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Abstract: Open-source libraries are widely used in software development, and the functions from
these libraries may contain security vulnerabilities that can provide gateways for attackers. This
paper provides a function similarity technique to identify vulnerable functions in compiled programs
and proposes a new technique called Cross-Compiler Bipartite Vulnerability Search (CCBVS). CCBVS
uses a novel training process, and bipartite matching to filter SVM model false positives to improve
the quality of similar function identification. This research uses debug symbols in programs compiled
from open-source software products to generate the ground truth. This automatic extraction of
ground truth allows experimentation with a wide range of programs. The results presented in the
paper show that an SVM model trained on a wide variety of programs compiled for Windows and
Linux, x86 and Intel 64 architectures can be used to predict function similarity and that the use of
bipartite matching substantially improves the function similarity matching performance.

Keywords: malware similarity; function similarity; binary similarity; machine-learning; bipar-
tite matching

1. Introduction

Function similarity techniques are used in the following activities, the triage of mal-
ware [1], analysis of program patches [2], identification of library functions [3], analysis of
code authorship [4], the identification of similar function pairs to reduce manual analysis
workload, [5], plagiarism analysis [6], and for vulnerable function identification [7–9].

This paper presents a function similarity technique called Cross-Compiler Bipartite
Vulnerability Search (CCBVS) for identifying similar function pairs from two program
variants using a two-step process with a low false-positive rate. CCBVS proposes a function
similarity technique that may be used to identify vulnerable functions in open-source
libraries. Inexpensive Internet-of-Things (IoT) devices utilize open-source software, a wide
range of Central Processing Unit (CPU) architectures, and may not be designed for effective
program updates. When software vulnerabilities are identified in open-source libraries,
many programs, including IoT firmware become vulnerable. Sophisticated cyber-attacks
exploit known vulnerabilities in software to gain access to corporate networks. It is vital
for penetration testing tools to maintain up-to-date vulnerability databases to mitigate the
harm that cyber-attackers may otherwise cause.

CCBVS is built on three prior research projects, these are Evolved Similarity Techniques
in Malware Analysis (EST) [10], Cross Version Contextual Function Similarity (CVCFS) [11],
and Function Similarity using Family Context (FSFC) [12]. EST used an ad-hoc function
similarity technique to identify function pairs that were significantly changed in two
versions of Zeus malware. CVCFS improved on EST by replacing the ad-hoc similarity
functions with a two-step process using an SVM model and edit distance filtering of
function semantics. CVCFS addresses the problem of comparing function pairs that are
subject to software development with the use of contextual features. Contextual features
improve machine-learning performance by summing features from closely related functions
with a callee relationship. If the function pair being compared has changed, the features
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from the related functions may still be sufficient to identify a function pair. FSFC improves
the SVM model used in CVCFS in the following ways: taking function names from debug
symbols, improving the training algorithm, restricting the scope of the function context,
and an improved encoding of numerical features. The FSFC F1 scores demonstrated a
57–65% improvement over the CVCFS SVM model.

Machine-learning techniques for function similarity studies may show high false-
positive rates that make the results less effective, but in this work, a bipartite graph
matching technique is used to filter out false positives present in the function similarity
predictions from an SVM model, and provides an improved construction of the training
dataset, substantially improving program efficiency for both training and in the identi-
fication of similar functions. This research has developed a technique for the automatic
generation of function similarity ground truth, allowing experimentation with a wider
range of programs and larger datasets. Improving the quality of training datasets can
improve the accuracy of the function similarity prediction.

In this research, SVM models have been created from new datasets extracted from the
programs listed below. This is in addition to Zeus and ISFB function similarity datasets
from previous research [11,12]. The OpenSSL and BusyBox programs are representatives
of software used on IoT devices and features have been extracted from these programs in
previous research [7,8].

• OpenSSL compiled using Visual Studio (Windows),
• OpenSSL compiled using Mingw (GCC Windows),
• OpenSSL compiled using GCC (Linux),
• Busybox cross-compiled using GCC (Linux) for Windows.

An overview of the CCBVS research is shown in Figure 1. A Ghidra script was written
to extract function names and raw features from a program compiled with debugging
symbols. The function names are used to generate the ground truth which is used for
training, and the assessment of test accuracy. This capability to automatically identify
ground truth function pairs allows training to be performed on larger datasets than in the
previous studies. The function pairs identified by machine-learning inevitably contain
a high false-positive rate. To filter the false positives of each potential function pair,
the basic blocks from each function were annotated with features and the Kuhn-Munkres
algorithm [13] was used to calculate the minimum matching distance. The Kuhn-Munkres
algorithm provides an efficient polynomial-time solution for assignment problems, and
more efficient function pair matching than would be possible using graph isomorphism.
The calculated similarity of the function pairs was used to filter the matching function pairs.
This technique was able to substantially reduce the false positives, and the matching was
sufficiently accurate to search for individual functions in different versions of the program
created with different compilers.

This research paper makes the following contributions:

• Robust feature engineering for machine-learning based function similarity prediction
across different compilers and operating systems.

• Development of a bipartite matching scheme to improve function similarity perfor-
mance by filtering false-positive function pairs in the SVM model’s output.

• Automatic generation of Function Similarity Ground Truth (FSGT) tables, removing
the need for manual reverse engineering.

• Construction of a balanced training dataset built using a duplicated set of all matching
function pairs, plus a similar number of randomly selected, non-matching function
pairs, resulting in substantially improved program performance.

The structure of this paper is as follows: Section II presents related work, Section III
presents the research methodology, Section IV presents the empirical evaluation of results,
and Section V presents the conclusion.
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Figure 1. CCBVS Flow Diagram.

2. Related Work

The widespread adoption of IoT devices using open-source code and a variety of CPU
architectures provides a requirement for the identification of known vulnerabilities in IoT
device firmware. Genius is a vulnerability search database that is used to identify known
vulnerable functions in IoT device firmware [14]. First, the IoT firmware is disassembled
using the IDA disassembler, and Attributed Control Flow Graphs (ACFGs) were extracted.
The following attributes were extracted from the basic blocks in each function.

• Numeric constant count,
• String constant count,
• Transfer instruction count,
• Call count,
• Instruction count,
• Arithmetic instruction count,
• CFG children count,
• CFG Betweenness centrality.

Genius uses bipartite graph matching using the Kuhn-Munkres algorithm [13] to
calculate the matching distance between the ACFG of any two functions. An unsupervised
spectral clustering algorithm is used to generate a codebook of ACFG clusters, the codebook
consists of the set of all centroid nodes. A centroid node is the ACFG possessing a minimum
distance to all other ACFGS in the cluster. A function’s raw features are mapped to
codebook similarity distances using a feature encoding process. Genius used bag-of-
features and Vector of Locally Aggregated Descriptor (VLAD) feature encoding. A Locality
Sensitive Hashing (LSH) technique is used to accelerate the searching of encoded features.
A MongoDB database was used to store firmware images and encoded images. Datasets
were extracted from compiled BusyBox, OpenSSH, and CoreUtils source code, 32-bit
programs were compiled for x86, ARM, and MIPS architectures using GCC and Clang
compilers with optimization levels 0 to 3.

DiscovRE [7] performs the identification of security vulnerabilities in x86, x64, ARM,
and MIPS-based firmware. DiscovRE uses static analysis and provides improved per-
formance over previous dynamic analysis based research. Previous dynamic analysis
techniques may not be able to perform analysis of firmware, are limited to single CPU
architectures, and make use of semantic similarity techniques that exhibit performance
problems with large, compiled images. Security vulnerabilities in open-source code have
the potential to impact many IoT devices. This leads to a requirement to identify vulnerable
functions in code compiled by different compilers on multiple CPU architectures. DiscovRE
identifies vulnerable functions using a two-stage process. The first stage uses the k-Nearest



Electronics 2021, 10, 1356 4 of 17

Neighbors algorithm and numerical features to filter functions that may be vulnerable.
Feature selection was performed using the Pearson product-moment correlation coeffi-
cient [15]. DiscovRE uses the following function counts for stage 1 filtering: function call
count, logic instruction count, redirection instruction count, transfer instruction count,
local variable count, basic block count, edge count, incoming call count, and instruction
count. The second stage identification of vulnerable functions uses Control Flow Graph
(CFG) features, and a maximum common subgraph (MCS) algorithm using the McGregor
Algorithm [16].

CVSkSA performs a two-stage vulnerable function search in IoT firmware for ARM,
MIPS, and x86 CPU architectures, and has higher accuracy, and a faster execution time than
previous related research including DiscovRE [8]. The function level features used in the
first stage pre-screening were similar to the features used by DiscovRE with the exclusion
of redirection instruction count, and transfer instruction count. Two implementations of
the first stage were tested, the first implementation uses an SVM model to filter potentially
vulnerable functions. A second implementation uses the kNN algorithm for rapid function
screening, followed by the SVM model to complete the prefiltering. The use of KNN
screening improves the execution time by a factor of four with a slight reduction of accuracy.
The second stage uses bipartite graph matching of the function Annotated Control Flow
Graphs of the firmware functions. The bipartite graph matching uses the Kuhn-Munkres
assignment algorithm with basic block level Attributed Control Flow Graphs (ACFG) [8,14].
The following ACFG features are used: string constant count, function call count, transfer
instruction count, arithmetic instruction count, incoming calls count, instruction count,
and betweenness.

BugGraph is a two-stage binary code similarity research that can identify functions
that are similar to known vulnerable functions [9]. The inputs to BugGraph are a compiled
program and the corresponding source code. Stage 1 determines the provenance of the
compiled program. The provenance is represented as a canonical representation that
consists of {CPU architecture, compiler, compiler version, optimization level} [9]. The
Unix file command is used to identify the CPU architecture of the compiled program. A
customized version of Origin [17] was used to identify the compiler, compiler version,
and optimization level. The supplied source code is then compiled to correspond to the
identified toolchain provenance. An Attributed Control Flow Graph (ACFG) was extracted
from the functions in each of the programs. BugGraph uses the same attributes as Genius.

The second stage uses a Graph Neural Network (GNN) to provide an embedding for
each ACFG. The learning of the GNN was supervised using a graph triplet-loss network
(GTN) [18]. A cosine similarity score is used to measure the similarity between the func-
tion embeddings produced by the GTN network. The BugGraph GTN is implemented
using TensorFlow (TF), and the GNN uses the TF Graph Attention Network. A firmware
vulnerability detection experiment was performed using BugGraph. In this experiment,
BugGraph was trained using 218 vulnerable functions, six different firmware images were
used for vulnerability identification. Vulnerable function candidates were identified by
filtering out functions with a similarity score of less than 0.9. These vulnerable function
candidates were manually examined to identify 140 OpenSSL vulnerable functions.

The assignment problem deals with how to best assign n workers to m tasks to
minimize cost. The assignment problem can be stated as follows [19]:

Minimize:

n

∑
i=1

n

∑
j=1

cijxij (1)

Subject to:

n

∑
j=1

xij = 1, i = 1, ..., n (2)
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n

∑
i=1

xij = 1, j = 1, ..., n (3)

xij = 0 or 1, i = 1, ..., n j = 1, ..., n (4)

where cij represents the cost of assigning worker i to task j, xij is 0 or 1, and the total number
of tasks is n. Equation (2) indicates that only one worker i can be assigned to each task j, and
(3) indicates that each task j should be assigned to only one worker i [19]. The assignment
problem can be represented as a bipartite graph with the vertices partitioned into two
independent groups, and vertices in the two groups are connected in a 1-1 correspondence
that minimizes cost.

The Kuhn-Munkres algorithm is a well-known algorithm for the solution of the
assignment problem [20]. This algorithm was developed by Harold Kuhn in 1955 [21],
and was reviewed by James Munkres in 1957 [13]. The Kuhn-Munkres algorithm consists
of the following steps [20]:

• For each row, subtract the lowest resource cost in that row, from all elements in
that row.

• For each column, subtract the lowest resource cost in that column, from all elements
in that column.

• Draw the minimum number of lines across rows and columns to cover the zero
elements. If the number of tasks matches the number of lines drawn, then the optimal
solution has been found.

• If the optimal solution has not been found, find the lowest cell value from the un-
covered cells. Subtract this value from each element of all rows with at least one
uncovered cell and add this value to each element of the fully covered columns.

• Re-draw the minimum number of lines across rows and columns to cover the zero
elements. If the number of tasks matches the number of lines drawn, then the optimal
solution has been found.

3. Research Methodology

The CCBVS technique was developed to identify matching functions in a pair of
programs compiled with debug symbols for x86/ADM64 architectures. The test programs
can potentially be generated with different compilers. The pre-filtering of function pairs
was performed using an SVM model, followed by bipartite matching using the Kuhn-
Munkes assignment algorithm. The bipartite matching was performed using minimum
distance basic block matching to filter false-positive matches.

Ground truth is extracted from the debug symbols of each program and an FSGT table
is produced. Labeling of the training dataset and the assessment of the prediction results
were performed using the ground truth in the FSGT table. In CCBVS, function similarity
features extracted from a pair of programs are used to train an SVM model. The trained
SVM model is then used to identify similar functions in subsequent pairs of programs. The
accuracy of the function similarity classification is accessed using the ground truth in the
FSGT table.

F1 score is used to assess function similarity performance in FSFC [12] and in CCBVS.
Correctly classified similar function pairs are added to the True Positive (TP) count,

and correctly classified dissimilar function pairs are added to the True Negative (TN) count.
Incorrectly classified dissimilar function pairs are added to the False-Positive (FP) count,
and incorrectly classified similar function pairs are added to the False-Negative (FN) count.
Precision and recall are calculated from the TP, TN, FP, and FN counts. Precision and
recall [22] are defined in Equations (5) and (6), respectively.

Precision = TP / TP + FP (5)

Recall = TP / TP + FN (6)
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The F1 score (F1) [22] defined in Equation (7) is used to assess the quality of the results
in terms of precision and recall.

F1 = 2 ∗ (Precision ∗ Recall)/(Precision + Recall) (7)

3.1. Training Algorithm

The training algorithm identifies matching function pairs using the FSGT table,
and then extracts features for each pair of matching functions and extracts features from an
equal number of randomly selected non-matching function pairs. The training algorithm
used in CCBVS is faster than the method used in the previous Function Similarity Using
Family Context (FSFC) [12] research and generates a balanced training dataset.

3.2. SVM Model Features

The following function similarity features were extracted from each function for use
by the SVM model:

• Set of API calls,
• Function calls count,
• Push count,
• Set of constants,
• Stack size,
• Basic block count,
• Arithmetic instructions count,
• Lea instruction count.

CCBVS uses features from FSFC [12], apart from the return release count, which is
only present in code the uses a CDECL calling convention. The push instruction count,
arithmetic instruction count, and lea instruction count features were added to CCBVS.

API calls: The API call feature AC is defined in FSFC [12], but in CCBVS this feature
refers to either Linux library function calls or to Windows API calls.

Function calls count: The function calls count feature FC is defined in FSFC [12].
Constants: The constants feature CS is defined in FSFC [12].
Stack size: The stack size feature SS is defined in FSFC [12].
Basic block count: The basic block count feature BB is defined in FSFC [12].
Push instruction count: Let PC be the count of push instructions psh within a function

f in a program p.
PC( f , p) = |{psh0, psh1, ..., pshm}| (8)

Arithmetic instruction count: Let RC be the count of arithmetic instructions ar within
function f in program p. Arithmetic instructions are taken to be the set of all ADD, SUB,
INC, DEC, MUL, DIV, ADC, SBB, and NEG instructions.

RC( f , p) = |{ar0, ar1, ..., arq}| (9)

LEA instruction count: Let LC be the count of LEA instructions l within function f in
program p.

LC( f , p) = |{l0, l1, ..., lr}| (10)

3.3. Function Context

Previous research [11,12] has shown that the use of function context results in a sub-
stantial strengthening of the function similarity features used in the SVM model. Features
from a function’s context consist of the features from the function under consideration,
plus features from a set of closely associated functions. In CCBVS, three levels of function
context are defined: Self (S), Child (C), and Parent (P).
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The Self (S) context of function f is the set of the non-API functions that are called
from function f.

S( f ) = {s0, s1, ..., si} (11)

The set of functions in the Child context C of function f can be obtained by iterating
through each of the functions in the Self context of f and extracting the non-API functions.

C( f ) = {s( f ′) ∀ f ′ in S( f )} (12)

The functions in the Parent context P of function f is the set of non-API functions that
call function f.

P( f ) = {p0, p1, ..., pj} (13)

3.4. Feature Ratios

Feature ratios are calculated for each potential function pair in the test and training
datasets. A feature ratio is the Jaccard index for the corresponding features of a function
pair. For example, the API feature ratio is the Jaccard index of the set of API functions in
each function of the pair being compared.

The following feature ratios are defined in FSFC [12].

• API Ratio—ACR,
• Function Calls Ratio—FCR,
• Constants Ratio—CSR,
• Stack Ratio—SSR,
• Blocks Ratio—BBR.

Push Count Ratio: Let PC1 and PC2 be the sets of all push instruction counts extracted
from the context of each of the functions in the function pair fp. Let the Push Count Ratio
PCR be the Jaccard index of PC1 and PC2.

Arithmetic Instruction Count Ratio: Let RC1 and RC2 be the sets of all arithmetic
instruction counts extracted from the context of each of the functions in the function pair
fp. Let the Arithmetic Instruction Count Ratio RCR be the Jaccard index of RC1 and RC2.

Lea Instruction Count Ratio: Let LC1 and LC2 be the sets of all Lea instruction counts
extracted from the context of each of the functions in the function pair fp. Let the Lea
Instruction Count Ratio LCR be the Jaccard index of LC1 and LC2.

3.5. Bipartite Matching

The goal of the filtering step is to remove function similarity predictions that are false
positives. An obvious method to perform filtering would be to check the CFG isomorphism
of the predicted function pair. However, graph isomorphism is computationally expensive
and is not able to be solved in polynomial-time (NP) [23]. Another approach to testing
function similarity is to treat this problem as an assignment problem where the goal is to
determine an optimum assignment of basic blocks that minimizes difference. The selection
of those functions with the minimum basic block difference can be used to filter false-
positive predicted function matches from the SVM model. While the features used in the
SVM model are defined as function attributes, the features used in bipartite matching are
defined as basic block attributes.

Function Basic Block Set: Let FBBS be the set of all basic blocks b within function f in
program p.

FBBS( f , p) = {b0, b1, ..., bq} (14)

Each basic block b is labeled with the following features:

• Set of API names,
• Function call count,
• Push instructions count,
• Set of constants,
• Arithmetic instructions count,
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• Lea instruction count.

Basic Block API Calls: Let ACBB(f, p, b) be the set of API functions called from basic
block b in function f in program p.

ACBB(b, f , p) = {a0, a1, ..., ar} (15)

Basic Block Function Calls Count: Let FCBB be the count of function call instructions
c within basic block b in function f in program p.

FCBB(b, f , p) = |{c0, c1, ..., cs}| (16)

Basic Block Push Instruction Count: Let PCBB be the count of push instructions psh
within basic block b in function f in program p.

PCBB(p, f , p) = |{psh0, psh1, ..., psht}| (17)

Basic Block Constants: Let CSBB(b, f, p) be the set of constants k that are not program
or stack addresses within basic block b in function f in program p.

CSBB(b, f , p) = {k0, k1, ..., ku} (18)

Basic Block Arithmetic instruction count: Let ACBB be the count of arithmetic in-
structions ar within function f in program p. Arithmetic instructions is taken to be the set
of all ADD, SUB, INC, DEC, MUL, DIV, ADC, SBB, and NEG instructions.

ACBB(b, f , p) = |{ar0, ar1, ..., arv}| (19)

Basic Block LEA instruction count: Let LCBB be the count of LEA instructions l
within basic block b in function f in program p.

LCBB(b, f , p) = |{l0, l1, ..., lw}| (20)

Function Basic Block Attributes: Let FBBA be the map of each function to the follow-
ing basic block features:

• Basic Block API Calls
• Basic Block Function Calls Count
• Basic Block Push Instruction Count
• Basic Block Constants
• Basic Block Arithmetic Instruction Count
• Basic Block LEA Instruction Count

FBBA(b, f , p) = {ACBB, FCBB, PCBB,

CSBB, ACBB, LCBB}
(21)

The matching distance d between basic block b1 and b2 is calculated using the method
given in CVSkSA [8], where α1i and α2i are the ith features of the predicted function pair,
and ωi is the weight of the ith feature.

d(b1, b2) =
Σiωi|α1i − α2i|

Σiωimax(α1i, α2i)
(22)

The Kuhn-Munkres algorithm is used to calculate the approximate minimum match-
ing distance between predicted function pairs by calculating a bipartite graph matching
G = (V,E) where V is the set of functions f from each program (p1, p2). E is the set of
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edges associated with the predicted function pairs, each edge is assigned the approximate
minimum matching distance mmd calculated by the Kuhn-Munkres algorithm (KM).

MMD = KM(D) (23)

The approximate similarity Ψ between a function pair is calculated using the method
given in CVSkSA [8].

Ψ( f 1, f 2) = 1− mmd( f 1, f 2)

min(mmd( f 1, ∅), mmd( f 2, ∅)
− p× n (24)

where Ψ( f 1, f 2) is the similarity between the Functions f 1, and f 2, d(f 1, f 2) is the approxi-
mate minimum matching distance between functions f 1 and f 2, and ∅ is a size conformant
null FBBA. This calculation of similarity includes a penalty term to exclude function pairs
with a large difference in basic block count, p is a penalty factor and n is the difference in
basic block count in the predicted function pair. The matching functions are selected using
the approximate function similarity value.

4. SVM Model Evaluation
4.1. Removal of External Dependencies

The CCBVS technique uses Ghidra to disassemble compiled programs. A script
was written to save this information in a python format that includes the disassembled
instructions, function names, and API names. Previous research used Cythereal facilities
for malware unpacking and disassembly. However, problems with Cythereal availability
prompted the switch to Ghidra based analysis. The format of the disassembled code
extracted from Ghidra differs from the IDA disassembly from Cythereal. The function
similarity program was updated to process the Ghidra format.

4.2. Ground Truth Generation

CCBVS uses an FSGT table, this ground truth table may be created either automatically
or by manual reverse engineering. The automated creation of the FSGT table uses open-
source programs that are compiled with debugging symbols. The debugging symbols
allow the Ghidra feature extraction script to include function names in the disassembled
code. This automatic generation of ground truth function matches allows the use of larger
datasets than the research using a manually created FSGT table.

4.3. Datasets

The following datasets were used in this research:

• Zeus malware,
• ISFB malware,
• BusyBox,
• Linux OpenSSL version 1.1.1,
• Windows OpenSSL version 1.1.1.

The Zeus and ISFB datasets were created in previous research. The ground truth
for these datasets was established using malware reverse engineering and leaked source
code [11]. The compiler for these malware datasets is consistent with Visual Studio.
The BusyBox dataset was created by cross-compiling with GCC on Linux to create a PE32
program. OpenSSL version 1.1.1 was compiled with GCC on Linux to create a 64-bit ELF
program. OpenSSL version 1.1.1 was compiled with Visual Studio on Windows to create a
PE32 program. The OpenSSL datasets were extracted from the libcrypto binary.

4.4. Statistical Significance

The statistical significance tests used in FSFC [12] were used to assess the statistical
significance of the CCBVS results. A Shapiro-Wilk [24] test was performed to determine
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whether the results from experiment 1 were normally distributed. A p-value of 0.00002
indicated that the results were not normally distributed, and a two-tailed Wilcoxon
signed-rank test [25] was used to determine whether the test results differed at a 95% level
of confidence.

4.5. Imbalanced Test Dataset

CCBVS used the same function similarity prediction algorithm as FSFC [12]. In this
research, function similarity was tested using the Cartesian product of the functions in
each of the two test datasets. This technique generates an imbalanced test dataset. FSFC
showed that using a random classifier with the Zeus dataset, an F1 score of similar function
prediction would be 0.0034 [12]. The CCBVS F1 scores are well above those that would be
expected using random classification.

4.6. Training Dataset

Experiments are performed in this section to test the performance of our SVM model.
These experiments use the same set of function level features, these are API Ratio ACR,
Function Calls Ratio FCR, Constants Ratio CSR, Stack Ratio SSR, Blocks Ratio BBR, Push
Count Ratio PCR, Arithmetic Instruction Count Ratio ACR, and the Lea Instruction Count
Ratio LCR.

In this research, the training dataset was developed by selecting features correspond-
ing to the matching function pairs, and an equal number of randomly selected, non-
matching function pairs. An experiment was performed to test the effect of the duplication
of non-matching function pairs in the training dataset. The results of this experiment are
provided in Table 1. These results show that function similarity performance increases as
the training features are duplicated, and the best performance is reached with 10 duplicates
of each non-matching function pair. In Table 1, a value of “Y” in the column labeled
“S.D.” indicates that the current result is significantly different from the preceding result.
The column labeled “p-value” provides the p-values of the two-tailed Wilcoxon signed-rank
test of this comparison. The SciKit-Learn Linear SVC SVM model was used in this research.

Table 1. Non-Matching Function Pair Duplication Test.

Duplication Count Average F1 Score S.D. p-Value

1 0.3805 -
10 0.4325 Y 0.00988
30 0.4405 N 0.44726

4.7. Verification

Function similarity prediction was performed using the Zeus and ISFB malware
datasets from FSFC was used to verify the performance of the modified script [12]. The
results of this verification test are shown in Table 2 with the use of all features. These results
show an average F1 score of 0.43, this value is not significantly different from the previous
FSFC research [12] and demonstrates that the new training method has not impacted the
SVM model performance.

Table 2. Zeus/ISFB SVM Model Verification.

Test Runs Average F1 Score

20 0.43

4.8. Feature Strength

The strength of individual features was assessed by testing on the Zeus and ISFB
datasets from FSFC. The results of this experiment are shown in Table 3. The highest
performing feature combinations are shown in Table 4, where the best performing features
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were: Arithmetic Instruction Count Ratio RCR, Stack Ratio SSR, Push Count Ratio PCR,
and the Function Calls Ratio FCR.

Table 3. Zeus/ISFB Individual Feature Performance.

Test Runs Feature Average F1 Score

20 API Ratio ACR 0.06

20 Lea Instruction Count Ratio
LCR 0.05

20 Arithmetic Instruction Count
Ratio RCR 0.07

20 Block Ratio BBR 0.22
20 Stack Ratio SSR 0.01
20 Constants Ratio CSR 0.17
20 Push Count Ratio PCR 0.18
20 Function Calls Ratio FCR 0.16

Table 4. Zeus/ISFB Highest Performing Feature Combinations.

Test Runs Vector Average F1 Score

5 01010110 0.59
5 01010111 0.59
5 01011111 0.59
5 01110100 0.58
5 01110101 0.59
5 01110110 0.61
5 01110111 0.59
5 01111110 0.58
5 01111111 0.58
5 11010110 0.58
5 11110110 0.58

The features used in these experiments were assigned a binary identifier, this binary
encoding method allows the numbering of individual tests. This feature numbering scheme
is shown in Table 5.

Table 5. Identification of Feature Combination Tests.

Feat # Vector Description

1 00000001 API Ratio ACR
2 00000010 Function Calls Ratio FCR
4 00000100 Push Count Ratio PCR
8 00001000 Constants Ratio CSR
16 00010000 Stack Ratio SSR
32 00100000 Block Ratio BBR

64 01000000 Arithmetic Instruction Count
Ratio RCR

128 10000000 Lea Instruction Count Ratio
LCR

4.9. Training with BusyBox Features

Features extracted from the BusyBox dataset were used to train an SVM model that
was used to predict similarity in the ISFB malware dataset. The results of this test are
shown in Table 6. These results show that an SVM model using features from PE32 code
compiled with GCC can be used to predict function similarity in a program compiled with
Visual Studio.
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Table 6. ISFB Similarity Using BusyBox Features.

Test Runs Average F1 Score

20 0.30

4.10. Training with Visual Studio OpenSSL Features

Features were extracted from libcrypto.dll in OpenSSL version 1.1.1, which was
compiled as a PE32 program using Visual Studio. These features were used to train an
SVM model that was used to predict similarity in the ISFB malware dataset. The results of
this test are shown in Table 7. These results show that an SVM model using features from
PE32 code compiled for Visual Studio can predict function similarity in a PE32 program
compiled with Visual Studio.

Table 7. ISFB Similarity Using OpenSSL Features.

Test Runs Average F1 Score

20 0.17

4.11. Training with Linux OpenSSL Features

Features were extracted from libcrypto.dll in OpenSSL version 1.1.1, which was
compiled as a 64-bit ELF program on a Linux workstation. These features were used
to train an SVM model that was used to predict similarity in the ISFB malware dataset.
The results of this test are shown in Table 8. These results show that the SVM model using
features from elf 64-bit code can predict function similarity in a PE32 program compiled
with Visual Studio.

Table 8. ISFB Similarity Using Linux OpenSSL Features.

Test Runs Average F1 Score

20 0.72

4.12. OpenSSL Training—Busybox Test

Features from the OpenSSL version 1.1.1 Linux data set were used to train the SVM
model to predict similarity in the BusyBox dataset. The results of this test are shown in
Table 9. These results help to build the case that machine-learning can predict function
similarity in compiled C code, benign programs, and malware.

Table 9. BusyBox Similarity Using OpenSSL Features.

Test Runs Average F1 Score

20 0.45

4.13. SVM Model Summary

The automatic generation of the ground truth used in CCBVS allows evaluation with
a wider range of programs, allowing experiments to be conducted to examine whether
features from a range of x86, and Intel 64 compilers can be used to predict function similarity.
The above experiments show that the SVM model can abstract features from programs
compiled with a range of compilers and formats and can predict function similarity in both
malware and benign programs.

5. Bipartite Matching Evaluation

The function similarity results generated by the SVM model contain a substantial
number of false positives. A bipartite matching method uses the Kuhn-Munkres algorithm
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to filter false positives from the predicted function matches. This bipartite matching method
is based on the method from CVSkSA [8]. In this technique, the Kuhn-Munkres algorithm
is used to find the lowest cost matching distance between the basic blocks of a function
pair. The similarity of the CFGs of the function pair is calculated, and this is used to filter
false-positive function pairs.

Equation (24) contains a term that penalizes similarity where the basic block count of
a predicted function pair differs substantially. This experiment identifies the penalty value
that provides the best function similarity performance, the results of this experiment are
shown in Table 10.

The two-tailed Wilcoxon signed-rank test calculator was not able to provide an ac-
curate p-value for the tests of significant difference between penalty factors 0.20 and 0.30,
and 0.30 and 0.40. Thus, it is concluded that these results do not differ at a 95% level
of significance.

The best function similarity accuracy is achieved with a penalty factor of 0.10, which
is significantly different from adjacent values.

Experiments were performed in this section to test the combined performance of our
SVM model and the second stage bipartite filtering. These experiments use the basic block
features provided by the Function Basic Block Attributes FBBA.

Table 10. Effect of Penalty Factor on Accuracy.

Test Runs Penalty Factor Average F1
Score S.D. p-Value

20 0.00 0.83 - -
20 0.10 0.88 Y 0.00008
20 0.20 0.87 Y 0.0002
20 0.30 0.87 N -
20 0.40 0.87 N -

5.1. Exclusion of Small Functions

During testing of the SVM model, it was noted that a high proportion of false positives
occur when the basic block count of the functions being compared was less than three basic
blocks. CVSkSA [8] and DiscovRE [7] exclude functions containing less than five basic
blocks. For consistency, the bipartite matching method in this paper excludes functions
with less than five basic blocks.

An experiment was performed where functions with less than five basic blocks were
excluded. The training was performed using features from the Linux OpenSSL dataset,
and testing was performed using features from the BusyBox dataset. The results of this
experiment are shown in Table 11. The average F1 score for this dataset in the presence of
small functions was 0.45 in Table 9, when small functions were excluded, the F1 score rose
to 0.59.

Table 11. BusyBox Similarity, Excluding Small Functions.

Test Runs TP FP TN FN F1 Score

1 729 912 752520 100 0.59

5.2. Function Similarity Value

The Kuhn–Munkres algorithm is used to calculate the minimum matching distance
between the two functions, then the similarity of the two functions is calculated using the
CVSkSA method [8]. If the function similarity score is greater than a matching threshold
value, then a function match is declared. To determine the best matching value, a test was
performed using the Linux OpenSSL SVM model to predict similarity in BusyBox using
different matching threshold values. The results of this experiment are shown in Table 12.
The remaining experiments use a matching value of 0.8.
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Table 12. Effect of Matching Threshold.

Test Runs Matching Threshold F1 Score

1 0.1 0.75
1 0.2 0.77
1 0.3 0.80
1 0.4 0.84
1 0.5 0.86
1 0.6 0.89
1 0.7 0.90
1 0.8 0.91
1 0.9 0.91

5.3. Bipartite Matching Weights

In the bipartite matching method, each feature is assigned a weight. The purpose
of the weights is to minimize the distance between similar functions and to maximize
the distance between different functions [8]. Weight values between 0.05 and 100 were
tested. The selected weights were those that provided the highest F1 Score and the lowest
false-positive count. The selected weights are shown in Table 13. This experiment used the
ISFB dataset for training and the Busybox dataset for testing.

Table 13. Bipartite Matching Weight Selection.

Feature Description Weight F1 Score

ACBB API Calls 10 0.85
FCBB Call Count 45 0.81
FCBB Push Count 20 0.84
CSBB Constants Count 5 0.82
ACBB Arith Ins Count 50 0.85
LCBB Lea Ins Count 95 0.81

5.4. Bipartite Matching Results

The bipartite matching method was applied to the datasets used in the SVM model
evaluation. The results are shown in Table 14 and show a substantial reduction in false
positives over the SVM model only results. Earlier research in CVCFS [11] employed
an edit distance of Cythereal semantics to filter function similarity results. The CVCFS
edit distance technique used a Zeus dataset and gave a maximum F1 Score of 0.78. The
F1 score values are shown in Table 14 and give an average F1 score of 0.88, which is a
significant improvement.

Table 14. Bipartite Matching Results.

Test Runs Train Dataset Test Dataset F1 Score

20 Zeus ISFB 0.89
20 BusyBox ISFB 0.90
20 VS OpenSSL 1-1-1 ISFB 0.89
20 Linux OpenSSL 1-1-1 ISFB 0.82
20 Linux OpenSSL 1-1-1 BusyBox 0.91

5.5. Single Function Search

The use of bipartite matching substantially improves the function matching perfor-
mance. This experiment tests the ability of the research to match individual functions.
The results of this experiment are shown in Table 15, These results show that CCBVS can
search for specific single functions. The function selected were taken from OpenSSL version
1.1.1A and OpenSSL version 1.1.1H. These programs were compiled as PE32 with Visual
Studio. These functions are three of the vulnerable functions that were used in the CVSkSA
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tests [8]. It is acknowledged that these functions are not vulnerable in OpenSSL version
1.1.1, however, they are representative of the functions used in the CVSkSA research [8].

Table 15. Single Function Search Results.

Function Train Dataset TP FP F1

c2i_ASN1_OBJECT ISFB 1 0 1.00
EVP_DecodeUpdate ISFB 1 0 1.00

X509_cmp_time ISFB 1 0 1.00
c2i_ASN1_OBJECT BusyBox 1 0 1.00

EVP_DecodeUpdate BusyBox 1 0 1.00
X509_cmp_time BusyBox 1 0 1.00

c2i_ASN1_OBJECT Mingw OpenSSL 1.1.1 1 0 1.00
EVP_DecodeUpdate Mingw OpenSSL 1.1.1 1 0 1.00

X509_cmp_time Mingw OpenSSL 1.1.1 1 0 1.00
c2i_ASN1_OBJECT Linux OpenSSL 1.1.1 1 0 1.00

X509_cmp_time Linux OpenSSL 1.1.1 1 0 1.00
EVP_DecodeUpdate Linux OpenSSL 1.1.1 1 0 1.00

5.6. CCBVS Evaluation

This research provides a substantial improvement over the previous research in the
following areas:

• Removal of external dependencies,
• Improved training dataset generation,
• Automated ground truth generation,
• Improved execution time,
• Improved function similarity performance.

Previous FSFC function similarity research made use of the disassembly in the BinJuice
semantics provided by Cythereal. In the CCBVS research, a decision was taken to use
Ghidra scripting to extract a disassembly in a similar format to the BinJuice semantics.
The outcome of this change is the removal of an external dependency.

The FSFC function similarity research builds the training dataset using a pairwise (n2)
combination of all functions in the two programs being compared. The CCBVS research
builds the training dataset based on the features from all of the matching function pairs and
an equal number of randomly selected, non-matching function pairs. This new method
of creating the training dataset has similar accuracy to that of the FSFC research, but the
substantially smaller training dataset results in improved run-time. The experiments in
this research were performed using a workstation with an Intel i7-3770 processor with a
base frequency of 3.40 GHz, a peak frequency of 3.90 GHz, four cores, eight threads, and
32 GB of RAM.

Previous research required the manual creation of the FSGT table. CCBVS extracts
features with function names taken from debug symbols. The feature extraction script uses
the Ghidra facility to load the .pdb debug symbol file. This allows the extraction of function
names from debug symbols. The automated generation of ground truth allows experiments
to be conducted with a wider range of programs than was possible with previous research,
allowing larger training datasets and improved accuracy.

Previous research used an SVM model implemented using Tensor Flow. This SVM
model ran for a specific number of training iterations. The CCBVS research uses the
SciKit-Learn Linear SVC SVM model. This model runs until a specified stopping criteria
tolerance is reached. This use of the stopping criteria contributes to a substantial reduction
in run-time.

Table 16, provides a comparison of the run-time performance of CCBVS with that
of FSFC. This experiment uses training with features from the Zeus dataset and function
similarity prediction with features from the ISFB dataset. This specific dataset was used to
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allow direct comparison with the FSFC run-time. These results show the SVM model had a
total run-time of 45.3 s, an improvement by a factor of 38.

The total run-time including bipartite matching of this dataset was 55 s. It is noted
that although the number of training records has been reduced from n2 to linear, SVM
model prediction is still performed for all combinations of the functions in the two samples
being compared.

Table 16. Zeus/ISFB Dataset Run-Time Comparison.

Operation Dataset Feature Extraction (s) SVM (s)

FSFC Train Zeus 13 1330
FSFC Classify ISFB 37 357
CCBVS Train Zeus 3.3 0.1

CCBVS Classify ISFB 37.0 4.9

6. Future Work

The research presented in this paper can be extended as follows:

• Extend this research to identify similar functions in compiled C++ code.
• Update similarity techniques for general cross-architecture function similarity.
• Improve the testing technique to decrease the false-positive rate in large programs by

avoiding pairwise (n2) function comparison.
• Evaluate several machine-learning techniques to identify the best performing method.

7. Conclusions

The matching of similar compiled functions is important in the following activities,
the triage of malware, analysis of program patches, identification of library functions,
analysis of code authorship, the identification of similar function pairs to reduce manual
analysis workload, plagiarism analysis, and vulnerable function identification.

The addition of an automated method for the generation of ground truth allows this
research to identify similar functions in open-source programs compiled with debugging
symbols. This removal of the need for manual reverse engineering to generate ground
truth allows experimentation with machine-learning function similarity techniques on a
wide range of datasets.

This paper has presented techniques to improve the runtime of the training algorithm
by a factor of 38. The addition of a bipartite matching method reduces false-positive
matches and provides an average F1 score of 0.88.

This research further demonstrates the feasibility of machine-learning function simi-
larity techniques and builds the case that machine-learning could be used as the basis for a
general purpose function similarity engine.
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