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Abstract: This article describes and analyzes the new feature extraction technique, Random Local
Descriptor (RLD), that is used for the Permutation Coding Neural Classifier (PCNC), and compares it
with Local Binary Pattern (LBP-based) feature extraction. The paper presents a model of face feature
detection using local descriptors, and describes an improvement on the PCNC for the recognition
of plane rotated and small displaced face images, as applied to three databases, i.e., ORL, FRAV3D
and FEI. All databases are described along with the recognition results that were obtained. We
also include a comparison of our classifier with the Support Vector Machine (SVM) and Iterative
Closest Point (ICP). The ORL database was selected to compare our RLDs with LBP-based algorithms.
The PCNC with the RLDs demonstrated the best recognition rate, i.e., 97.49%, in comparison with
90.49% for LBPs. For the FEI image database, we obtained the best recognition rate, i.e., 93.57%, in
comparison with 66.74% for LBPs. Using the RLDs and rotating the original images for FRAV3D,
we improved the recognition rate by decreasing by approximately twice the number of errors. In
addition, we analyzed the influence of different RLD parameters on the quality of facial recognition.

Keywords: face recognition; Random Local Descriptor (RLD); Local Binary Pattern (LBP) descriptor;
Weber Local Descriptor (WLD); PCNC neural classifier

1. Introduction

Face recognition offers the advantage of being a passive identification and verifica-
tion method that does not require explicit action or participation by the individual in
order to be recognized. This characteristic makes this technique ideal for security and
surveillance purposes. The acquisition methods for face images can be easily performed
with inexpensive standard cameras at a long distance. However, unconstrained situations
make it difficult to develop robust systems that are invariant to illumination, size, pose
and location. Images in the real world are affected by expressions, poses, occlusions, and
illumination; the differences among various face images of the same person could be even
larger than those from images of a different person altogether. Therefore, extracting robust
and discriminative features that make it possible to distinguish among different people is a
critical and difficult problem in face recognition [1].

Automatic face recognition could be used in different security systems, such as se-
curity for buildings, offices and banks. Different approaches have been investigated and
proposed for solving this task [2,3]. Face analysis systems are often built into mobile
phones. Although the memory capabilities of mobile phones are limited, experiments show
encouraging face detection performance.

Face recognition is a classical recognition process that involves two critical problems—
feature representation and classifier construction [1]. It has been demonstratedthat different
methods of feature extraction can be combined with different methods of classification in a
handwritten digit recognition task.
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The authors [4] consider that the design of effective features is a fundamental issue
in computer vision. It is commonly accepted that designing effective features has an
important tradeoff with discriminativeness and robustness.

The techniques developed thus far for face representation can be roughly classified
into two main categories: holistic- and local-based techniques. Holistic approaches are
based on the global use of the whole face region. Local-based techniques locate a number
of features from a face and then classify them by combining and comparing them with
corresponding local statistics. It has been proven that component-based (local feature-
based) face recognition methods perform better than global methods (holistic-based).

Different face recognition systems, such as SpereFace, Arcface or Cosface, based on
neural networks and deep learning, have been developed in recent years [5–9].

Here, we focus on aspects of feature extraction for facial recognition (classification)
using local feature-based methods.

Recently, there has been substantial interest in object and view matching using local
invariant features or local feature descriptors [1,4,10,11]. The methods that use these
descriptors can be divided into two classes: sparse descriptors, which first detects the
interest points in a given image and then samples a local patch and describes its invariant
features [10]; and dense descriptors, which extract local features pixel by pixel.

As examples of sparse descriptors, we can mention scale-invariant feature transform
(SIFT) and rotation-invariant feature transform (RIFT) [10,12]. A typical image of size
500 × 500 pixels gives rise to about 2000 stable features.

Examples of dense descriptors are Local Binary Pattern Descriptor (LBP) [13,14] and
Weber Local Descriptor (WLD) [10]. LBP is one of the most powerful descriptors to
represent local structures [13,14]. An example of a basic LBP operator is presented in
Figure 1.
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Figure 1. Example of abasic LBP operator.

We have a window of 3 × 3 pixels in which every pixel has a brightness value, which
is compared with the brightness of the central point. The value of the central point is a
threshold. Each pixel is converted to a binary form of presentation in the following manner:
If the brightness is more than the threshold, 1 is obtained; if the brightness is less than the
threshold, 0 is obtained. The binary code of the window is formed from the left upper
corner, as presented in Figure 1. Sometimes, the mean value of the window brightnesses
is selected as a threshold for binary code calculations. LBP describes the micropattern
on the image. It is possible to build an LBP histogram that is computed over the whole
image. Such a representation encodes only the occurrences of micropatterns without any
indication of their locations [15].

To use LBP for face recognition, it is necessary to divide face images into a grid
of subregions. These subregions are not necessarily well aligned with facial features.
Moreover, the resulting facial description depends on the chosen sizes and positions of
these subregions [15]. The neighboring pixels in LBP could make different contributions to
the description of the face. Careful selection of neighboring pixels could help to improve the
face recognition performance [1]. In [15], researchers adopted a heuristic approach to find
the best pixel sampling pairs in local regions. In [1], the authors proposed a soft method
of determining the optimal neighborhood sampling strategy. They calculated the pixel
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difference vectors (PDV) in such way that the PDVs of images of the same person are similar,
and the differences among different people are enlarged. One of the interesting conclusions
of this work was that it used a local Discriminant Face Descriptor (DFD), which describes
the face structures locally and precisely, and achieved better face recognition performance
than global DFD [1]; the many experiments that were performed demonstrated this fact.
It should be noted that with respect to computational cost, every image was divided into
49 nonoverlapping regions, each of which corresponded to a 1024-dimensional feature;
therefore, the feature dimension of DFD was1024 × 49 = 50,176.

Ahonen et al. [13] introduced LBP in facial recognition with a nearest neighbor
(NN) classifier.

In [1], the authors used cropped face examples from different image databases (e.g.,
FERET, LFW).

During the development of the LBP methodology, a large number of variations were
designed to improve the performance or expand the applications; for example, ILBP (Im-
proved LBP) and ELBP (Extended LBP) [15]. The downside of ELBP is that it significantly
increases the feature dimensionality. The feature vector sometimes has a dimensionality
range of 3540 to 10,620 in the case of colored images.

LBP-based features have a large dimensionality; to reduce this, this method is com-
bined with some popular learning techniques which were developed and used for texture
recognition, and then for face recognition tasks. Recent versions of UUCoLBP, RUCoLBP,
and PRICoLBP were developed on the basis of LBP [4]. For example, PRICoLBP preserves
pairwise rotation invariance.

The disadvantages of LBP are rarely discussed. However, LBP has sensitivity to
random and quantization noise [15]. The development of a large number of LBP vari-
ations demonstrates the wish to avoid this problem and improve the performance in
different applications [16,17]. However, these improvements typically increase the compu-
tational complexity.

The literature has proposed a combination of local face descriptors LBP/LDiP/LDNP
with Discrete Fourier Transform (DFT) as a global face descriptor [18]. LDiP is Local
Directional Pattern and LDNP is Local Directional Number Pattern. The results were
obtained using the ORL database.

WLD [10] was inspired by Weber’s Law and is used as a robust local descriptor.
The WLD method was tested on texture databases and demonstrated effective results.
Forhuman face detection, this method also showed promising results with the use of an
SVM classifier. Sometimes, the investigators used a WLD histogram for a given image [10].

Learning DFD was proposed in [1]. Traditionally, the form of such local descriptors
is predefined in a hand-crafted way. This method proposes to learn a DFD in a data-
driven way. A DFD introduces discriminant learning into the feature extraction process.
The DFD was tested on different face databases and demonstrated improvements in the
recognition results.

In this paper, we describe all of these local descriptors in detail to demonstrate the
interest of scientists and engineers in the image recognition area, and in order to have
examples with which to compare the advantages and disadvantages of these methods with
the methods that we are proposing.

We have developed a special feature extractor and neural classifiers that we applied
to different types of images, such as handwritten digit recognition, micro-object shape
recognition, face recognition and other domains [19–23]. Different types of neural classifiers
have been developed, for example, Random Threshold Classifier (RTC), Random Subspace
Neural Classifier (RSC), Limited Receptive Area Classifier (LIRA classifier), etc.

The proposed feature extractor is based on the concept of random local descriptors
(RLDs). RLDs are followed by an encoder that is based on the permutation coding tech-
nique, which accounts for not only the detected features, but also the position of each
feature in the image, and makes the recognition process robust to small displacements. The
combination of RLDs and permutation coding permits us to obtain a sufficiently general
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description of the image to be recognized. The code generated by the encoder is used as
input data for the PCNC neural classifier.

In this article, we describe in detail the RLD and compare it with other local descriptors.
We demonstrate the possibility of an RLD application for the face recognition task. From
among several tasks, including face detection, face recognition, facial expression analysis,
demographic classification (classification age, gender and ethnicity, based on face images)
and other applications, we selected face recognition as an application for RLDs. We apply
this RLD to face recognition using the different face image databases, for example, the ORL,
FEI, and FRAV3D image databases.

The advantages of RLDs are that they can be easily extracted from the raw images
to allow for fast processing, and they can be combined with a neural classifier to avoid
computationally expensive algorithms.

The sizes and positions of RLDs can vary; they can overlap on the face image.
This paper focuses on the face recognition task. In previous studies (regarding the

ORL database of faces), we proposed the inclusion of displaced face images as part of the
training set and obtained a good recognition rate [22]. FEI [24] and the 2D images from the
FRAV3D [25–27] databases fulfilled our investigation needs for the PCNC, and allowed us
to obtain superior recognition rates. As we have the results of other authors for the ORL
database and LBPs, we decided to repeat our experiments for ORL and RLDs in order to
compare them.

An explanation of the PCNC classifier is given in Section 2. Section 3 provides a
description of the ORL, FRAV3D and FEI databases, as well as the distortions that are
included in the recognition process. In Section 4, we show the results of the experiments
with the PCNC neural classifier in comparison with other face recognition algorithms, and
present the new results of the experiments with the ORL and FEI databases. Concluding
remarks are given in Section 5.

2. Permutation Coding Neural Classifier

The PCNC is meant to be a multipurpose recognition tool. It has been tested on
handwritten digits, micromechanical pieces and face recognition [20,21]. Figure 2 shows
the processes that take place in the PCNC classifier.
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As observed in Figure 2, there are three stages in the PCNC method: preprocessing,
processing and recognition. The first stage, image preprocessing, converts color images to
grayscale images. Sometimes, scientists use the color images in their investigations [28].
To reduce the complexity and determine the true invariance for face recognition, images
can be converted from the RGB to gray scale, as described in [29]. In this paper, we used
the equation

f (x, y) = (R + G + B)/3, (1)

The gray-scale image was then processed with a median filter to obtain edges as points
of interest (POIs in Figure 2).

The recognition stage includes two substages, i.e., training and recognition, for the
recognition task with the PCNC classifier.

An example of extracting the POIs is demonstrated in Figure 3. The last image is used
as the input image for our classifier.
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The resulting image from this stage is shown in Figure 4. The original image was
taken from the FEI image database [24].
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In face recognition, the feature representation of a face is the key to good perfor-
mance. A good representation must minimize intraperson dissimilarities and maximize
the differences among different people, as well as being fast and compact.

2.1. Extractor of Features

We propose a classifier using the concept of RLD and Frank Rosenblat’s perceptron [30].
RLD works as a general feature extractor by connecting a neuron in the associative layer
to a random point in the retina (input image) and calculating a brightness function of the
selected point. The scheme of the neural network recognition system is shown in Figure 5.
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As shown in Figure 5, the system is based on a multilayer neural network. The first S
layer (sensor layer) is the input image; the second D layer contains RLD neurons (Figure 6).
The A layer is an associative layer of neurons (Figure 5). The R layer is an output layer.
Each of these output neurons corresponds to a recognition image class. Here, we describe
the RLD structure in detail.
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The RLD scheme is presented in Figure 7. RLD is constructed around points of interest
(POIs). The POI is in the center of the RLD (in Figure 7, the POI is not shown).
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In this study, we assume that the POIs correspond to image locals in which the surface
of the pixel brightness is not plain.

We collocate the RLD around the extracted POI. In the center of the scanning windows
(h × w), there are two auxiliary rectangles: an internal rectangle with the area I × I = I2

pixels, and an external rectangle with the area E × E = E2 pixels (Figure 7). All of the pixels
of the internal rectangle are connected with the neuron, with connections that have positive
values for the weight being represented by wI. All of the pixels of the external rectangle are
connected to the neuron with the negative-valued weights, wE. The weights wI and wE are
selected according to the equation:

I2 · wI = E2 · |wE|, (2)
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The neuron calculates the input excitation:

Ein =
I

∑
i=1

I

∑
j=1

bij · wI −
E

∑
i=1

E

∑
j=1

bij · |wE|, (3)

where bij is the brightness of the pixel that has coordinates (i,j).
The neuron output equals 1 if

|Ein| ≥ T, (4)

where T is the threshold. Otherwise, the neuron output equals 0.
For every RLD (Figure 7), two types of neurons are considered, similar to natural

neural networks, namely, ON and OFF neurons (ON neurons correspond to pixels with a
connection with the arrow or positive point; and OFF neurons correspond to pixels with
a connection with the circle or negative point). ON neurons respond if the input is more
than the threshold, whereas OFF neurons respond if the input is less than threshold. We
use binary outputs, i.e., “1” (or active) and “0” (or inactive). In an image, these neurons
correspond to the positive and negative points. Figure 8 presents an example of the RLD
that determine each feature, which exists only when all of the ON and OFF neurons
are active.
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The ON neuron has an output of “1” if the brightness bi of the corresponding pixel is
higher than the neuron threshold Ti: bi ≥ Ti.

The OFF neuron has an output of “1” if the brightness bi of the corresponding pixel is
less than the neuron threshold Ti: bi < Ti.

The threshold values are randomly selected from among the brightness values Tmin ≤
Ti ≤ Tmax of the input image.

A D layer neuron (Figure 7) is a neuron that simulates a conjunction operation. It has
an output of “1” if and only if all eight neurons (for connections with the arrow and four
connections with circles) have outputs of “1”.

Each neuron of the dij plane (Figure 6) corresponds to the pixel that is located at the
center of the I-rectangle (Figure 7).

All of the neurons that have an output of“1” are considered to be active neurons. We
consider that the feature exists only if all of the positive and negative points are active;
otherwise, it is absent.

All of the neurons of the associative A layer have trainable connections with R layer
neurons (Figure 9). The training process is realized between these two layers by changing
the weight of every connection between the A and R layers. If the answer is correct, nothing
has been done. In the case of an incorrect answer, all connection weights to the incorrect
neuron are reduced, and all weights to the correct neuron are increased.
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2.2. Feature Encoder

To explain the feature encoder, we must introduce the following variables. Let a
feature Fi be

Fi = (Ui, (P1i, P2i, . . . , Pki)), (5)

where Pj is the position of the feature Fi in the image. We can have the same feature in
different places of the image (for example, in Figure 10a, two white lines with the same
inclination, or in Figure 10b, two different pairs of feature frames from the man’s lips).
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Thus, for every feature, we can define the following:

Pj =

(
xj, yj,

C
∩
1
(ONc, ThONc),

L
∩
1

OFFl , ThOFFl

)
, (6)

where xj and yj are coordinates of the window of size (w × h) with a center in the point of

interest,
C
∩
1
(ONc, ThONc) is the conjunction function of C ON-neurons (ONc is the position

of an ON-neuron randomly generated in window (w × h)), ThONc is the threshold of the

c-th ON-neuron,
L
∩
1

OFFl , ThOFFl is the conjunction function of L OFF-neurons (OFFl is the

position of an OFF-neuron randomly generated in window (w × h)), and ThOFFl is the
threshold of the l-th OFF-neuron. A feature exists in the position (xj, yj) if the result of the
conjunction for the ON and OFF neurons is 1. If one of these functions is 0, then the feature
does not exist in that position.

To address all of these variables as ONc and OFFl neuron positions, the thresholds
ThONc and ThOFFl for the ON and OFF neurons are randomly selected.

The coordinates xj and yj of the center point of the window (w × h) are defined in the
following manner. We scan the image with this window with a scan step of one pixel. If
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the central point is not a point of interest, we continue to scan the image. If the central
point of the window is a point of interest, then we define the feature using Equation (7).
If the result is 1 (i.e., all ON and OFF neurons have given an answer), then we know that
the feature exists in this position. If the result is 0 (i.e., if at least one of the ON and OFF
neurons does not give the answer), then we know that the feature is absent and we must
continue to scan the image with the window.

For each extracted feature Fi, the encoder creates an auxiliary binary vector or mask,
which is represented as follows:

Ui = (ui1, ui2, . . . , uiN), (7)

where uii is equal to 0 or 1. Ui is the feature mask vector of dimension N with K 1’s, whose
initial position is randomly chosen, where K<<N (we worked with K = 16 and N = 64,000).
The mask corresponds to the feature in the initial position in the image and is constant
throughout the lifetime of the PCNC. The other positions of the feature are encoded
with permutations of the mask. Furthermore, we will describe in detail the permutation
procedure. Next, we want to terminate the description of the coding procedure. As a result
of the permutation process, a new vector Ui(Pzi) is created. To code the presence of a
feature in the image, we apply the disjunction operation to join all of the binary vectors of
this feature in different places.

If Z be in different positions for the same feature Fi, the binary code will be

Ui =
Z
∪

z=1
Uz(Pzi), (8)

where the vector Uz is the feature mask binary vector of size N and Pzi is the position of
feature i that defines the permutations of the feature mask vector; thus, Uz(Pzi) is the result
of the feature mask vector permutation. N is a very large value.

Next, we explain the process of the permutation. The problem is to generate binary
codes with special characteristics, i.e., the correlation between two binary vectors is a
function of the distance between these two vectors. Thus, the permutation not only
permits us to generate a unique code for every feature in its position, but also gives us the
opportunity to analyze its correlation.

The number of permutations depends on the feature location in the image. Once the
permutations of the binary vector Uz are completed, a new vector Uz(Pzi) is created.

To code the position of the feature characteristic Fi, we must define the correlation
distance Dc, which is the measurement between the feature distances (in our work, we use
16 pixels).

We are given two position points, P1(x1, y1) and P2(x2, y2), for feature Fi, the vectors
U1(P1i) and U2(P2i), which code the feature for every position point, and dx, the Euclidian
distance between P1 and P2 in X and dy in Y.

dx = abs(x1 − x2); dy = abs(y1 − y2), (9)

The vectors U1(P1i) and U2(P2i) are correlated if dx < Dc or dy < Dc; otherwise, there
is no correlation.

To code the feature Fm position, distance Dc is predefined, and the following values
must be calculated:

X = xij/Dc, Y = yij/Dc. (10)

We calculate the integer parts

E(X) = (int) X, E(Y) = (int) Y. (11)

The integer parts correspond to the number of complete permutations of the feature
mask binary vector. To evaluate the number of partial permutations, we must calcu-
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late the fractional parts of the feature coordinates. We obtain fractional parts from the
following equations:

R(X) = xij − E(X) · Dc, R(Y) = yij − E(Y) · Dc, (12)

Px = int(R(X) · N/Dc), Py = int(R(Y) · N/Dc), (13)

where E(X) and E(Y) are the integer parts of X and Y; R(X) and R(Y)are the fractional
parts of X and Y; yij is the vertical coordinate of the detected feature; xij is the horizontal
coordinate of the detected feature; N is the number of neurons; E(X) and E(Y) show the
number of permutations to perform in the X and Y directions; and Px and Py are the
number of neurons in the range [0, N) for which an additional permutation is needed. The
value of N is changed according to the problem complexity. In the case of facial recognition,
we used 65,000 neurons.

The example permutation scheme for the X coordinate is presented in Figure 11 (we
select E(X) = 2, and Px = 2). The U vector is the binary vector. To more easily explain the
permutation process, we use the letters that are contained in each element of the U vector.
The process is performed as follows: each element from the first line is connected to a
free and randomly selected element from the third line, using the permutation scheme
presented in the second line (the A line). For example, 0 < −2 (0 “left arrow” 2) means that
letter c from U(2) must be transported to U(0), and the scheme of the A line is used for all
of the elements of the U vector. The third line is the result of the first permutation. The
B line defines the second permutation, and the result is presented in the fourth line. The
process repeats until all of the elements from the A line and B line end up with a one-to-one
connection. In line C, only the two first elements have permutations (U(0) and U(1)), and
the remaining elements do not change.
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The result of the feature extraction process is the associative vector A (binary vector or
code), which equals a bitwise disjunction of all of the permutated vectors.

A = ∪
i
Ui. (14)

3. Database and Distortions
3.1. ORL Database

One of the first databases for face recognition was ORL (Olivetti Research Laboratory),
now administered by AT&T Laboratories Cambridge [31] (Figure 13). It has ten different
images of each of 40 distinct subjects, and the original size of each image is 92 × 112 pixels.
For some subjects, the images were taken at different times, varying the lighting, facial
expressions (open/closed eyes, smiling/not smiling) and facial details (glasses/no glasses).
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In the literature, many results were obtained using this dataset. We therefore used it
to compare our results with those obtained via other methods.

3.2. FEI Database

FEI is a Brazilian face database that contains a set of face images taken at the FEI Arti-
ficial Intelligence Laboratory in São Bernardo do Campo, São Paulo, Brazil [24]. There are
14 images for each of 200 individuals, 11of which (for each individual) were taken against a
white homogeneous background in an upright frontal position with a profile rotation of up
to approximately 180 degrees (Figure 14). The scale might vary by approximately 10%, and
the original size of each image is 640 × 480 pixels. The database mainly comprises images
of students and staff at FEI, who were between 19 and 40 years of age; each has a distinct
appearance, hairstyle, and adornments. The number of male and female subjects is exactly
the same, i.e., 100 of each [24].
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Examples (i.e., 12 images for one person) from the FEI image database are presented
in Figure 15.
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The FEI image database contains 2800 images (14 variants for each of 200 individu-
als) [24]. Several people have closed eyes (Figure 16a), and sometimes, the images have
poor contrast. In Figure 16b, we present an example of a blurry image.
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There are several cases in the FEI image database when the same person has one photo
with glasses and another without them (Figure 17).
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Figure 17. Images of people with and without glasses.

This FEI image database was tested with different recognition methods [32–34]. We
selected the FEI image database with all of its imperfections to test our classifier.

The PCNC classifier with RLDs was investigated on the FRAV3D face image
database [20,25,26], which included distortions, i.e., rotations.
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3.3. FRAV 3D Image Database

The FRAV3D image database contains 105 subjects, mainly young adults, with ap-
proximately one woman for every three men [25,26]. There are 16 captures per person with
different face expressions and/or lighting conditions.

Images from the FRAV3D database are presented in Figure 18 [25,26]. The FRAV3D
face image database is one of the few 3D databases [25–27]. We selected 2D images for
our experiments.
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We trained and tested PCNC with three different databases: ORL, FRAV3D and FEI.
For FRAV3D specifically, we added new rotated images to the training set to improve the
recognition rate. Therefore, our present work includes the recognition of faces with PCNC
while considering distortions such as displacements of images to a few pixels to the right,
left, up or down, and rotations over the Y and Z axis. In other words, we tested the PCNC
classifier under unconstrained situations.

Displacement distortions were taken from previous studies [20] and were added
during the training session. Each new position of the initial image that was produced by
distortions is considered to be an independent new image. For the experiments, we used
fifteen cases: 1. initial position; 2. left shift with delta pixels; 3. left shift with 2 × delta
pixels; 4. right shift with 2 × delta pixels; 5. shift up with delta pixels; 6. right shift with
3 × delta pixels; 7. left shift (4 × delta pixels); 8. shift down (delta pixels); 9. left shift
(3 × delta pixels); 10. right shift (4 × delta pixels); 11. shift up (2 × delta pixels); 12. shift
down (2 × delta pixels); 13. shift up (3 × delta pixels); 14. shift down (3 × delta pixels); 15.
shift up (4 × delta pixels). In Section 4, we will describe the results obtained with different
numbers of distortions.

We used rotation for the displacement of the images. Each pixel has a coordinate pair
(x,y) that describes its position on two orthogonal axes from defined origin 0; rotation will
be given around this origin. We consider the middle of the face image to be the origin
O(w/2,h/2). For our experiments, we selected three values of the clockwise rotation angle
(the reference point is the vertical axis) θ = 5◦, 10◦, 15◦, and three values for counter-
clockwise rotations θ = −5◦, −10◦, −15◦ [35,36].

In the case of the rotations, the RLD structure was the same, but the pixels had
displacements. Near the center of the rotation, the changes were smaller than in the
peripheral points. Thus, the RLDs for rotation could be useful in the training process. We
present our analysis of their influence in the following chapter.
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4. Experiments and Results

To investigate the RLD and compare the results with LBP or WLD, we used the
ORL database.

To calculate errors, we used the equation Nerr = (M/N) × 100, where M is error
responses of the PCNC and N is a total number of images. To program the PCNC and
RLDs, we used the soft Visual Studio C++ (2019).

In Table 1, we present the obtained results. The first three lines were taken from [14].
That research describes nine methods and presents the recognition rates in the ORL
database. We selected results which were interesting for us, i.e., from the middle of the
table and the best result. Our results in all tables in this paper are presented in bold print.

Table 1. Average recognition rates for the ORL face database (%).

Number of Samples/
Methods 2 3 4 5

LBP 72.94 80.61 86.39 90.49
WLD 75.73 84.6 89.37 92.5

DIWT/LBP 83.35 88.26 94.17 97.0
RLD 87.71 94.16 96.1 97.49

The experiments with RLD demonstrate results which were comparable or better than
the best results obtained in [21], and much better than those obtained using LBP and WLD.
In [14], to work with LBP, the authors used the DIWT/LBP method. A detailed description
of those methods is beyond the scope of this paper; rather, we simply compare our results
with theirs.

It is significant to note that for every number of samples (2, 3, 4, 5), we did ten
experiments and then calculated the average recognition rates, as presented in Table 2.

Table 2. Ten experiments with RLD (ORL face database (%)).

Number of Training
Samples/Run 2 3 4 5

1 86.79 88.98 97.62 100
2 90.36 91.84 95.24 97.71
3 79.29 95.10 96.19 96.0
4 92.86 95.92 94.76 94.86
5 93.57 96.33 95.71 97.14
6 85.71 93.88 97.14 97.14
7 88.57 91.84 96.19 97.14
8 87.5 95.1 96.67 98.86
9 89.29 95.51 97.14 97.14
10 83.21 97.14 94.29 98.86

Average recognition rate 87.71 94.16 96.1 97.49

In Figure 19, we demonstrate the stage of recognition for 40 persons.
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The results of the experiments using PCNC and RLDs were obtained with the FRAV
database. As the results have already published, we only will mention them briefly here.
Tests with the rotations and skewing were also performed.

The results showed that the PCNC neural classifier and the SVM [26] method suffered
from the same recognition problems, i.e., rotations. On the other hand, ICP [26,37] had
a lower percentage of errors due to rotations, but a larger percentage in almost all of the
other tests.

Our approach is based on the addition of rotation distortions to the training set. The
results improved from 46.6% to 23.00% for four distortions, from 41.7% to 21.00% for eight
distortions and from 31.1% to 16.00% for 12 distortions [35,36]. In comparison with the
basic version (without rotations), the new version significantly improved the recognition
rate by decreasing by approximately twice the number of errors.

The FEI image database was used to test the PCNC and RLD. In Table 3, we present
the results from [14] (we selected only three out of the nine methods) alongside our results
obtained using the FEI image database. We selected two methods from the middle of the
table (LBP and WLD) and the best result (DIWT/LBP); our result is presented in the last
line. It is important to mention that we worked with the half of the FEI database. In our
experiments, we used only images of 100 persons from the total of 200 in order to accelerate
the investigation process. Additionally, the average recognition rate was calculated on the
basis of 10 experiments for each number of samples (i.e., from three to seven). Our results
are presented in bold print.

Table 3. Recognition rates for different methods using the FEI database (%).

Number of Samples/
Methods 3 4 5 6 7

LBP 43.2 51.64 56.2 62.78 66.74
WLD 52 60.82 64.4 71.72 75.49

DIWT/LBP 58.5 65.66 68.4 77.33 82.25
RLD 79.69 86.72 88.45 92.62 93.57

We organized two series of experiments. All images for every person (in the FEI, i.e.,
14 images for each person) were divided into two groups; the first group contained images
with odd numbers (Group 1), and the second group those with even numbers (Group 2).
Either group could be used as a training or recognition set for the PCNC.

The first experiment used Group 2 for the PCNC training and Group 1 for the PCNC
test. The second experiment used Group 1 for the PCNC training and Group 2 for the
PCMC test. In both experiments, we used the distortions in the original images. For the
FEI image database, we used 15 image distortions (Table 4).

Table 4. Errors for the FEI image database.

Distortion
Number

Experiment 1
Errors

Experiment 2
Errors

Mean % Mean %

13 7 2 4 10
14 8 1 5 11
15 9 3 6 12

If the distortion number was 1, then we used the original image (a more detailed
description of distortions is presented in Paragraph 3.3). If the distortion number was
13, then we used the original image (position 1) for training, as well as the image shifted
upward for 3 × ∆ pixel. In our experiments, ∆ = 4 for 15 distortions.

In Table 5, the results of two experiments are presented for different distortion num-
bers. Experiment 1 included Group 2 images for training and Group 1 images for testing.
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The best result of these experiments was5.83% error for nine distortions. Experiment 2
included Group 1 images for training and Group 2 images for testing. The best result was
14.1% for 15 distortions.

Table 5. Results of two experiments.

Distortion
Number

Experiment 1
Errors

Experiment 2
Errors

Mean % Mean %

1 62.6 8.94 112.8 16.1
3 44.8 6.4 107.8 15.4
9 40.8 5.83 100.4 14.3
15 42.4 6.06 98.4 14.1

The first experiment showed better results in comparison with the second. In the
second experiment, we obtained the worst result due to the last image. The brightness of
the image with number 14 was very low, causing a poor image recognition result.

All of these experiments were made for a window size of (13 × 13) pixels. For every
RLD, we used 3 positive and 3 negative points, which was a basic variant of the RLD
structure. An example of the experiment is shown in Table 6.

Table 6. Error of each experiment.

Run 1 2 3 4 5 Mean %

Error 29 32 29 28 27 29 4.14

Next, we investigated the influence of the number of positive and negative points on
the RLD formation and the influence of the window size on the recognition rate.

Each result was evaluated as an average of five experiments to decrease the influence
of the randomly selected parameter values.

Table 7 shows that the mean number of errors depends on the number of positive and
negative points in the RLD. The best results were obtained when the numbers of positive
and negative points each equaled two. The worst results were obtained in the cases of
4 positive points and 4 negative points and 1 positive and 1 negative point. The error rate
was almost independent of the RLD window size in the range of 7 × 7 to 13 × 13 pixels.

Table 7. Average resukts.

Window Size
(Pixels)

Positive
Point

Negative
Point Mean Errors Mean

Errors (%)

13 × 13 3 3 32 4.57
13 × 13 4 4 46 6.57
13 × 13 2 2 30 4.29
11 × 11 2 2 29.4 4.2
11 × 11 1 1 46 6.57

9 × 9 2 2 29 4.14
7 × 7 2 2 29.2 4.17
5 × 5 2 2 24.4 3.49
3 × 3 2 2 19.2 2.74
3 × 3 1 1 25 3.57

With the same RLDs, we investigated the error number depending the training cycle
number. Figure 20 demonstrates the improvements in recognition with an increase in the
cycle number. With 100 training cycles, the recognition rate was 98.5%.
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Table 8. Recognition.

Number of Classes Recognition Rate (%)
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Figure 21.
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The experiments with the PCNC, RLDs and the FEI image dataset yieldedgood results.
In this article, we investigated RLDs and compared their influence on image recogni-

tion with LBP algorithms.

5. Conclusions

The PCNC neural classifier is based on the RLD descriptors that are used for feature
extraction from the image. We compared our method with the LBP principle often used in
facial recognition. The PCNC neural classifier presented good results in facial recognition
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using the ORL, FRAV3D and FEI image databases. We demonstrated that our system
yielded results better than those obtained using other methods, especially LBP. Our RLDs
have advantages, because they require less time for calculations, and the number of RLDs
is less than that required for LBPs. To obtain these results, we generated additional images
for the training set using image distortions. First, the simplest distortions, including image
displacements, were investigated. . Sometimes, we obtained twice the decrease in error for
the FRAV3D image database. It was done many experiments with RLDs. It was shown that
the RLD parameters have an influence on face recognition quality. We showed that RLD is
a good alternative to LBPs, and that our model is a good approach for face feature detection
using local descriptors. The PCNC with the RLDs demonstrated the best recognition rate,
i.e., 97.49%, in comparison with 90.49% for LBPs for the ORL image database. For the FEI
image database, we obtained the best recognition rate, i.e., 93.57%, in comparison with
66.74% for the LBPs. For FRAV3D, we improved the recognition rate by decreasing by
approximately twice the number of errors using the RLDs and rotation of original images..
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