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Abstract: Conventional 2-level cache architecture is not efficient in mobile systems when small
programs that do not require the large L2 cache run. Bypassing the L2 cache for those small programs
has two benefits. When only a single program runs, bypassing the L2 cache allows to power it down
removing its leakage energy consumption. When multiple programs run simultaneously on multiple
cores, small programs bypass the L2 cache while large programs use it. This decreases conflicts in
the L2 cache among those programs increasing overall performance. From our experiments using
cycle-accurate performance and energy simulators, our proposed L2 cache architecture supporting
bypassing is shown to be effective in reducing L2 cache energy consumption and increasing overall
performance of programs.

Keywords: low-power computing; cache; computer architecture; memory; multicore system

1. Introduction

Multicore processors become popular in mobile systems such as smartphones and
smartpads. They have a big potential to be able to improve performance/throughput and
to reduce energy consumption. To support multiple programs running simultaneously;,
they include large L2 caches. The L2 caches are shared when many programs are running
simultaneously on different cores while they are monopolized when only a single program
is running. Although the L2 caches can improve performance, they may increase energy
consumption, especially leakage energy, because they are implemented using a huge
number of transistors.

To reduce leakage energy consumption of L2 caches, several schemes have been
proposed. One of them is gated-Vdd [1], which adds sleep transistors to cut down leakage
power but loses data stored in SRAM cells. Drowsy cache [2] scheme is proposed to reduce
leakage power without losing data stored in SRAM cells. Several architectural techniques
have been proposed to reduce leakage energy consumption of L2 caches using gated-Vdd
and drowsy cache schemes. They generally try to detect dead cache lines and put them in
a low-leakage mode, which, however, requires applying the gated-Vdd and drowsy cache
schemes at cache line granularity, increasing area overhead very much. Due to this reason,
recent application processors employed in smartphones support a low-leakage mode at
larger granularity, for example at half size of L2 cache granularity [3].

In this paper, we propose a new L2 cache architecture for reducing the L2 cache leakage
energy consumption and for improving performance by bypassing an L2 cache. Bypassing
the L2 cache has two advantages. First, the L2 cache leakage energy consumption can be
reduced by putting it into a low-leakage mode when a single program is executing and
its working set is small, thus bypassing the L2 cache affects performance little. Second,
shared use of the L2 cache is not optimal in terms of performance when the sharing incurs
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a large number of conflict misses. In some situations, this can be alleviated by letting some
programs to bypass the L2 cache, which can decrease conflict misses and unnecessary
accesses to the L2 cache.

We implemented an L2 cache architecture supporting bypassing on top of the Zesto [4]
simulator and simulated MiBench [5], CSiBE [6] and SPEC2000 [7] benchmarks. Our exper-
imental results show that our proposed architecture is effective in reducing the leakage
energy consumption of the L2 cache when a single program runs. Our proposed architec-
ture is also beneficial in some conditions when multiple programs run on different cores
simultaneously. Especially, it improves performance when large working set programs use
the L2 cache and small working set programs bypass the L2 cache, which reduces conflicts
in the L2 cache. The L2 cache leakage energy consumption can be reduced entirely when a
single program runs and harmonic mean performance can be improved by up to 41.7%
when multiple programs run simultaneously.

This paper is organized as follows. In Section 2, we present related work. Section 3
describes our proposed bypassing architecture in detail and experimental environment
and results are discussed in Sections 4 and 5, respectively. Finally, Section 6 concludes
the paper.

2. Related Work

There are many studies about reducing leakage energy of cache memory. The most
well-known previous technique is gated-V;; by Powell et al. [1]. This technique is used in
many cache designs [8-10], but data loss occurs. Drowsy cache [11] is proposed to reduce
leakage energy without data loss. Cache blocks not used for long time change their state to
drowsy mode. Drowsy mode can reduce leakage energy significantly and can be restored
to an accessible state quickly. Thus, its performance degradation is small. It is the most
ideal leakage power managing mechanism for caches, but its hardware complexity is too
high to be adopted in commercial systems. The third technique is DRG-cache [2], which
also reduces leakage energy without data loss. This technique is similar to drowsy cache
in terms of data retention mode of unused portion. It also degrades performance, but it
effectively reduces leakage energy with relatively low hardware overhead. (Unlike drowsy
cache, additional transistor is not needed for each cell). We used this technique when
we assume that the data must be retained. The reason why we choose DRG-cache is its
lower hardware complexity than drowsy cache. Samsung electronics announced the power
management unit of a next-generation application processor that can shut down each core
and L2 cache at half-size granularity [3]. We determined the granularity of the techniques
to reduce leakage energy to a quarter of the total cache capacity.

Many papers are published using above or similar circuit techniques. The cache
decay [9] technique proposed the concept of dead block to turn off unused cache blocks to
reduce leakage power. The concept of dead blocks has stimulated many research endeavors
about performance and cache energy reduction [12,13]. David H. Albonesi proposed
selective cache ways [14], which disables a subset of cache ways in a set associative cache
to reduce dynamic and leakage energy consumption. In single core, our proposed scheme
is similar to this technique, but we measure entire system energy unlike other similar work.
Our program classification does not need special profiling mechanism.

Some stuides for cache energy optimization for multicore systems have been pub-
lished. Weixun et al. proposed a dynamic cache reconfiguration mechanism for energy
optimzation in a real-time multicore system [15]. Xing et al. proposed a two-level (core, L2
cache) utilization control solution for energy efficiency in a multicore real-time system [16].
Hardy et al. used bypassing to tighten the worst case execution time for multicore system
with a shared instruction cache [17]. Sato et al. proposed a voting-based working set as-
sessment scheme for dynamic cache resizing mechanisms [10]. These works have overhead
of dynamic configuration or profiling. Our work does not need a special profiling method,
and it also does not require an initiating procedure and its overhead.
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Taeho Kgil et al. proposed new architecture for a tier 1 server called PicoServer [18].
It suggested a flattened memory hierarchy that elides intermediate caches. They have
shown that eliding the L2 cache is good for reducing leakage energy and also improving
performance in particular systems such as a single-chip server. Prateek et al. compared the
bandwidth, latency, and energy filtering of PicoServer with and without an intermediate
caches [19].

3. Proposed L2 Cache Bypassing
3.1. Bypassing

Mobile systems such as smartphones adopted large L2 caches to improve performance
and to accommodate multiple programs running simultaneously on multiple cores [3].
Generally, data read from the memory are placed onto the shared L2 cache and then
onto per-core L1 caches. On each memory access, a per-core L1 cache is probed first; then,
the shared L2 cache is accessed on an L1 cache miss. However, this conventional 2-level
cache hierarchy management, which is shown in Figure 1a, is not efficient in terms of
energy consumption of the L2 cache and overall performance. This is because typical
mobile programs are small and their L1 cache misses are low; thus, memory accesses will
increase little. Bypassing the L2 cache for the small programs is beneficial in two situations.
First, when a small program bypasses the L2 cache, it can be placed into a low-leakage
mode without affecting performance, reducing large leakage energy consumption in the L2
cache. Second, when multiple programs run simultaneously, small programs bypass the L2
cache while large programs use the L2 cache, which reduces conflicts in the L2 cache and,
consequently, increases overall performance of those programs. Our 2-level cache memory
hierarchy supporting L2 cache bypassing is shown conceptually in Figure 1b.
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Figure 1. Conventional and our proposed 2-level cache architecture.

3.2. Program Classification

Deciding the optimal L2 cache size/bypassing is based on the history of execution
times for L2 cache sizes. In mobile systems, small modules for mobile services or small
programs like email are executed repeatedly. This means that a few programs run again and
again with high probability [20]. We decided to predict the optimal L2 cache size/bypassing
for each program by using the history of past executions instead of online prediction. This
approach is simple and does not require additional hardware. Instead, the operating
system stores execution time information for each L2 cache configuration. When a program
runs first, scan the execution time information of the program and check if execution time
is recorded or not. Scan sequence is fully used, a half, a quarter, and bypass. Recording
sequence is the same as scan sequence. The algorithm of choosing the optimal L2 cache
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capacity follows. If there is no information about execution time, the program runs with
full size L2 cache. After its execution, its execution time is recorded into a corresponding
slot. When the program runs again, run it with half-size L2 cache and record its execution
time. Repeat this step with quarter-size L2 cache and bypassing.

After four total executions, we obtain the execution time information of the four L2
cache configurations. We found some patterns of execution times for these configurations.
First, four executions do not show noticeable performance differences. This means that the
capacity of L2 cache does not affect performance considerably. This is because the cache
footprint of a program is small such that L1 cache can cover the footprint. In this case, L2
cache bypassing is beneficial because we can reduce leakage energy consumption of the
L2 cache by turning it off. Programs showing this behavior are classified as a type 1. This
type information is recorded into the registry of OS for later use. Registry is a database that
stores configurations for each application. Second, L2 cache bypassing requires relatively
many cycles over other configurations and there is no outstanding difference among a
quarter, a half, and full use of L2 cache. This means that a quarter-size L2 cache is enough to
cover cache the program footprint. Programs showing this behavior is classified as type 2.
Third, for execution times, they show noticeable differences. This means that the footprint
of this program is too large to reduce L2 cache size. In this case, full size of L2 cache should
be used for performance. Programs belonging to this case are classified as type 3.

We experimented with various benchmarks and got threshold values to classify their
types. If normalized execution times of the three configurations to the baseline of full L2
cache size is between 1 and 1.1, programs are classified as type 1. Programs are classified as
type 2 if the normalized execution times of the quarter-size and the half-size configurations
are between 1 and 1.1 and the normalized execution time of the bypass configuration is
bigger than 1.1. Other programs not belonging to type 1 and type 2 are classified as type 3.
When there is an execution request for a program of which type is already classified, run
it with the corresponding L2 cache configuration using its type information. Operating
system finds this information from registry and sends it to the cache bypass unit. The cache
bypass unit configures the L2 cache with the information. We selected power-gating and
data retention gated-ground of DRG-cache as energy reduction techniques for unused
(bypassed) L2 cache capacity.

3.3. Proposed Cache Architecture

Figure 2 shows our proposed architecture supporting L2 cache bypassing. Its major
difference from the conventional cache architecture is in the added circuits between the L1
and L2 caches. They are called bypass units and each core has its own bypass unit. This unit
has the information about how much portion of the L2 cache is needed for each program.
If a program does not require the L2 cache entirely, it sends memory requests directly to
the memory without accessing the L2 cache. On context switches, this information must
be stored and restored back as a part of the context of the program. This will not cause
noticeable performance and memory overheads because the information is small. One
output of this unit goes to the L2 cache on not bypassing the L2 cache and the other output
line goes to the memory on bypassing the L2 cache, in which data read from the memory
goes to the L1 cache directly. Output direction is directed by the capacity information
received from the operating system. In this architecture, we can selectively utiliize the L2
cache fully, partially (a half or a quarter of the L2 cache), or never. Partial capacity use of
the L2 cache is only supported when a single program runs in our current architecture.
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Figure 2. Proposed cache architecture. Bypass units have information about required cache capacity
for each program, which is delivered from operating system.

3.4. Multicore Scheduling

Conventional scheduling in multicore systems allocates all programs into the L2
cache, which is, however, not always optimal, especially in mobile systems. We can utilize
bypassing for better performance. When there are scheduling requests for type 3 and type
1 (or 2) programs, type 1 program can bypass the L2 cache to increase overall performance
because type 1 program will not disturb the cache blocks of type 3 program. Type 3 program
is sensitive to L2 cache capacity, so conflicts by the type 1 program can affect its performance
largely. We developed a few rules about bypassing the L2 cache based on our extensive
experiments. The first one is that type 3 programs do not bypass the L2 cache because these
programs require large L2 cache capacity. The second one is that type 1 programs bypass
the L2 cache because this type of programs shows little performance degradation due to
bypassing and because other programs will have benefits by the bypassing. Finally, type 2
programs do not bypass the L2 cache if the result of multiplication of L1 data cache miss rate
by the ratio of data requests per instruction is larger than 0.005. Otherwise, they bypass the
L2 cache. Programs whose IPC are low typically show high data requests ratio. However,
if their locality is high, high data requests ratio will not cause noticeable performance
degradation. Thus, we take into account both data requests ratio per instruction and
L1 data cache miss rate. This value represents memory intensiveness of the program.
By various experiments, we get value 0.005 to separate type 2 programs. This scheduling
algorithm is described as a flowchart in Figure 3.
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Figure 3. Multi-core scheduling algorithm.

4. Experimental Methodology

We use Zesto [4] simulator for experiments. Table 1 shows the detailed configuration
of our experimental environment. We tried to simulate a typical mobile system similar
to Cortex A9 [21,22]. The core energy consumption is measured using McPAT [23]. We
referenced XIOSim [24] to modify Zesto in order to print out related parameters for McPAT.
The energy consumption of cache memory is measured using CACTI 6.5 [25]. We used
DRAMSIm2 [26] with Zesto to measure the detailed energy and performance of main
memory. We use some benchmarks of MiBench suite [5] and CSiBE [6] and SPEC2000 [7].
We run those benchmarks on Zesto using DRAMSim?2 with and without cache bypassing.
We use four cache configurations; bypass, 256 KB, 512 KB, and 1024 KB. Each cache
configuration corresponds to bypassing L2 cache, quarter size, half size, and full size of L2
cache capacity. Cache configuration is changed by adjusting the number of active cache
ways. For example, the 512 KB configuration has eight active ways and the other eight
ways are disabled. We use two circuit-level cache power control techniques. The first
one is power-gating to unused cache area. If a program is type 1, so it bypasses the L2
cache, there is no L2 cache leakage or dynamic power consumption. The other one is data
retention technique to unused area using DRG-cache [2]. In DRG-cache with Gsize 1.0,
normalized leakage energy is 54% of that of the conventional cache. We calculated leakage
energy for data retention mode of unused area. For example, in L2 cache bypassing, the
total L2 cache energy is 54% of leakage energy of the conventional cache. Data retention
experiment can reflect leakage energy reduction in case data must be retained for later
use on context switches. We measure total system energy considering the main memory
in single-core experiments. However, in the case of multicore experiments, we could not
measure the energy consumption of the main memory because of simulation errors with
DRAMSIm2. Instead, we include normalized memory accesses to guess the increase of
memory energy consumption.
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Table 1. Base configuration.

Core 3-Way out of Order, 1 GHz

L1 I-cache 32 KB, 64 bytes per line,
2-way associativity, 2 cycles

L1 D-cache 32 KB, 64 bytes per line,
8-way associativity, 3 cycles

Unified L2 cache 1 MB, 64 bytes per line,

16-way associativity, 12 cycles
Main memory 1 GB x16 DDR3-667

5. Results and Analysis

Table 2 shows detailed energy consumption results for the L2 cache, the main memory,
and a core for representative benchmarks of each type. We assume power-gating is used
for the unused area. The adpcm benchmark is a good example of a type 1 benchmark.
Its execution time variations among different L2 cache configurations are almost zero.
As 1.2 cache capacity increases, the L2 cache energy consumption also increases but other
components does not show energy increases. This means that the L2 cache capacity
variation does not affect memory and core operations. However, the L2 cache is the most
significant energy consumer especially for the 1024 KB configuration (almost 57%). Using
our classifying scheme, crc32 and dijkstra are classified as type 2 programs. Execution
time variations among 256 KB, 512 KB, and 1024 KB are small, but bypassing shows large
performance degradation. The bzip2 benchmark shows large execution time differences
among the four configurations. The energy consumption of the memory decreases when
L2 cache capacity increases. This is because of the decrease of memory accesses (dynamic
energy) and execution time (leakage energy). The energy consumption of the core also
decreases because of reduced execution time.

Table 2. Normalized execution time, energy consumption, and data requests per instruction, L1 miss rate and global miss

rate of representative benchmarks for each L2 cache configuration with power-gating for unused area (millijoule).

L2 Usage  Time Data Request L1 Global L2 Memory Core Total
8 per ins. Miss Rate Miss Rate  Energy Energy Energy  Energy
Bypass 1.00 0.00% 0.00 87.58 125.61 213.19
adpem 256 KB 1.00 0.40 0.00% 0.00% 70.65 87.63 125.61 283.90
(type 1) 512 KB 1.00 0.00% 141.29 87.63 125.61 354.53
1024 KB 1 0.00% 284.62 87.63 125.61 497.86
Bypass 1.55 1.27% 0.00 8.49 3.69 12.18
dijkstra 256 KB 1.07 0.09% 2.11 5.86 2.54 10.52
(type 2) 512 KB 1.05 0-38 1.27% 0.09% 4.14 5.43 2.49 12.05
1024 KB 1 0.09% 7.97 4.63 2.38 14.98
Bypass 2.48 0.79% 0.00 211.84 22.83 234.67
bzip2 256 KB 1.59 0.41% 21.77 101.81 14.68 138.26
(type 3) 512 KB 1.22 0-97 0.79% 0.24% 33.47 68.98 11.26 113.71
1024 KB 1 0.14% 55.34 47.67 9.21 112.24

We also measured the execution times and EDPs (Energy-delay product) for each
configuration of more benchmarks. Figure 4a shows EDPs with power-gating and EDPs
with the DRG-cache scheme supporting data retention. Figure 4b shows normalized energy
consumption breakdowns and execution time of the optimal L2 cache configuration for
each benchmark. The reason why we do not show execution time results of the DRG-cache
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scheme is because it shows similar behavior to power-gating. All values are normalized to
the results of the 1024 configuration. The first three benchmarks show similar execution
times among the four configurations. EDPs of these benchmarks show gradual increase
with increasing L2 cache size. These benchmarks are classified as type 1, where L2 cache
bypassing is able to reduce EDP. The total energy reduction with L2 cache bypassing and
power-gating for these benchmarks is 57.2% on average. With DRG-cache, the average
total energy reduction is 24.9%. The crc32, stringsearch, dijkstra, and equake benchmarks
show similar execution times among the 256 KB, 512 KB, and 1024 KB configurations
but bypassing shows large execution time increase. These benchmarks are classified as
type 2, where the 256 KB configuration shows good results. Energy reduction is 35.4%
with power-gating and 10.4% with DRG-cache on average. The bzip2 benchmark shows
gradual decrease of execution time with increasing L2 cache capacity. The differences
of execution times among the four configurations are large. Reducing L2 cache capacity
directly degrades its performance. EDP increases as L2 cache capacity decreases because
of increasing execution time although L2 cache leakage power decreases. In terms of
execution time and EDP, the 1024 KB configuration is the optimal configuration for this
benchmark. Overall, EDPs with power-gating and DRG-cache show similar behavior.

We experimented with multicore system for combinations of benchmarks. Table 3
shows normalized harmonic mean and geometric mean of IPC, total memory accesses, core
energy consumption, L2 cache energy consumption, and instruction progress rate of each
core. We simulated for same number of cycles for the same benchmark combinations. In the
baseline configuration, all benchmarks share the L2 cache. We use instruction progress rate
as an important metric to evaluate performance of our multicore scheduling algorithm for
the L2 cache. It is a normalized value of the number of committed instructions per core
for the same number of cycles. It represents how many instructions are completed for the
same time. It effectively shows performance improvement for each program when multiple
programs run simultaneously. With our program classification method, the mcf and bzip2
benchmarks are classified as type 3. The adpcm and bitcount benchmarks are classified as
type 1. The crc32, equake, and dijkstra benchmarks are classified as type 2. The L1 data
cache miss rates of crc32, equake, and dijkstra are 0.35%, 2.21% and 2.50%, respectively.
The ratios of data requests per instruction of crc32, equake, and dijkstra are 0.62, 0.74 and
0.38, respectively. Thus, the multiplied values of the two numbers are 0.0021, 0.0163 and
0.9406 for crc32, equake, and dijkstra, respectively. In our approach, adpcm, bitcount, and crc32
bypass the L2 cache while bzip2, mcf, equake, and dijkstra utilize the L2 cache, based on our
logic in Section 3.4.

The first five experiments show dual-core experiments. In first experiment, adpcm
and crc32 are classified as L2 cache bypassing programs. Performance degradation due
to bypassing all of them is almost negligible. In this case, the L2 cache can be in a low-
power state to reduce leakage energy. When only bzip2 or mcf uses the L2 cache and
bitcount or adpcm or crc32 bypasses it, overall performance increases. In the fourth and
fifth experiments, the instruction progress rates of bitcount and adpcm show no decrease
while the progress of mcf shows a 15% increase. The total memory accesses increases by
an average of 16%. The main reason for this is increased progress rate of mcf. The core
energy shows 1% increase and L2 cache energy increases by 2% with 12% increase in
the harmonic mean of IPC. There is no main memory energy consumption information
but we can guess there is no noticeable memory energy increase considering memory
accesses increase with higher instruction progress rates. The sixth and seventh results
show triple-core experiments. Bypassing only adpcm shows the best performance. Note
that bzip2 and dijkstra are determined to utilize the L2 cache. The eighth and nineth
combinations show quad-core experiments. If only equake uses the L2 cache in the fourth
experiments, it shows 31% increase in harmonic mean of IPC. If only bzip2 and equake use
the L2 cache in the fifth experiments, harmonic mean of IPC increases by 30%. It is not the
best case, but our approach shows performance increase in most cases. It is very difficult to
predict runtime interactions among programs. The last combination in Table 3 shows no
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performance increase in any combinations. In many high-performance cases, the number
of memory accesses is decreased. It is because of the decrease of the global cache miss rate.
For example, equake&bitcount&crc32 configuration of equake&adpcmé&bitcount&equake&crc32
experiment, the number of memory accesses is decreased to 56% from normal configuration.
equake’s global miss rate is decreased to 0.61% from 0.91%. bitcount and crc32 do not show a
noticeable change. adpcm’s global miss rate is changed to 0.0027% from 0.0018%, but it does
not affect performance critically because it does not access memory frequently. Reduction
of memory accesses is good at performance and energy reduction. Leakage power of core,
cache, and memory can be reduced since programs can be run earlier. Dynamic energy of
memory can be reduced because it will reduce read and write activation power.

25

2

15

1

05

n

OEDP_power_gating B EDP_DRG

@

BL2energy(J) B Memenergy(J) Ocoreenergy(J)

(b)

Figure 4. (a) shows normalized EDP of each L2 cache configuration for each benchmark using

gated-V;; and DRG-cache. (b) shows normalized total energy consumptions of the optimal cache
configuration and the baseline, and execution time of the baseline for each benchmark. The optimal
cache configuration of bzip2 is 1024. Execution time is measured when power-gating is applied to the
L2 cache.
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Table 3. Experimental results of multi-core experiments. The first column shows the benchmarks combinations used in each

experiment. The second column shows which benchmarks which use L2 cache. It means other benchmarks bypass L2 cache.

The remaining column shows normalized harmonic mean of IPC of total cores, total memory accesses, consumed energy of

core and L2 cache, instruction progress of each core. Baseline is the case every job shares L2 cache.

Benchmark Bench. L2 HM MEM Core L2$ Core 0 Core 1 Core 2 Core 3
Combinations Cache Using 1rC acc. en. en. Progress Progress Progress Progress
bzip2 & bzip2
bitcount
bzip2 bzip2
adpcm
mef & mef 1.12 1.18 1.01 1.02 1.15 1
bitcount
mef & mef 1.13 1.14 1 1 1.14 1
adpem
bzip2 & bzip2 0.98 1 1 1 0.93 1.84 0.46
adpcm & .
dijistra bzip2 & 1 1 1 1 093 1.84 048
adpem
bzip2 & 1.28 0.7 1.09 1 1.05 1.91 0.98
dijkstra
adpem & equake 1.31 0.56 1.02 1.01 1 0.95 1.74 0.99
bitcount & adpem &
equake & ke 1.31 0.56 1.02 1.01 1 0.96 1.75 0.99
crc32
bitcount & 1.32 0.56 1.03 1.01 1 0.99 1.76 0.99
equake
equake & 1.31 0.56 1 1.01 1 0.96 1.75 0.99
crc32
adpem & 131 0.56 1.02 1.01 1 0.94 1.74 0.99
equake &
crc32
adpem & 132 0.56 1.02 1.01 1 0.99 1.76 0.99
bitcount &
equake
bitcount & 141 0.56 1.03 1.01 1 1 176 0.99
equake &
crc32
bzip2 & bzip2 1.02 1.03 0.99 1 0.96 1 0.93 1.05
adpcm & bz
bitcount & zip2 & 1.02 1.03 0.99 1 0.96 1 0.94 1.05
adpem
equake
bzip2 & 1.03 1.03 1 1 0.96 1 1 1.07
bitcount
bzip2 & 13 0.73 1 1 0.75 1 0.93 2.03
equake
bzip2 & 1.03 1.03 1 1 0.96 1 1.01 1.07
adpcm &
bitcount
bzip2 & 1.29 073 0.99 1 0.75 1 0.9 2.02
adpem &
equake
bzip2 &
bitcount & 1.31 0.72 1.01 1 0.76 1 0.99 2.05
equake
mef & mef 0.99 1.01 0.97 1 0.99 0.98 1
bitcount & mof & 1 1 1 1 1 1 1
adpem bitcount
mcf & 0.99 1.01 0.99 1 0.99 0.98 1

adpcm
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We only experimented bypassing without considering partial use of L2 cache space
in the multicore environment. Our work can be extended to develop online scheduling
algorithms considering cache partitioning and bypassing with our program classification
information. However, this is complex and left as a future work.

6. Conclusions

We propose a new architecture supporting selective bypassing of the L2 cache. We
classify programs into three types to customize L2 cache configuration for each program.
This simple history based classification method does not require a special complex hard-
ware. The classification information can be used when a single small program runs to
reduce the L2 cache leakage energy consumption by powering down the L2 cache. This
information is also helpful, when multiple programs run in different cores, in increasing
their overall performance because bypassing the L2 cache for small programs can alleviate
L2 cache conflicts. Using a cycle accurate simulator coupled with a detailed power model,
we found that the total system energy consumption can reduce up to 42.8% in case of a
single program run and that overall performance can improve by up to 41.7% in the case
of multiple programs run. This work can be extended to consider online scheduling by
including both L2 cache partitioning and bypassing. This is reserved as our future work.
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