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Abstract: A recently developed high-frequency asymptotic solution for the famous “Sommerfeld
radiation problem” is revisited. The solution is based on an analysis performed in the spectral
domain, through which a compact asymptotic formula describes the behavior of the EM field, which
emanates from a vertical Hertzian radiating dipole, located above flat, lossy ground. The paper
is divided into two parts. We first demonstrate an efficient technique for the accurate numerical
calculation of the well-known Sommerfeld integrals. The results are compared against alternative
calculation approaches and validated with the corresponding Norton figures for the surface wave. In
the second part, we introduce the asymptotic solution and investigate its performance; we compare
the solution with the accurate numerical evaluation for the received EM field and with a more
basic asymptotic solution to the given problem, obtained via the application of the Stationary Phase
Method. Simulations for various frequencies, distances, altitudes, and ground characteristics are
illustrated and inferences for the applicability of the solution are made. Finally, special cases leading
to analytical field expressions close as well as far from the interface are examined.

Keywords: asymptotic solution; Hertzian dipole; numerical integration; Sommerfeld radiation
problem; surface wave

1. Introduction

The Sommerfeld radiation problem is a classical problem in the area of electromag-
netic (EM) wave propagation. The original Sommerfeld solution is provided in the spatial
domain as an integral expression, utilizing the so-called “Hertz potentials”, but it does not
end up in analytic formulas [1]. With the use of the Fourier–Bessel representations in cylin-
drical coordinates, A. N. Sommerfeld proposed the solution for the Hertz vectors in terms
of improper integrals, now known as Sommerfeld integrals. Sommerfeld further derived
an asymptotic surface wave expression, assuming high media contrast and large horizontal
range. The theory of surface waves was then further developed both by Sommerfeld and J.
Zenneck [2–4] and mathematically strengthened by H. Ott [5].

Subsequently, K. A. Norton focused on the engineering application of the problem;
provided approximate solutions, represented by long algebraic expressions; and described
concepts such as the propagating surface wave and its associated “attenuation coefficient”,
albeit his definition for the surface wave is not equivalent to Sommerfeld’s definition [6,7].
Various prominent researchers have also dealt with the problem from various points of
view. A notable debate was between H. Barlow and J. Wait regarding the existence of
surface waves in practical occasions [8]. However, later experimental results verified that a
slowly decaying EM field near the interface that decreases approximately as of 1/

√
R can

be excited and detected under usual circumstances, providing thus a tangible indication as
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for the existence of Zenneck waves [9,10]. Related important work is also found in [11–18].
A thorough review of the subject is given in [19,20].

1.1. Previous Contribution by Our Research Group

The problem may also be tackled in the spectral domain. Particularly, in [21,22], we
derived the fundamental integral representations for the received EM field by means of a
generalized solution to the respective Maxwell equations boundary value problem. This
approach has the advantage that no Hertz potentials and their subsequent differentiation
are required for the evaluation of the fields.

In [23], the Stationary Phase Method (SPM) [24–26] was applied to the EM field’s
integral expressions and the well-known analytic formulas for the space wave, defined as
the complex summation of the line of sight (LOS) field and a portion of the field emanating
from the dipole’s image point (also called reflected field) were obtained as the high frequency
asymptotic solution to the complete problem. In [27–29], we focused on the numerical
evaluation of the field’s integral formulas. It was revealed that accurately evaluating the
Sommerfeld integrals is not trivial. The result is sensitive on the position of the singular
points in relation to the integration path, an issue that has been also a major problem and
matter of debate in various related research works [12].

Then, in [30], the problem was re-examined, for the case where σ � ωε0, which is
valid for many practical cases of interest in terrestrial communications. As shown there, a
special contour integral, called “Etalon integral”, was used to deform the original contour of
integration, through the application of the Saddle Point or Steepest Descent Method (SDP).
This “Etalon integral” can be expressed in terms of Fresnel integrals and has interesting
properties, which can reduce the problem related to the vicinity of the saddle point to the
pole point [31–36]. The result is a compact formula that better expresses the variation of
the field in the high-frequency regime.

1.2. Scope of This Research

As mentioned in [28,29], the accurate evaluation of Sommerfeld integral expressions
is not a straightforward task, and this is due to both the presence of singularities along the
integration path as well as to the particular complex and rapidly oscillating nature of the
integrands. For that reason, various specialized commercial software have been used for
obtaining adequate results, for example, the AWAS tool used by Sarkar et al. in [12]. In
this paper, we show that, using an appropriate variable transformation, it is possible to
convert the generalized integrals of [23] into fast converging formulas, which are rather
suitable for numerical calculation, using standard Numerical Integration (NI) techniques.
Particularly, the integral expression, describing the received EM field, is broken down into
two terms; one relatively easily computed definite integral of finite integation range and
another integral of semi-infinite range. However, the latter integrand proves to be a rapidly
decaying exponential function, resulting in very fast convergence times. Comparisons
against the numerical results, published in [28,29], demonstrate the advantage of the
method. Additionally, a validation against Norton’s figures for the well-known surface
wave [6,7] is exhibited.

Then, we return to the solution of [30] and elaborate on the derived expressions.
Using small and large argument approximations, associated with the Fresnel integrals [37],
pure analytic expressions are extracted that better describe the behavior of the EM field,
close as well as far away from the ground interface, and provide useful information
regarding the propagation mechanism. Moreover, extensive simulations are demonstrated
for the purpose of validating these asymptics and a comparison with the solution of [23]
(SPM-based solution) is performed. Provided the required conditions are satisfied, our
simulations validate the analytic expressions. Related inferences, regarding the field
behavior, are made.
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1.3. Problem Geometry

The geometry of the problem is shown in Figure 1. A vertical small (Hertzian) dipole
(HD), characterized by dipole moment ṗ = p · êx, p = const, is directed towards the positive
x-axis, at altitude xo above infinite, flat, lossy ground. The dipole radiates time-harmonic
EM waves at angular frequencyω = 2π f (e−iωt time dependence is assumed). The relative
complex permittivity of the ground is as follows: ε

′
r = ε

′
/upvarepsilon0 = εr + iσ/ωε0,

where σ is the ground conductivity, f is the carrier frequency, and ε0 = 8.854× 10−12 F/m
is the permitivity in vacuum or air. The goal is to evaluate the received field at an arbitrary
observation point above the interface, i.e., at point (x,y,z), of Figure 1.

Figure 1. Hertzian dipole above an infinite, planar interface. Point A′ is the image of the source A
with respect to the ground (yz-plane); r1 and r2 are the distances between the observation point and
the source and its image, respectively; θ2 is the “angle of incidence” at the so-called “specular point”,
i.e., the point of intersection between the ground and the line connecting the image point with the
observation point; and finally, ϕ = π/2− θ2 is the so-called “grazing angle”.

1.4. Structure of the Article

In what follows, Section 2 recaps the fundamentals expressions for the EM field
in the spectral domain and the issues associated with their numerical calculation and
demonstrates how a simple variable transformation leads to fast converging integral
formulas, suitable for evaluation in the computer. Through various simulations, we
illustrate the advantages and validate the accuracy of the redefined expressions. Then,
in Section 3, we give an overview of the examined asymptotic solution, and through an
extended set of simulations and comparisons, we demonstrate its efficiency. Additionally,
a discussion regarding the applicability of the resulting closed-form formulas is given.
Finally, in Section 4, we summarize on the major findings and propose potential extensions.
The analysis is given for the electric field. Expressions for the magnetic field are derived
similarly or by suitable use of the duality principle.

2. Efficient Formulation for the EM Field Integral Expressions in Spectral Domain
2.1. Spectral Domain Integral Expressions

The electric field at the observation point of Figure 1 is given by the following integral
expression [23],

E = ELOS + ER = − ip
8πε0ε1

[∫ ∞

−∞
f1(kρ)dkρ +

∫ ∞

−∞
f2(kρ)dkρ

]
, (1)
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where ELOS denotes the direct or LOS field, ER is for the field scattered by the flat and lossy
ground, and the vector functions f1(kρ) and f2(kρ) are given by

f1(kρ) =(κ1sgn(x− x0)êρ − |kρ|êx) ·
kρ|kρ|
κ1

H(1)
0 (kρρ)eiκ1|x−x0| , (2)

f2(kρ) =(κ1 êρ − |kρ|êx)kρ|kρ| ·
ε2κ1 − ε1κ2

κ1(ε2κ1 + ε1κ2)
H(1)

0 (kρρ)eiκ1(x+x0) , (3)

κ1 =
√

k2
01 − k2

ρ , κ2 =
√

k2
02 − k2

ρ , (4)

with H(1)
0 being the Hankel function of zero order and first kind and where k01 are k02

the wavenumbers of propagation in the air and lossy medium (ground), respectively.
Additionally, kρ represents the propagation wavenumber along the horizontal ρ-direction
and corresponds to Sommerfeld’s continuous eigenvalues spectrum in the Bessel integral
representation of his solution [1,3,4].

Expressions (1)–(4) expose the following difficulties, when coming to the evaluation
of the respective integrals through common Numerical Integration (NI) techniques:

– The range of integration extends from−∞ to +∞, resulting in potential computational
errors for large evaluation arguments.

– The Hankel function, H(1)
0 , exhibits a singularity at kρ = 0, and although it is proven

that this is a logarithmic singularity [38] and does not break the integral’s convergence
(since one can easily show: lim

kρ→0
kρ ·H(1)

0 (kρρ) = 0 [28]), it can affect the accuracy of

the NI results.
– Points kρ = ±k01 are also isolated singularities, and despite them being still integrable

singularities [38] (it is a square root integrable singularity that applies to Rule 1 of [38]),
a sufficiently small range around them must be excluded when evaluating (1) in the
computer. As argued in [29], doing so may severely affect the accuracy of the results.

The above accuracy issues are important only regarding the scattered field, ER, for
which no analytic formula exists. For the LOS field, a closed-form expression does exist,
which with respect to Figure 1 takes the following full form (near and far field components)
in the cylidrical coordinate system [39], with ζ =

√
µ1/ε1 ' 120π Ω being the wave

impedance of free space or air; it is used for verification purposes, as shown in Section 2.3
below.

ELOS = − iωp
4π
· eik01r

{(
−iωµ1

2r1
+

3ζ
2r2

1
− 3

2iωε1r3
1

)
sin 2θ1 · êρ +

+

[
iωµ1

r1
sin2 θ1 +

(
ζ

r2
1
− 2

iωε1r3
1

)(
cos 2θ1 + cos2 θ1

)]
êx

}
, (5)

2.2. Reformulated Integral Expressions for the EM Field

We now focus on the scattered field, i.e., the second integral expression of (1), which
may be written as

ER = − ip
8πε0ε1

(I1 +

I23︷ ︸︸ ︷
I2 + I3), (6)

I1 =
∫ +k01

−k01

f2(kρ)dkρ, (7a)
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I2 =
∫ −k01

−∞
f2(kρ)dkρ, (7b)

I3 =
∫ +∞

+k01

f2(kρ)dkρ. (7c)

Starting with (7a), we perform a simple variable transform, kρ = k01 sin ξ, which
apparently maps the [−k01,+k01] range to [−π/2,+π/2]. A related variable change is
given in [40,41] or in [42] for the horizontal dipole case. However, these are of a different
nature and lead to different inferences, as obvious from the expressions that follow, herein.
With this transform, (4) is translated to

κ1 = k01 cos ξ, κ2 =
√

k2
02 − k2

01 sin2 ξ . (8)

If we also take into consideration the definition for f2, as given by (3), the expression for
I1 becomes

I1=k3
01

∫ +π2

−π2
(cos ξ êρ−| sin ξ| êx) · sin ξ| sin ξ|· R‖(ξ)·H

(1)
0 (ρk01 sin ξ)·eik01(x+x0) cos ξdξ , (9)

R‖(ξ) =
ε2k01 cos ξ − ε1

√
k2

02 − k2
01 sin2 ξ

ε2k01 cos ξ + ε1

√
k2

02 − k2
01 sin2 ξ

, (10)

where R‖ the reflection coefficient. Equation (10) may be equivalently written as

I1 = k3
01

{∫ π
2

0

[
(cos ξ êρ − sin ξ êx) · sin2 ξ · R‖(ξ) ·H

(1)
0 (ρk01 sin ξ) · eik01(x+x0) cos ξ

]
dξ −

−
∫ 0

−π2

[
(cos ξ êρ + sin ξ êx) · sin2 ξ · R‖(ξ) ·H

(1)
0 (ρk01 sin ξ) · eik01(x+x0) cos ξ

]
dξ

}
. (11)

We may further elaborate on (11), if we make use of the following properties for the
Hankel function [43,44],

H(1)
0 (z) + H(2)

0 (z) = 2J0(z), (12)

H(1)
0 (zeiπ) = −H(2)

0 (z), (13)

(with the latter implying an analytic continuation of H(1)
0 in the upper half plane) and

observe from (10) that the reflection coefficient R‖(ξ) is an even function, with respect to ξ.
Overall, we get

I1= 2k3
01

∫ π
2

0

[
(cos ξ êρ − sin ξ êx) · sin2 ξ · R‖(ξ) · J0(ρk01 sin ξ) · eik01(x+x0) cos ξ

]
dξ , (14)

where J0 denotes the zero-order Bessel function.
For integrals I2 and I3, we follow a similar approach. Particularly, in (7b), we apply the

variable transform kρ = k01 cosh ξ, while in (7c), we set kρ = −k01 cosh ξ. In both cases, the
original ranges of integration, [−∞,−k01] and [k01,+∞], are mapped to [0,+∞]. Moreover,
(4) becomes

κ1 = ik01 sinh ξ, κ2 =
√

k2
02 − k2

01 cosh2 ξ . (15)

Performing the necessary calculations and using (12) and (13), we combine the results
for I2 and I3 as

I23 =
2k3

01
i

∫ ∞

0
(i sinh ξ êρ− cosh ξ êx) · cosh2 ξ · R′‖(ξ) · J0(ρk01 cosh ξ)· e−k01(x+x0) sinh ξdξ, (16)
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where I23 = I2 + I3 and the reflection coefficient R′‖ is now given by

R′‖(ξ) =
iε2k01 sinh ξ − ε1

√
k2

02 − k2
01 cosh2 ξ

iε2k01 sinh ξ + ε1

√
k2

02 − k2
01 cosh2 ξ

. (17)

Substituting (14) and (16) to (6), we reach the integral formula for the scattered field,
ER. Working similarly for the first integral of (1), we obtain the equivalent expression for
the LOS field. Overall, we get

ELOS =
−ipk3

01
4πε0ε1

·
{∫ π

2

0

[
(sgn(x−x0) · cos ξ êρ − sin ξ êx) · sin2 ξ · J0(ρk01 sin ξ) · eik01|x−x0| cos ξ

]
dξ−

− i
∫ ∞

0

[
(isgn(x−x0) · sinh ξ êρ− cosh ξ êx) · cosh2 ξ · J0(ρk01 cosh ξ)·e−k01|x−x0| sinh ξ

]
dξ

}
(18)

ER=
−ipk3

01
4πε0ε1

·
{∫ π

2

0
(cos ξ êρ− sin ξ êx) · sin2 ξ · R‖(ξ) · J0(ρk01 sin ξ) · eik01(x+x0) cos ξdξ −

− i
∫ ∞

0
(i sinh ξ êρ− cosh ξ êx)·cosh2 ξ · R′‖(ξ) · J0(ρk01 cosh ξ) · e−k01(x+x0) sinh ξdξ

}
, (19)

An inspection of (18) and (19) provides useful insights. As required by the prob-
lem’s geometry, the LOS field is cylindrically symmetrical (no φ–component), and it
is expressed as a complex summation of contributions, originating from the dipole’s
location, hence its dependence on the horizontal distance, ρ and the relative height dif-
ference, x − x0. Additionally, the x–component of the field is symmetrical, while the
ρ–component is antisymetrical, with respect to the dipole’s vertical position x0, in ac-
cordance to the conventional solution of the dipole’s problem, as evident from (5) (i.e.
Ex(x0 − h) = Ex(x0 + h), Eρ(x0 − h) = −Eρ(x0 + h), ∀ ρ, a). The expression for ER is
similar and can be considered the integral generalization of Fresnel’s theory due to the
existence of R‖(ξ) and R′‖(ξ) in (19) that act as reflection coefficients. Additionally, the field
depends on the cumulative distance, x + x0, as if the source is located at the image point
A′ of Figure 1.

Equations (18) and (19) remedy the accuracy issues, mentioned in Section 2.1, above:

– They utilize the Bessel function, J0, instead of H(1)
0 in (1), which is a bounded function

with no singularities.
– The singularities at points kρ = ±k01 have also been removed. Thus, no need to

exclude any range around them is required, when using any kind of numerical inte-
gration technique, in order to calculate (18) and (19).

– The result is expressed as the sum of two integrals: one definite integral, in the
bounded range [0,π/2] and an improper integral, in which the integration range
extends from 0 to ∞. However, due to the presence of e−k01(x+x0) sinh ξ , the second
integrand is a fast decaying function, practically making the integral a bound-limits
one that quickly converges and is easy to evaluate on a computer.

The above findings are visible in the simulations that follow. The simulation parame-
ters (i.e., T-R heights, ground parameters, operating frequency, etc.) are indicated within
the figures.

2.3. Simulation Results and Comparisons

As deduced in [29], SPM results are expected to be accurate in the far field, i.e., at least
at distances over 10–15 wavelengths or above 100–150 m, for the 30 MHz case, shown in
Figure 2. Therefore, using the SPM data as reference, it is obvious that only the numerical
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evaluation of (19) achieves the required accuracy and this is noticeably evident for distances
larger than the characteristic distance of the so-called Pseudo–Brewster angle, defined as
the angle of incidence, θB, where the reflected field is minimized [39] (this coincidence is
not a general conclusion for every tested scenario; though it is a frequent case, which is
why it is mentioned here.) On the contrary, the numerical computation of (1)–(3) fails to
describe the electric field behavior, which may be attributed to the reasons analyzed in
Section 2.1, above.

Figure 2. Comparison of numerical integration results for the received electric field using: (i) rede-
fined integral expressions, (18) and (19)—solid, (ii) original integral expressions (1)–(3)—dash dotted.
Scattered field values are depicted.

In Figure 3, we demonstrate various field types and components for a radiating dipole
at 300 KHz, which is regarded as the frontier between the low frequency (LF) and medium
frequency (MF) bands [39]. For the LOS field, we used (5), while the space wave was
evaluated as in [12], i.e., by using the concept of the Fresnel reflection coefficient for the
reflected field. The scattered field (the terms scattered field and reflected field are not
equivalent [12]) was numerically computed via (19).

Due to the small antenna heights and the long distances involved (10–20 km), the
space wave is expected to diminish [39]. Therefore, the link is established primarily by
means of the surface wave, defined as the remaining field, after subtracting the geometrical
optics field (or space wave) from the total field [45]. This is actually verified in the top
plot of Figure 3, with the total field curve being very close to the surface wave one. As a
confirmation of the validity of the results, our surface wave calculations are compared with
Norton formulas [6]. The respective curves are almost identical.

The bottom half of Figure 3 displays the behavior of the integrand associated to the
second integral of (19), i.e., the generalized integral over the [0, ∞) range. Actually, we deal
only with the x–component of this integrand, which is the major field component for this
problem [12], denoted as function gex(ξ) in Figure 3 (the ρ–component behaves similarly).
The integrand is confined in a small window of the integration variable, ξ, outside of which
and especially for large values of ξ, it is practically zeroed. This is due to the fact that
e−k01(x+x0) sinh ξ decreases much faster than the increase rate of cosh3 ξ (or alternatively
limξ→∞ e−k01(x+x0) sinh ξ · cosh3 ξ = 0). The bottom line is that the second integral of (19)
essentially becomes a bound-limits integral, which can be easily and accurately evaluated,
using common numerical integration techniques. This is an advantage of our formulation.

It is interesting to note the fluctuations of gex(ξ). These are an outcome of the oscil-
lating nature of J0. Its effect on gex(ξ) is apparent by observing the bold line of Figure 3
(g’ex(ξ) in the figure), which demonstrates how the integrand would behave, if it had not
been for J0. Again, the confinement of the integrand within a “narrow-band” of variable
ξ is apparent. It also seems that g’ex(ξ) acts like a slightly shifted envelope function of
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gex(ξ). However, notice that this is a normalized illustration of g’ex(ξ) to the respective
magnitude of gex(ξ); the order of magnitude between them is totally different.

Figure 3. Numerical evaluation of the EM field at the LF/MF band; top: comparisons of various field
types, bottom: integrand behavior of (19).

The simulations in Figure 3 are now repeated for the VHF/UHF band, in Figure 4.
The source and observation points are placed even closer to the ground in an attempt to
detect meaningful surface wave values in this higher frequency scenario. Nevertheless,
in this case, the space wave almost completely dictates the field behavior. The pursued
surface wave becomes quickly negligible, and this is actually in accordance with Norton’s
theory, where the large values for the so-called numerical distance (ND) results in very small
values for the attenuation coefficient, hence the small surface wave figures [39].
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Figure 4. Numerical evaluation of the EM field at the VHF/UHF band; top: comparisons of various
field types, bottom: integrand behavior of (19).

Likewise, notice in the bottom graph of Figure 4 how quickly gex(ξ) vanishes (its real
part is shown), making the convergence of (19) very fast. Moreover, due to the alternating
positive and negative values, it is expected that the effect of gex(ξ) is insignificant. The same
holds true for the ρ-component of (19), justifying the small observed values, regarding the
surface wave field. Put it differently, for the case shown in Figure 4, the major contribution
in (19) comes from a narrow area around the stationary point, which in this problem
lies within the [−π/2,+π/2] range [29]. This contribution yields the reflected field in an
asymptotic sense, as shown in [23] with the application of the SPM method. In the rest
of the integration range, the integrand is related to the surface wave [45] and exposes a
behavior similar to Figure 4, thus having minimum impact to the final result. Therefore,
the results are also a validation of the SPM method, which as mentioned in Section 1, it
emerges as the high-frequency asymptotic solution for the complete problem.

As a last validation, in Figure 5, we demonstrate various field components, for the
exact scenario illustrated in Figure 4 of [23]. In [23], only the Norton’s surface wave was
evaluated, whereas here, we also compare with the NI results. Moreover, we perform a
comparison between the analytic expression for the LOS field and its equivalent integral
form (“LOS field NI” in Figure 5), as both are given in Section 2 by (5) and (18), respectively.
Again, our numerical evaluation for the surface wave is more or less identical to Norton’s
values. Needless to say, we also achieve a perfect match between (5) and (18), essentially
meaning that our redefined integral formulation for the EM field, described in Section 2.2,
is effective and accurate.

We close this section with a few comments regarding the method’s efficiency. The
convergence time depends on four aspects: (a) the utilized HW and SW platform; (b) the
selected NI algorithm; (c) the required error tolerance; and (d) the problem parameters,
especially the frequency of operation, for a given Transmitter–Receiver (T–R) positioning
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or on the electric distance, k01r, when their combined effect is accommodated. The first
three factors seem quite reasonable. Regarding the fourth one, Figure 6 provides a good
reasoning. It displays the behavior of the first integrand of (19) (in this case, the real part
of the ρ-component), nominated heρ(ξ) in the figure. It is obvious that higher frequencies
contribute to additional oscillations and this is not surprising if one observes that heρ(ξ)
includes a Bessel and a phase function, which are increasingly fluctuating for larger ar-
guments or when the frequency f = k01·c

2π increases. Hence, more steps or intervals are
required, for the NI algorithm to achieve a target error.

Figure 5. Electric field components at the frequency of 30 MHz.

Figure 6. Integrand behavior of (19). The real part of the ρ-component of the first integral expression
of (19) is illustrated for f = 1, 10, 100 MHz. The horizontal distance ρ is 1 km, and the T–R heights
are X0 = 60 m and X = 15 m.

Table 1 demonstrates the performance of our method at various frequencies, utilizing
two common NI techniques to evaluate (19): the Adaptive Simpson’s and the Trapezoidal
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method [46]. We are able to evaluate the fields at almost an arbitrary accuracy level
and at very reasonable convergence times and this is achieved without any need to apply
specialized techniques, so as to accurately calculate the Sommerfeld integral tails [40,47–52]
(note that 10−12 or even lower error is also easily achievable at the expense of computational
time). Table 1 also exposes the effectiveness of adaptive quadrature for evaluating such
ill-behaved, rapidly fluctuating functions, such as gex(ξ) and heρ(ξ) of Figures 3, 4, and
6 [53,54]. Depending on the allowed error, it seems that, at high frequencies, the selection
of an adaptive quadrature technique might be necessary for getting timely results. Similar
results are obtained if we apply one of the quadrature integration formulae of Gaussian
type, found in [55]. Particularly, to evaluate the two integrals terms of (19), expressions
25.4.30 and 25.4.45 of [55] apply, with total convergence times being equivalent to the
adaptive Simpson’s values, shown in Table 1.

Table 1. Convergence time (ms).

f Adaptive Simpson’s Trapezoidal

(MHz) 10−3 10−6 10−9 10−3 10−6 10−9

1 3.88 6.02 18.73 3.43 43.14 969.11
3 4.48 6.98 20.84 4.62 50.94 1272.52

10 5.11 7.92 21.69 7.43 69.27 1921.38
30 6.82 9.02 25.16 14.38 114.05 2923.07
80 9.80 14.93 32.15 31.25 240.26 6748.43
100 11.00 16.20 39.55 39.46 354.70 9560.96
300 21.29 35.77 61.24 57.60 520.40 15,437.25

1000 58.44 103.55 156.89 126.47 973.65 32,240.70
Convergence times for the NI of (19) at various frequencies ( f ) and different relative error tolerance levels. The
horizontal distance was set to ρ = 1 km. The rest of the problem parameters, X, X0, σ, εr , I, and 2 h, were set as in
Figure 5. Simulations performed on a 64 bit, Quad Core CPU@2.60 GHz, 16.0 GB RAM platform, using MatLab.

3. Evaluating a Novel Asymptotic Solution to the Sommerfeld Problem

Now that we have a solid tool for the calculation of Sommerfeld integrals, we use it to
examine a novel asymptotic solution to the Sommerfeld radiation problem. The solution
is based on a modified steepest descent method that considers the location of the pole in
relation to the saddle point. As such, it may be related with alternative approaches, such
as [56]. However, it has distinct characteristics, which, for the cases examined, leads to
useful asymptotics and reveals interesting facts for the field’s behavior.

3.1. Outline of the Asymptotic Method

For the usual case, where σ� ωε0, the field scattered by the plannar interface can be
expressed as [30]

ER = −êθ2

pk3
01

2ε0ε1

√
−2i
πk01ρ

· eik01r2 cosζp · sin
3
2
θ2 sin

ζp

2
R‖(θ2)X

(
k01r2,−ζp

)
, (20)

where, with respect to Figure 1, êθ2 = êρ cos θ2 − êx sin θ2 refers to the unit vector along
the θ2–direction of a spherical coordinate system, in which the origin is the dipole’s image
(A′) and R‖(θ2) is given by (10), for ξ = θ2. Moreover, in (20), ζp = ξp − θ2, where ξp is
the pole of R‖(θ2), which in turn may be approximated by

ξp '
π

2
+

√
ωε0ε1

2σ
·
{

1 +
ωε0(ε1 + ε2)

2σ
− i
[

1− ωε0(ε1 + ε2)

2σ

]}
. (21)



Electronics 2021, 10, 1339 12 of 19

The most interesting part in (20) is special function X, the so-called “Etalon integral”
(EI) [31–36]. For parameters k,α, it is defined as the contour integral

X(k,α)=
1

4πi

∫
S

eik(cosζ−cosα)

sin ζ+α2

dζ =
e−iπ4
√

2π

∫ 2
√

k sin α2

∞ sin α2
e

it2
2 dt

= −1
2

sgn(Re{α}) + 1
2

erf
(√
−2ik sin

α

2

)
, (22)

along path S of Figure 7. Regarding the notation in (22): ∞ sin α2 =

{
+∞, sin α2 > 0
−∞, sin α2 < 0

.

The “Etalon integral” has useful properties and can be expressed in terms of Fresnel
integrals that enable its easy evaluation using the error function. Keep in mind that, to
reach (20), we used SDP and then, through the residue theory [57], we deformed the
original Sommerfeld contour of integration, Sz, into S, so as to apply the above expression
for the Etalon integral.

Figure 7. The contour of integration: (a) Sz: original contour in the complex ξ-plane (left plot) and
its ζ-plane mapping (right plot) (b) S: “Etalon integral” contour in the ζ-plane (right plot) and its
ξ-plane mapping (left plot), (c) ξp: relative position of the pole in the ξ-plane, (d) ζp: relative position
of the pole in the ζ-plane.

It is possible to elaborate on (22) if we apply the large and small argument approxima-
tions for erf(z) [37]. This gives

X(k,α) ' −
√

i
2π

e[ik(1−cosα)]

2
√

k sin α2
,

√
2k| sin

α

2
| � 1 , (23)

X(k,α) ' −1
2

sgn(α) +

√
k

2πi
α ,

kα2

2
< 1 , (24)

which when used in (20), i.e., for k = k01r2 and α = −ζp, yields the following analytic
expressions:

ER ' −êθ2 R‖(θ2)
pk2

01
4πε0ε1r2

sin θ2 · eik01r2 ,
√

2k01r2 · sin
ϕ

2
� 1 , (25)

ER ' êxδ
pk3

01
4ε0ε1

· 1√
πk01ρ

e−δk01(x+x0) · ei(k01ρ+π/2) ·
[

1 + 2i

√
k01ρ

π
· δ
(

1 + k01ρδ
2
)]

,
ϕ→ 0

k01ρδ
2 < 1

, (26)
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with δ =
√
ωε0ε1

2σ � 1 and ϕ being the grazing angle of Figure 1. One may identify that
the second condition of (26) is a type of numerical distance [6]; more on it is presented in
Section 3.2.

Expression (25) indicates the reflected field emanating from the dipole’s image point
(A′ in Figure 1). It should be accurate for a long electric distance, k01·r2, i.e., at the far
field region, provided that, at the same time, the grazing angle ϕ = π/2 − θ2 is not
very small. In [23], we also reached (25), using the SPM method. However, this method
required only the fulfillment of a large electric distance [29]. The effect of the grazing
angle was overlooked, and hence, the propagation mechanism for the case of a low height
transmission link could not be highlighted. Pay attention to the fact that, if (25) was
accurate, even for sliding angles of incidence, just because of a high-frequency transmitting
source, the field to be received would essentially be imperceptible, since, in this case, the
reflection coefficient, R‖, approaches −1 and ER would simply cancel ELOS.

Regarding (26), we are given an expression that describes the behavior of the scattered
field for sliding angles of incidence. Due to the existence of the exponentially decaying
function, e−δk01(x+x0), it is confined near the interface as if it is a kind of a surface wave.
The field is also spatially limited by the the required conditions, ϕ ' 0, k01ρδ

2 < 1, with
the implications described in Section 3.2 below. However, pay attention to the fact that
this is not a true surface wave, at least when one of the accepted definitions for a type of
surface wave is considered [45] (the pole ξp is located outside the closed contour of Figure 7
and hence its residue is not considered). It simply resembles a surface wave, and this is a
consequence of the boundary conditions and the pole’s proximity to the saddle point and
the contour of integration (see Figure 7). We choose to call this a pseudo-surface wave.

In the simulations that follow, we compare the introduced closed-form asymptotic
solution, (20) against the SPM-based solution of [23]. The reference for our comparisons
are the numerical integration results that we obtain using the methodology of Section 2,
that is, the numerical integration of (18), (19) and the respective formulas for the magnetic
field. Additionally, we examine and comment on the accuracy of analytic expressions
(25) and (26).

3.2. Simulation Results

We exhibit two sets of simulations, in Figures 8 and 9, below. Figure 8 demonstrates
the effect of the frequency on the received electric field, for a number of scenarios, regarding
the T–R horizontal distance, denoted with “d” in the plots. With the exception of Figure 8f,
the basic simulation parameters are shown in Table 2. The ground parameters, εr, µ, and
σ, are indicative for the case of sea water and do fulfill the requirement, σ � ωε0. The
altitudes X0 and X are set at 60 m and 15 m, respectively; however by increasing the
horizontal distance, d (up to 30 km in Figure 8e), we simulate sliding angles of incidence
as well. Finally, for the evaluation of the error function in (22), which according to (20)
encompasses a complex argument (−ζp), the algorithms of [58,59] were appropriately
modified and utilized, since they very accurately evaluate such special functions in the
complex plane.

The case of Figure 8a is indicative of non-near-ground-level reception. The T–R relative
position is such that the angle of incidence is ϕ ' 15◦. It is evident that there is an almost
perfect match between the results obtained numerically, labeled as “NI” in the plots, and what
is predicted by (20), depicted via the “Etalon” lines in Figures 8 and 9. It is equally interesting
that SPM also yields similar results, particularly for frequencies around 20 MHz and above.
Keep in mind that the SPM solution is essentially the expression given by (25), which in turn
is derived as a special case of (20). However, the requirement for (25),

√
k01r2 · sin ϕ2 � 1, is

not strictly fulfilled in our case; it goes from 0.31 at 1 MHz to 3.1 at 100 MHz. At 20 MHz, it is
about 1.4. Thus, it seems that (25) is an accurate analytic expression for a non-sliding angle
of incidence reception in which the validity could be practically extended beyond the strict
restrictions imposed for its derivation.
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Table 2. Simulations parameters.

Symbol Description Value

fmin minimum frequency 1 MHz
fmax maximum frequency 1 GHz
X0 height of transmitting dipole 60 m
X height of receiver’s position 15 m
I dipole’s ipole current source 1 A

2h dipole’s length 0.1 m a

σ ground conductivity 4.8 S/m b

εr ground relative permitivity 80 b

µ ground permeability 4π × 10−7 H/m
numerical integration method Adapt. Simpsons

relative error tolerance 10−6

a much smaller than the wavelength λ = c/ f , b pertains to the case of sea water.

In Figure 8b, the T–R distance is increased to 3 km and as a result the angle of incidence
is radically reduced to ϕ ' 1.43◦. Here, we do observe a discrepancy between the two
asymptotic solutions and of both of them with the reference NI results. Of course, this
discrepancy appears to be relatively small, and if examined in a broader frequency range,
as in Figure 8c, it may be practically regarded as negligible. Nevertheless, it is important
to note the tendency of (20) to better follow (19), something that is even more apparent
in diagrams (d) and (e) of Figure 8. In these cases, the T–R distance is further increased
to 10 km and 30 km, with the incidence angles now being as sliding as ϕ ' 0.43◦ and
ϕ ' 0.14◦, respectively. Overall, compared with the solution of [23] (SPM-based solution),
the Etalon-based solution is a better estimate for the received field. It is also apparent
that both methods smoothly converge to (19) in the high frequency regime but that (20)
converges faster.

On the contrary, Figure 8f verifies a somehow expected behavior. In lower frequencies,
both methods fail to describe the propagation mechanism, being unable to capture the
effect of the surface wave, which in this scenario should be rather significant (consider
also the lower T–R heights, selected particularly in this case, such that the presence of the
surface wave is further exaggerated [39]). Indeed, (20) behaves only marginally better
than the respective asymptotic formula of [23]. As already stated, the latter essentially
yields only the space wave component. In conclusion, since both solutions are based on
the application of high-frequency assymptotic methods (Saddle Point vs SPM), they may
therefore yield accurate results only in the high-frequency regime [60].

To confirm and further solidify the above arguments, in Figure 9, we exhibit the field
behavior from the perspective of a varying T–R distance. Starting from lower frequencies,
in Figure 9a, we once again observe that both asymptotic methods fail to produce accurate
results (for reasons of completeness, magnetic field values are given in this case). According
to our simulations, this situation holds true almost up to 1 MHz. Moving towards the
HF frequency zone, the advantages of the newly introduced asymptotic solution show up
in Figure 9b. The difference between (20) and the SPM solution of [23] is more evident
for large distances, where the effect of the scattered field is more significant; hence, the
improvement that the “Etalon” function, X, yields in (20) becomes visible. Proceeding to
the VHF zone of Figure 9c, we realize that both methods begin to converge and ultimately
coincide with the complete solution at even larger frequencies, as shown in Figure 9d. At
those frequencies, the surface wave is almost negligible. Therefore, there is nothing extra
left for special function X to expose and (20) simply yields the reflected field, exactly as the
solution of [23] does.
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Figure 8. The variation in the total received electric field (magnitude) with respect to frequency (f ) over various horizontal
distance (d) scenarios (sub-figures a–f), as predicted by (i) numerical integration of (18) and (19)—“NI”, (ii) the SPM-based
asymptotic solution of (18)—“SPM”, and (iii) the Etalon-based asymptotic solution of (20)—“Etalon”. Simulation parameters
are given in Table 2, except for those explicitly mentioned in the legends of the respective diagrams.

The last two diagrams of Figure 9 are devoted to the investigation of (26), an interesting
expression, which, as mentioned in Section 3.1, attributes surface wave characteristics to
the near-ground-level scattered field. For this, extended simulations were run, and the
outcomes are summarized in Figure 9e,f. Overall, we observe that (26) does converge
to (20), from which it was derived when ϕ → 0. In Figure 9e, the convergence occurs
at about 6 km, which, for the selected T–R heights, is equivalent to a grazing angle ϕ of
less than 1◦. As mentioned before, in such frequencies (≤3 MHz), (20) and hence (26)
are not very accurate approximations of the complete solution. They are simply better
estimates compared to the SPM and hence the visible gap between them and the NI results
in Figure 9e.

The same scenario is repeated at 30 MHz and illustrated in the top plot of Figure 9f.
This time, convergence is achieved before 1400 m, where ϕ is just above 3◦. In general,
for the same T–R heights, we observe a tendency of slightly increasing grazing angles to
achieve convergence, as the frequency rises. However, bear in mind that the numerical
distance, k01ρδ

2, quickly approaches the value of 1 for its dependence on the square of the
frequency. This eventually shrinks the range for which (26) is accurate. A similar behavior
is observed in the bottom diagram of Figure 9f at 80 MHz. Due to the lower antenna
heights, we have a match at about 650 m, where ϕ ' 2◦. Nevertheless, because of the
higher frequency, the validity of (26) is now limited to an even shorter distance range. We
thus reach to the conclusion that this pseudo-surface wave has local significance and that
its existence is highly sensitive on the value of the numerical distance, k01ρδ

2. When the
numerical distance exceeds 1, it essentially disappears.



Electronics 2021, 10, 1339 16 of 19

Figure 9. EM field magnitude over horizontal distance (d) for various distinct frequencies (f ), as indicated within each
sub-figure (a–f). The term Etalon “Surf” refers to the evaluation of (26). Figure 9a, exhibits the magnetic field. The rest of the
labeling convention of Figure 8 applies.

4. Conclusions and Future Research

We demonstrated an efficient method for the numerical calculation of Sommerfeld
integrals. The method proves fast and accurate, and when applied to the evaluation of
the EM field, radiated by a vertical dipole above flat, lossy ground, it fits very well with
existing solutions and Norton’s results.

One limitation of the method is that its efficiency is theoritically limited to non-
diminishing antennae heights. This is an outcome of the exponentially decaying factor
e−k01(x+x0) sinh ξ in the integrand of (19), which is “neutralized” when x + x0 = 0. However,
the simulation results showed that, for most practical frequency cases, it takes only a
few centimeters of antenna altitudes for the numerical calculation to quickly converge.
In fact, the effect of the frequency seems rather more important than the heights of the
antennas. In any case, the strict limits of the method’s applicability (probably for rather
unexpected practical cases, as an antenna is supposed to be mounted at some distance
above the ground) are left for future study.

Using the above numerical method as a reference, we then focused on the evaluation of
a high-frequency asymptotic solution. The solution relies on the saddle point method and
uses the properties of the so-called “Etalon integral”, as a means to increase the accuracy of
the results. We verified that, for the usual case, where σ� ωε0, the method does succeed
to provide better estimates, as compared with a more basic asymptotic approach, based on
the application of the stationary phase method. Moreover, further asymptotic properties
for the “Etalon integral” allowed us to reach analytic formulas for the scattered field. Of
particular interest is (26) that exposes surface wave characteristics to the field near the
interface, provided that the numerical distance k01ρδ

2 < 1.
From the analysis of Section 3.1, one might identify that the so-called lateral waves were

not taken into cosideration. However, we still managed to obtain a quite good agreement
with NI results. The ultimate goal is to provide asymptotics, applicable for every possible
scenario, not only for the usual σ� ωε0 case but also for circumstances where the pole is
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located inside the integration path of Figure 7, where it is possible to analytically extract the
surface wave component by means of the residue theory. For that purpose, in the future,
we will insist on the investigation of special function X(k, α)and its properties as well as
other special functions that could be used to describe the field behavior. Additionally, the
obtained asymptotic solutions can be refined with any accuracy and presented in expanded
form, according to known procedures [60] and a comparison with relevant recent research,
e.g., [61–64], is to be made.
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