, δ = round
(

∆M
N

)
. (16)

Since the watermark information can be directly added to R, G and B channels, U and
V channels are no longer necessities. In this way, we only need 1/3 of the calculations listed
in (4) to get the Y channel values in order to extract the DC component. The computational
cost of (15) can also be omitted. In total, 5/6 of the computational cost can be saved using
our approach when compared with traditional methods in terms of color space conversion.
What is more, the calculation errors caused by color space conversion can be avoided too.

4.2. The Watermark Embedding and Blind-Extracting Approach

In order to satisfy the balance between the robustness and the imperceptivity, a mixed-
strength watermark embedding approach is proposed. According to (16), the watermark
can be directly added to R, G and B channels. Considering that the value changes of RGB
color space can only be integers, we introduce a strong-embedding approach which brings
changes to {0,±1,±2} to RGB channels, and a weak-embedding approach which brings
changes to {0,±1}. Modular arithmetic is also used for blind extraction: W = 0, mod(DC′ , F) ∈

[
0, F

2

)
,

W = 1, mod(DC′ , F) ∈
[

F
2 , F

)
,

(17)

where F is a positive integer used to distinguish the value of the watermark pixel added
to a certain N × N block. For any block that does not meet the requirement in (17), ∆M is
combined with watermark information and added to the original DC value.

• For strong embedding, we aim to get a δ ∈ {0,±1,±2}. According to (16), the range
of ∆Ms can be gotten:

∆Ms ∈
[
−5N

2
,

5N
2

]
. (18)

Although δ ∈ {±3} when ∆Ms ∈
{
± 5N

2

}
, ∆Ms varies in a continuous range, and the

probability of ∆Ms ∈
{
± 5N

2

}
tends toward zero. It will not affect the distribution of δ due

to principle of small probability event.
F is set as 5N, and the following equation is used to calculate ∆Ms to meet (17) and (18):

∆Ms =



−r− 5N
4 , W = 1, r ∈

[
0, 5N

4

]
,

−r + 5N
4 , W = 0, r ∈

[
0, 5N

4

]
,

−r + 15N
4 , W = 1, r ∈

(
5N
4 , 15N

4

)
,

−r + 5N
4 , W = 0, r ∈

(
5N
4 , 15N

4

)
,

−r + 15N
4 , W = 1, r ∈

[
15N

4 , 5N
)

,

−r + 25N
4 , W = 0, r ∈

[
15N

4 , 5N
)

,

(19)

where r stands for mod(DC, 5N).
From (19), the values of mod(DC′ , 5N) are constrained to 5N

4 and 15N
4 after modifica-

tion, which are the mid-points of two judgment intervals in (17). By doing so, robustness
of the watermark is increased. As after attacks, the remainder is more likely to fall into
the right judgment interval during extraction if we constrain the remainder to the two
mid-points when embedding. In (19), the range of r is divided into three sections labelled
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as S1, S2 and S3 in Figure 3. Depending on the value of the watermark bit, different ∆Ms
values are added to the original r to move it to the nearest spot according to the principle
of proximity. Take (19), for example: When W = 1 and r ∈

[
0, 5N

4

]
, it does not meet (17).

Although r could be moved to 15N
4 , the changes brought to the pixels will be bigger than

when moving it to − 5N
4 . Hence, ∆M(−r− 5N

4 ) is added to the original DC value to move
the remainder to its nearest spot (the red trajectory in Figure 3), and the updated r′ will be:

r′ = mod
(
−5N

4
, 5N

)
=

15N
4
∈
[

5N
2

, 5N
)

, (20)

and

∆Ms = −r− 5N
4
∈
[
−5N

2
,−5N

4

]
, (21)

which meets the requirements of (17) and (18).

Figure 3. Dividing the range of r into three sections and modifying the DC component according to
the principle of proximity.

• For weak embedding, δ should be in the range of {0,±1}. The range of ∆Mw will be:

∆Mw ∈
[
−3N

2
,

3N
2

]
(22)

F is set as 24, and the following equation is used to calculate ∆Mw to meet (17) and (22):

∆Mw =



−r− 3N
4 , W = 1, r ∈

[
0, 3N

4

]
,

−r + 3N
4 , W = 0, r ∈

[
0, 3N

4

]
,

−r + 9N
4 , W = 1, r ∈

(
3N
4 , 9N

4

)
,

−r + 3N
4 , W = 0, r ∈

(
3N
4 , 9N

4

)
,

−r + 9N
4 , W = 1, r ∈

[
9N
4 , 3N

)
,

−r + 15N
4 , W = 0, r ∈

[
9N
4 , 3N

)
,

(23)

where r stands for mod(DC, 3N).

The strong-embedding approach is more robust than the weak-embedding approach
because it brings more changes to the original picture block, which means that the inserted
watermark is more likely to survive after attacks. However, the maximum change of value
between two blocks equals four in the strong-embedding approach. For some picture
blocks with small luminance or color differences, strong embedding will cause visible
changes and reduce the image quality, as shown in Figure 4. To solve this problem, a
mixed-strength watermark embedding approach is adopted. Parameter L is introduced to
represent the image texture of a picture block, and L is defined as follows:

L = Y(max)−Y(min). (24)
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Figure 4. Watermarking experiments. (a) Part of the original image. (b) Part of the watermarked
image when T is set as 0. (c–g) Extracted watermark patterns after JPEG compression (QF = 80) when
T is set to 0, 8, 16, 24 and 255.

We set a threshold T to determine whether to use the strong-embedding approach or
weak-embedding approach: {

L > T, strong_embedding
L ≤ T, weak_embedding

. (25)

5. Experiment Results

In this section, we report experiments of the proposed method conducted on color
images. All the test images were 512 × 512 pixels in size. Watermark patterns were set as
32 ×32, 64 × 64 and 128 × 128 pixels (shown in Figure 5) to test our approach in 1/256,
1/64 and 1/16 embedding ratios, respectively. In order to provide objective judgement,
metrics such as peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and
normalized correlation (NC) were calculated.

Figure 5. Watermark patterns of different sizes: (a) 32× 32 watermark pattern; (b) 64× 64 watermark
pattern; (c) 128 × 128 watermark pattern; (d) original test image.

PSNR was used to evaluate the image quality of the watermarked pictures, and it is
defined as:

PSNR = 10log10
W × H × 2552

∑W−1
i=0 ∑H−1

j=0 (X(i, j)−Y(i, j))2 , (26)

where W × H represents the image size. X(i, j) and Y(i, j) represent the original image and
the watermarked image, respectively.
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SSIM is a criterion that reflects the structural similarity between two pictures and is
defined as:

SSIM =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) . (27)

µx and µy represent the mean values of original and watermarked pictures. σx and
σy represent their variances. Additionally, σxy represents the covariance between them.
C1 and C2 are constants added to avoid unstable results; C1 = (k1L)2 and C2 = (k2L)2,
k1 = 0.01 and k2 = 0.03. L is the dynamic range of a pixel value, which was 255 in our
experimental scenario. SSIM is within [0, 1], and it is 1 when two pictures are exactly
the same.

NC represents the similarity between the original watermark and the extracted water-
mark. The definition of NC is as follows:

NC =
∑W−1

i=0 ∑W−1
i=0 W1(i, j)W2(i, j)√

∑W−1
i=0 ∑W−1

i=0 W1
2(i, j)∑W−1

i=0 ∑W−1
i=0 W22(i, j)

, (28)

where W1 represents the original watermark and W2 represents the extracted watermark.
NC ranges from 0 to 1, and the extraction result is the best when NC equals 1.

5.1. Embedding Strength Tests

We first needed to determine the value of T in (25). For strong embedding δ ∈ {0,±1,±2},
the following equation can be inferred:

P
(
(X(i, j)−Y(i, j))2 = 0

)
= 1

5 ,

P
(
(X(i, j)−Y(i, j))2 = 1

)
= 2

5 ,

P
(
(X(i, j)−Y(i, j))2 = 4

)
= 2

5 ,

(29)

where P stands for probability.
Hence, the mean square deviation (MSE) between original and watermarked pic-

tures was 2. According to (25), the theoretical PSNR of strong-embedding approach can
be calculated:

PSNRs = 10log10
512× 512× 2552

512× 512× 2
= 45.121. (30)

Similarly, the theoretical PSNR of weak-embedding approach is:

PSNRw = 10log10
512× 512× 2552

512× 512× 2
3

= 49.892. (31)

Different thresholds for 1/16 embedding ratio were tested, and the results are listed
in Table 1. It is obvious that with the increase of the threshold (from 0 to 255, s0 means
pure strong embedding and 255 means pure weak embedding), both PSNR and SSIM were
improved. PSNR, which is one of the most important criteria in terms of watermarking,
saw a significant improvement. Although a satisfying PSNR of 45.1540 was achieved when
the threshold was set as 0, we could still observe some visible changes in watermarked
images compared with the original images. As shown in Figure 4a,b, the color block
marked with a red box has more mosaics in the processed image. In addition, Lena was
already a relatively low-resolution and poor-quality image; the color bumps caused by pure
strong embedding will be severer in high-quality pictures. However, weak embedding
cannot resist attacks effectively. In Table 1, the results of compressed watermarked images
(QF = 80) are presented. When the embedding strength was decreased, the NC value
gradually dropped from 0.9695 to 0.7994. We can also see from Figure 4c–g that the
watermarks extracted after JPEG compression (QF = 80) had better quality when the
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embedding strength was guaranteed. The extracted watermark could hardly be recognized
if the threshold was set as 255. To strike a balance between robustness and invisibility, the
threshold was set as 16 in following tests. Actually, the threshold can be adjusted in different
application scenarios with various demands; 16 was just selected for the demonstration.

Table 1. Watermarking results using different thresholds.

Threshold
No Compression JPEG Compression

PSNR SSIM NC PSNR SSIM NC

0 45.1540 0.9997 1 31.3602 0.9933 0.9695
8 45.5052 0.9997 1 31.3608 0.9933 0.8722

16 46.9228 0.9998 1 31.3858 0.9933 0.8440
24 47.7266 0.9998 1 31.4103 0.9934 0.8378
255 49.9227 0.9999 1 31.4806 0.9935 0.7994

5.2. Attack Tests

Despite the fact that low-embedding-ratio watermarking (Figure 5a) can already meet
the requirements for copyright protection, higher-resolution watermark patterns (Figure 5c)
will make the evidence more convincing. Therefore, attack experiments were conducted to
test the robustness of our proposed method under different embedding ratios. The testing
results are listed in Table 2. JPEG compression is one of the most common attacks seen
on the Internet these days. The quality factor indicates the compression ratio: the original
picture was more compressed when QF is lower. From Table 2, we can see that the results
of NC were the best when the size of the watermark pattern was 32× 32, representing a 1

256
embedding ratio. With increasing watermark size, the NC dropped under all compression
ratios, but it still had a satisfying result of 0.7732 when QF = 50 with a 1

16 embedding
ratio. For salt and pepper noise, we can guarantee an NC of over 0.8132 when ρ = 0.005
(ρ represent the noise density). Actually, extraction results were still over 0.7314 when
increasing ρ to 0.01. However, even when ρ = 0.005, the image was significantly polluted,
making it completely useless for attackers. We also tested the Gaussian noise with variances
(σ) of 0.001 and 0.002. The results were not so great under the 1

16 embedding ratio. In
particular, when σ = 0.002, the NC value dropped to 0.5365. The reason why it did not
work so well at high embedding ratios is that the applied Gaussian noise had a mean value
of zero. When the embedding ratio was 1

256 , one bit of the binary watermark was added to
a 64× 64 block, in which Gaussian noise had a mean value closer to zero than a 4× 4 block.
Hence, the proposed method did not perform well at high embedding ratios after Gaussian
noise attacks. However, the results were still quite good for low embedding ratios, getting
an NC value of 0.9833 when σ = 0.002. Actually, higher variances were also tested under
the 1

256 embedding ratio. We can still guarantee an NC value of 0.7014 when σ = 0.009,
although the attacked image will be complete ruined. Geometric attacks were also tested.
As a watermark is randomly distributed in the host image, different kinds of cropping have
similar effects on the watermarked image. The NC value will almost equal the percentage
of the picture remaining. In our testing cases, the NC values fluctuated around 0.75 when
1/4 of the picture was cropped.
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Table 2. Experimental results under different attacks.

JPEG Compression Salt & Pepper Noise Geometric Attacks Gaussian Noise

QF = 90 QF = 70 QF = 50 ρ = 0.001 ρ = 0.005 Center Crop
25%

Left Crop
50%

Scaling
0.75

Scaling
0.5 σ = 0.001 σ = 0.002

Original PSNR 34.0995 32.3854 31.5429 34.9369 28.1906 11.3371 9.1061 35.7365 32.4005 30.0168 27.02
SSIM 0.9964 0.9947 0.9936 0.9971 0.9863 0.5577 0.4369 0.9975 0.9947 0.991 0.9822

1
256

Proposed
PSNR 33.7796 32.1701 31.3638 34.8813 28.1227 11.3358 9.1055 35.2872 32.1953 29.8903 26.9736
SSIM 0.9962 0.9944 0.9933 0.997 0.986 0.5575 0.4368 0.9973 0.9944 0.9907 0.982
NC 1 1 0.9972 0.9972 0.975 0.7569 0.5097 1 1 0.9986 0.9833

[14] NC 1 1 0.999 - - 1 0.768 - 0.7056 0.9393 -

[35] NC 1 1 0.988 0.9938 0.9781 1 - - 0.9042 1 -

1
64

Proposed
PSNR 33.8144 32.1899 31.3858 34.8602 28.218 11.336 9.1056 35.344 32.2299 29.9061 26.9723
SSIM 0.9962 0.9945 0.9933 0.997 0.9863 0.5577 0.4369 0.9973 0.9945 0.9907 0.982
NC 0.9542 0.8854 0.8296 0.9678 0.8132 0.7513 0.5084 0.9282 0.8898 0.8153 0.7359

[18] NC 1 0.9999 - 0.9997 - - - - 0.9995 0.9997 0.9992

1
16

Proposed
PSNR 33.7798 32.1731 31.3709 34.6731 28.0016 11.3358 9.1055 35.3092 32.2322 29.8815 26.9592
SSIM 0.9962 0.9945 0.9933 0.9969 0.9857 0.5576 0.4369 0.9973 0.9945 0.9907 0.9819
NC 0.9973 0.8871 0.7732 0.9804 0.9063 0.7391 0.4799 0.9912 0.8929 0.6464 0.5365

[18] NC 1 0.9999 0.9999 0.9996 - - - - 0.9745 0.9987 -
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To test the scaling attack, we first scaled the picture according to the scale factor and
then rescaled it to its original size. Scaling 0.5 in Table 2 means that the original 512 × 512
watermarked picture was first scaled to the size of 256 × 256. Testing results met the
expectations in scaling tests, providing NC values over 0.8898 under different embedding
ratios even when the picture was scaled to 1/4 of the original picture.

5.3. Discussion

From the attack tests, we can see that although our approach provided satisfying
results overall, it still did not perform so well in some extreme cases. For example, after
JPEG compression, the NC value was 0.7732 when QF = 50 under a 1

16 embedding ratio,
whereas the NC in [18] approached 0.9999. Additionally, the results under Gaussian
noise attacks were also not good enough compared with other state-of-the-art works
such as [18,35]. Although the embedding strength can be adjusted through changing the
threshold to increase its robustness, the NC values cannot be improved much. It can be
seen that even in pure strong embedding, the PSNR value still has a theoretical limit of
45.121 from (30). Robustness and invisibility are relatively antagonistic. Additionally, if we
want to further improve robustness, invisibility will be compromised.

In Table 2, the default setting for 1
16 embedding ratio is:{

T = 0,
F = 20.

(32)

Additionally, δ is within the range of {0,±1,±2}. Theoretically, if F and the range of δ
are increased, robustness will be increased. As more information is added to original image
and the judgement ranges for extraction in (17) are widened, the values of mod(DC′ , F)
are more likely to fall in the right interval after attacks. Results of tests under different F
and δ values are listed in Table 3. In Figure 6, different extracting results are presented
when QF = 30. The tendency is quite clear: that by increasing the embedding strength, the
embedded picture has more noise (lower PSNR values) while having better performance
against attacks (higher NC values). Various kinds of combinations of threshold, F and δ
values can be chosen in different applications. Moreover, more than one threshold can be
set as needed; an extended, multi-staged version of the proposed method can be created.

Figure 6. Extracted watermark patterns after JPEG compression (QF = 30) with a QF of 30, when F
was set as 20, 28, 36, 44, 52 and 60 (a–f).
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Table 3. Experimental results under different f and δ values.

Attack Type
F = 28, δ∈{0,±1,±2,±3} F = 36, δ∈{0,±1,±2±3,±4} F = 44, δ∈{0,±1,±2±3,±4,±5} F = 52, δ∈{0,±1,±2±3,±4,±5,±6} F = 60, δ∈{0,±1,±2±3,±4,±5,±6,±7}

NC PSNR NC PSNR NC PSNR NC PSNR NC PSNR

None attack 1 42.0993 1 39.8976 1 38.2411 1 36.6941 1 35.3802

JPEG

QF = 50 0.9018 31.2061 0.9671 30.9891 0.9937 30.7164 0.9983 30.4488 0.9995 30.1317
QF = 40 0.8417 30.8061 0.9180 30.6250 0.9664 30.3895 0.9922 30.0678 0.9983 29.7844
QF = 30 0.7302 30.2563 0.8586 30.1033 0.9074 29.9036 0.9491 29.6610 0.9758 29.3746
QF = 20 0.5817 29.3266 0.6929 29.1560 0.7927 29.0179 0.8612 28.8557 0.9020 28.6230
QF = 10 0.4910 27.2298 0.5344 27.1598 0.5350 27.0678 0.5877 26.9764 0.7043 26.8378

Gaussian Noise

σ = 0.001 0.7967 29.7629 0.8968 29.5979 0.9536 29.4070 0.9833 29.1771 0.9940 28.9117
σ = 0.002 0.6401 26.8875 0.7577 26.8126 0.8463 26.7230 0.9085 26.5990 0.9510 26.4391
σ = 0.003 0.5739 25.2106 0.6666 25.1519 0.7666 25.0915 0.8302 25.0015 0.8938 24.9096
σ = 0.004 0.5341 24.0038 0.6031 23.9540 0.6896 23.8945 0.7686 23.8419 0.8382 23.7694
σ = 0.005 0.5142 23.0659 0.5642 23.0403 0.6532 22.9942 0.7238 22.9327 0.7927 22.8772

Combination Attack

QF = 50,
σ = 0.002,
ρ = 0.001,

Scaling0.75

0.6111 28.7090 0.7056 28.5960 0.8121 28.4215 0.8668 28.3194 0.9093 28.1249
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6. Hardware Implementation
6.1. Details of the Hardware Implementation

The block diagram of the proposed hardware design is shown in Figure 7a. The overall
processing flow stayed the same as that illustrated in Section 3. The 4 × 4 RGB data and
the one-bit watermark information arrive synchronously and are stored in the buffer for
further use. Meanwhile, 4 × 4 RGB data are sent to the rgb_to_y module to complete the
color space conversion according to (4). Then, the watermark_prepare module calculates
the values of mod(DC, 12) and mod(DC, 20) by replacing N with 4, as in Section 3, for weak
and strong embedding, respectively. Image texture of the 4 × 4 block is also calculated
in this module and is compared with the threshold to determine the embedding strength
of this block. Finally, the selected remainder and threshold comparison result are sent
to the watermark_process module. For example, if L > T (25), the strong-embedding
approach is adopted. The T_result in Figure 7a must be 1 and rmd will be the value of
mod(DC, 20). As the main computing operators used in embedding and extracting of
our approach are the same (rgb_to_y module and watermark_prepare module can be
used for both embedding and extracting), we made our hardware design capable of being
configured in embedding mode and extracting mode with a mode selection signal. In
the watermark_process module, either embedding or extracting is carried out according
to the mode selection signal (1 for embedding and 0 for extracting). According to the
detailed diagram of watermark_process module in Figure 7b, T_result and rmd from the
watermark_prepare module are first sent to the mod_sel module to complete the bypass.
In embedding mode, T_result and rmd are sent to the embed module. Operations similar
to (19) or (23) are executed in the ∆M calculation module to calculate ∆M, which is added
to the original RGB channels with 48 adders (the adder for every R/G/B pixel). As the
value of ∆M is constrained to {0,±1,±2}, the length of ∆M is 3 bits. Hence, the two inputs
of adders in the embed module are 8 bits and 3 bits respectively. Additionally, some extra
logic components are required to make sure the computing results do not exceed [0, 255].
In extracting mode, operations in (17) are executed and the extracted one-bit watermark
information is obtained (marked as W_extract in Figure 7b). Some other optimizations are
also adopted in the hardware implementation.

Figure 7. (a) Architecture of the proposed approach for a 1/16 embedding ratio. (b) A detailed diagram of the water-
mark_process module.
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6.1.1. Parallel Computing and Pipeline

Our first improvement aims at latency reduction. In the rgb_to_y module, input data
are the 48 8-bit RGB pieces of data of a 4 × 4 block. According to (4), all channels need to
be multiplied with their constant coefficients. Hence, 48 constant coefficient multipliers
are computed in parallel. Then, 16 three-input adder trees are applied to calculate the
final Y channel data. In the watermark_prepare module, as shown in Figure 8a, the DC
component and image texture of the block need to be calculated. According to (10) and
(24), Y channel data are simultaneously sent to a sixteen-input adder tree and the grain
analysis module to get the DC component and L, respectively. Since these two operations
have no relevance, they are also carried out in parallel to reduce latency.

Figure 8. (a) Detailed diagram of watermark_prepare module. (b) Detailed diagram of compare module in (a).

When it comes to pipelining, three 128-bit-width FIFOs and one 1-bit-width FIFO
are inserted as buffers to control the data flow. All FIFOs have a depth of 18 to cover the
latency of the overall watermarking process. Meanwhile, adder trees and other operators
are also fully pipelined to help us get maximum throughput.

6.1.2. Remainder Calculation

As mentioned before, we need to calculate the values of mod(DC, 12) and mod(DC, 20)
in the watermark_prepare module to get the remainders in weak embedding and strong
embedding. However, conventional approaches involve dividers which are not friendly in
terms of timing and area when it comes to hardware implementations. Inspired by linear
CORDIC, we introduced an iterative algorithm to compute the modulo. Take mod(DC, 20)
as an example; then the following pseudo code can be used (Algorithm 1):

Algorithm 1 Computing the remainder using linear CORDIC.

1 for k = 1:62
2 if rmd > 0
3 rmd = rmd − 2ˆ(6-k)*20;
4 else
5 rmd = rmd + 2ˆ(6-k)*20;
6 end
7 end
8 if rmd < 0
9 rmd = 20 + rmd;
10 end

In this way, it takes seven clock cycles to calculate mod(DC, 20) with the critical path
of an adder. Similarly, computing mod(DC, 12) takes eight clock cycles.
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6.1.3. Timing Analysis

In the rgb_to_y module, RGB data are firstly multiplied by constant coefficients and
then go through three-input adder trees. Hence, the latency of the rgb_to_y module is:

Trgb_to_y = Tmul + 2 ∗ Tadder = 3 clocks. (33)

For watermark_prepare, the sixteen-input adder tree needs four clock cycles to get the
DC component. From Figure 8b, it can be deduced that the compare module has a latency
of two clock cycles. In order to get the maximum and minimum values of the 16 pixels, two
stages of comparison are needed, as shown in Figure 8a. Hence, the grain analysis module
needs four clock cycles to get the maximum and minimum values, and one more clock
to complete the subtraction, which adds up to five clock cycles. The latency remainder
calculation needs eight clock cycles, as stated before. Additionally, another clock cycle is
needed to complete the threshold comparison. As the sixteen-input adder tree and grain
analysis module work in parallel, the overall latency of the watermark_prepare module is:

Twatermark_prepare = 5 + 8 + 1 = 14 clocks. (34)

As for the watermar_process module, when it works in embedding mode, the cal-
culation of ∆M is similar to (19) or (23); it needs one clock cycle, and adding ∆M to RGB
channels requires another clock cycle. Hence, the latency is:

Twatermark_process_emb = 1 + Tadder = 2 clocks. (35)

When is works in extracting mode, according to (17), only one clock cycle is needed:

Twatermark_process_ext = 1 clocks. (36)

To summarize, the overall latency of our proposed hardware design is:

Ttotal =

{
3 + 14 + 2 = 19 clocks, embedding
3 + 14 + 1 = 18 clocks, extracting

. (37)

It is also worth mentioning that the buffered original data are read out of the FIFOs
one clock before the final results are calculated, so the depth of the FIFOs is set as 18 to
ensure that there is no overflow.

6.2. Implementation Results

Our design was coded in Verilog HDL and synthesized with TSMC 90-nm CMOS
technology on the Xilinx Virtex-7 platform. It should be mentioned that the reported ASIC
results are pre-layout synthesis results from Design Compiler, and the reported FPGA
implementation results were estimated by the Xilinx Power Estimator (XPE) in the Vivado
Design Suite. The overall architecture was as in Figure 7a. The synthesized circuit is able
to process a single 4×4 block. For example, if we want to embed a 128 × 128 watermark
pattern to a 512 × 512 picture with a single core, the overall latency will be:

Toverall = 19 + (128× 128− 1) = 16, 402 clocks, (38)

where 19 is the latency of the first block, and each of following blocks is sent to the process
core continuously. In the image process system, DDR is used to transfer data to the process
core. Take DDR3, for example: a DDR3 chip usually has a throughput of approximately
20 GB/s and the read channel consumes about half of the throughput which is 10 GB/s.
As listed in Table 4, the maximum frequency of our proposed architecture is 2.32 GHz.
According to (38), a single core is able to process a 512 × 512 picture within 7053 ns. Hence,
a single core has the maximum throughput of 103 GB/s (141,783 fps) with an area of
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304,980.08 µm2 and power consumption of 508.1835 mW. Additionally, the only thing that
limits the performance will be interface speed for ASIC applications.

Table 4. ASIC implementation results.

Freq. Area (µm2) Power (mW) Efficiency (fps/W)

1 GHz 292,349.13 215.3919 2.81× 105

2 GHz 300,120.61 433.7370 2.81× 105

2.32 GHz 304,980.08 508.1835 2.79× 105

a. TSMC-90 nm CMOS technology was used for the ASIC implementation.
b. ASIC implementation results were obtained from DC reports.

For FPGA applications, the clock frequency may not be as high as with ASIC; the
bottleneck could be the process speed. Since there are no interactions among all the
individual blocks in our approach, we can easily apply the multicore strategy to process
a large picture in a shorter time in FPGA applications. In Table 5, the frequencies and
numbers of cores were set to match the 10 GB/s interface speed of DDR3. For example,
when we set the frequency as 50 MHz, the throughput of a single core was 2.2 GB/s
and the number of cores was set as five. Results under different frequencies are listed
in Tables 4 and 5. For the ASIC implementation, area and power consumption rose with
frequency. However, the power efficiency stayed around 2.8 × 105 fps/W. For FPGA
implementation, although power efficiency had a significant decrease when frequency rose
from 50 to 250 MHz, the area under 50 MHz was almost five times the area under 250 MHz.
To conclude, our design is capable of handling the watermarking tasks in various kinds of
scenarios with satisfying performance.

Table 5. FPGA implementation results.

Resources Available
Used Utilization Used Utilization Used Utilization

50 MHz 100 MHz 250 MHz

LUT 303,600 27,853 9.17% 16,712 5.50% 5936 1.96%

FF 607,200 24,598 4.05% 14,762 2.43% 4923 0.81%

Power (mW) - 376 466 430

Efficiency (fps/W) - 4.05× 104 3.92× 104 3.54× 104

a. Xilinx Virtex-7 xc7vx485tffg1157-2 was used for the FPGA implementation.
b. Numbers of cores in the FPGA implementation were set to meet the transfer speed of

the DDR3 chip. For 50 MHz, the core number was 5. For 100 MHz, the core number
was 3. For 250 MHz, the core number was 1.

c. Power consumption was estimated by the Xilinx Power Estimator.

7. Comparisons
7.1. Hardware Implementation Comparison

Different kinds of approaches have been proposed to realize the hardware acceleration
of watermark embedding. Both ASIC and FPGA have been employed for their implemen-
tation. Hence, we compare our results with the most recent works in terms of area, power
consumption and energy efficiency. For the FPGA implementation, we chose the Xilinx
Virtex-7 series vx485t as our target device. The criteria used for evaluating the resources
of a design in FPGA applications are the numbers of LUTs, flip flops and DSPs. In order
to compare our results with previous works under the same conditions, we adjusted the
synthesis strategy in Vivado design tools so that DSPs were not allowed to be used. Hence,
resources were constrained to LUTs and flip flops. It is also worth mentioning that in [29],
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an Altera Cyclone device was used. It consumes 4582 Les, which are the logic equivalent
of 4582 LUTs and 4582 single-bit registers. Compared with other works, our design has
a notable advantage in saving logic resources, except for [29,36]. However, [29] showed
relatively low throughput (11.8 im./sec), whereas our design is capable of reaching the
throughput of 2.57× 104 fps. FPGA implementation results show that our design achieved
the highest frequency of 421.941 MHz with the power consumption of 754 mW. According
to (38), the frame rate per Watt of our design equals:

421.941× 106

16, 402× 0.754
= 3.41× 104fps/W. (39)

As the input images were 512 × 512 color images, the throughput per Watt of our
design was:

3.41× 104 × 5122 × 8× 3 = 2.14× 105Mbps/W. (40)

Designs in [29] had the throughput of 30.1 im./sec, and the images processed were
640 × 480 grayscale images. Hence, the throughput per Watt can be deduced:

11.8× 640× 480× 8
0.20516

= 1.41× 102Mbps/W. (41)

Although our design consumes more resources than [29], its throughput and through-
put per Watt are both three orders of magnitude higher. Compared with [36], our design
consumes less LUTs but more flip flops. However, [36] uses four more DSP48E resources
than our design. Hence, it is assumed that the design in [36] and our paper are at the same
level in terms of hardware utilization and power consumption. Throughput of the design
in [36] was 1.676 GBps at 362.58 MHz, which is 1.34 × 104 Mbps. According to (40), the
throughput of our design is 1.61 × 105 Mbps, which is one order of magnitude higher than
that in [36].

Comparisons of ASIC implementation results are also listed in Table 6. Due to the DCT
and IDCT and remainder calculation methods applied in our approach, the critical path of
our design is the path of a constant coefficient multiplier. The maximum frequency of the
synthesized circuit can reach 2.32 GHz, which is much faster than the other works listed in
Table 6. Since we use registers to build the internal FIFOs, the overall power consumption
reaches 508.1835 mW at 2.32 GHz. If we do not include the power of the internal buffer, the
computational logic consumes 48.6163 mW at 2.32 GHz and 4.0938 mW at 200 MHz. [29]
also uses 90 nm CMOS technology, but it can only achieve the maximum frequency of
166.7 MHz for its parallel version due to the introduction of arithmetic operations such as
division and square root. Additionally, [29] uses only one divider in the whole design and
shares it in different blocks; thus, the throughput is limited to 30.1 im./sec. On the contrary,
our design can reach the maximum throughput of 141,783 fps because fully-pipelined
architecture is adopted in our design. Compared with [29] in terms of throughput per
Watt, our design is three orders of magnitude faster, which is consistent with the FPGA
implementation results. In conclusion, the power consumption of the proposed design is
lower than in most recent works, such as [29,36,37], due to the eliminations of the DCT
and IDCT, and the 5/6 of the computational cost saved in color space conversion. Due to
the low computational cost, parallel computing and a pipeline strategy (unlike [29], one
divider is shared in all modules) can be used with the proposed method to improve the
throughput of our design, which contributes to the high power efficiency.
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Table 6. Hardware implementation comparison.

Work FPGA
Type

Process
Domain

Watermark
Type LUTs Flip Flops Freq.

(MHz)
Power
(mW)

Efficiency
(Mbps/W)

Proposed Xilinx
Virtex-7 DCT Invisible

Robust 6874 4922 421.941 754 2.14 ×105

[5] Xilinx
Virtex-II Spatial Invisible

Robust 1669 896 82.26 1300 -

[38] Xilinx
Spartan-3E Spatial Reversible 11,291 9347 98.76 750 1.386

[37] Xilinx
Virtex-7 Spatial Reversible 50,124 38,774 445.330 1215 -

[29] Altera
Cyclone IV Spatial Invisible

Robust 4582 4582 79.84 205.16 1.41 ×102

[36] Xilinx
Virtex-7 DCT Invisible

Robust 7469 3405 300 - -

[36] Xilinx
Virtex-7 DCT Invisible

Robust 29,767 7463 54.14 - -

Work Process
Node

Process
Domain

Watermark
Type

Area
(mm2)

Freq.
(MHz)

Power
(mW)

Efficiency
(Mbps/W)

Proposed
(Hi Freq)

TSMC-
0.09 µm DCT Invisible

Robust 0.30498 2320 508.1835
(48.6163)

1.75 ×106

(1.83 ×107)

Proposed
(Lo Freq)

TSMC-
0.09 µm DCT Invisible

Robust 0.28245 200 43.7063
(4.0938)

1.76 ×106

(1.87 ×107)

[29] ASIC-
0.09 µm Spatial Invisible

Robust
2.89

(90.2%) 166.7 4.23 1.75 ×104

[39] ASIC-
0.35 µm DCT Invisible

Robust 3.064 50 62.78 -

[3] ASIC-
0.35 µm Spatial Invisible

Robust 213.5457 545
(4.26) 2.0547 -

[40] ASIC-
0.25 µm Spatial Invisible

Robust 16.2 70/280 0.3 -

7.2. Watermarking Performance Comparison

For the watermarking performance comparison, we mainly focus on invisibility and ro-
bustness.

The PSNR reflects the image quality of a watermarked picture. Watermarked bits
can be considered as noise added to the original image. Hence, for the same picture, if
the PSNR value is higher after watermarking, the invisibility of the watermark should be
better. First, we compared some of the most recent works with our method using the same
image Lena for the invisibility test under a 1/64 embedding ratio, which is widely used.
The method in [12] works in the DCT domain, that in [18] works in the DWT domain and
that in [34] is based on Tchebichef moments. As shown in Table 7, our PSNR and SSIM
values are higher than those in [12,18], which indicates that the proposed method has better
invisibility than [12,18].

The NC value between the extracted watermark after attack and the original wa-
termark reflects the robustness of the watermarking approach. According to variable-
controlling approach, we set the threshold to 0 and F = 56, δ ∈ {0,±1,±2,±3} to get a
PSNR value of 42.1097, which is still better than those in [18,35]. [14,18,35] were among the
best in terms of attack tests through using DCT, DWT and Tchebichef moments, respec-
tively. Typical attacks, such as JPEG compression, scaling, Gaussian noise and salt and
pepper, were used for comparison. Experimental results are listed in Table 7. For JPEG
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compression, the proposed method achieved the best result with an NC value of 1 after
50% compression. For scaling attack, the 512 × 512 image was first scaled to 256 × 256
and then rescaled to 512 × 512. The result shows that our approach was slightly worse
than [18] but much better than [14] and [34]. For Gaussian noise and salt and pepper noise
attacks, [18] still attained better results than our design, but the differences were very small.
Overall, it can be stated that the proposed method shows great advantages in invisibility
and is one of the best methods in terms of robustness. Although the DWT-based method
in [18] has some slight advantages in robustness tests, the hardware overhead brought on
by DWT makes it unsuitable for low-cost applications.

Table 7. Watermarking performance comparison.

Comparison Under No Attacks

Metric [12] [18] [35] Proposed
PSNR 42.2 38.2477 40.845 45.0883
SSIM 0.97 0.9991 0.990 0.9997
NC 1 1 1 1

NC Comparison After Attacks

Attack Type [14] [18] [35] Proposed

None Attack 1 1 1 1

JPEG (QF = 50) 0.9990 0.9998 0.9880 1

Scaling (scaling
factor = 0.5) 0.7056 0.9995 0.9042 0.9973

Gaussian Noise
(σ = 0.001) 0.9393 0.9997 - 0.9860

Salt & pepper
(ρ = 0.001) - 0.9985 0.9938 0.9870

8. Conclusions

In this paper, we proposed a hidden DCT-based watermarking method for low-cost
hardware implementations. The proposed architecture combines a watermark embedder
and a blind extractor in the same circuit using a resource-sharing method. The hardware
implementation and simulation results have proven the performance of our design in
terms of throughput, efficiency and accuracy. When synthesized with TSMC 90-nm CMOS
technology, our proposed circuit was able to reach the frequency of 2.32 GHz, which is
4.26 times higher than the best result reported [3]. Compared to the state-of-the-art design
in [29], our design improved throughput per Watt by more than 1000 fold with the energy
efficiency of 1.75 ×106 Mbps/W. In addition, invisibility and robustness tests showed that
the proposed method is among the state-of-the-art methods. The principal contributions of
the proposed scheme can be summarized as follows:

1. We improve the invisibility resulting from the conventional DC component-based
DCT watermarking method by introducing the HVS model. Changes in DC compo-
nents are strictly controlled according to the characteristics of the HVS model to avoid
visible block artifacts.

2. An optimized workflow is proposed to reduce computational overhead in traditional
DCT-based watermarking methods. The hidden DCT-based approach is applied
to embed the watermark into the DCT domain without actually carrying out the
operations. Additionally, 5/6 of the color space conversion can be omitted using our
DC component-based approach. Meanwhile, image quality after watermarking can
be improved because the calculation errors can also be avoided.

3. The optimized low-cost watermarking method in this paper is suitable for real-time
applications with limited computing resources, such as mobile phone applications
and wireless network applications [29]. It is worth noting that the proposed method
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is suitable for various kinds of embedding ratios. Additionally, by adjusting the
parameters such as threshold in our approach, users can easily adapt it for invisibility-
oriented applications or robustness-oriented applications. For example, if we pursue
robustness, we can set the threshold to 0 and choose the high F and δ values mentioned
to increase the embedding strength.

In future, the proposed method should be optimized for better performance against
geometry attacks and JPEG compression attacks. For example, in the cropping attack test,
the proposed method did not perform as well as some state-of-the-art methods. Besides,
the method in [18] showed advantages over our method in response to JPEG compression
attacks. Hence, it is important for us to make efforts to improve our approach in these
aspects. Additionally, the high-efficiency characteristic makes our design suitable for video
watermarking applications, rather than just still pictures. Some further studies will be
undertaken in the video watermarking area.
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