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Abstract: The study proposed the classification and recognition of hand gestures using electromyo-
graphy (EMG) signals for controlling the upper limb prosthesis. In this research, the EMG signals
were measured through an embedded system by wearing a band of MYO gesture control. In order
to observe the behavior of these change movements, the EMG data was acquired from 10 healthy
subjects (five male and five females) performing four upper limb movements. After extracting EMG
data from MYO, the supervised classification approach was applied to recognize the different hand
movements. The classification was performed with a 5-fold cross-validation technique under the
supervision of Quadratic discriminant analysis (QDA), support vector machine (SVM), random forest,
gradient boosted, ensemble (bagged tree), and ensemble (subspace K-Nearest Neighbors) classifier.
The execution of these classifiers shows the overall accuracy of 83.9% in the case of ensemble (bagged
tree) which is higher than other classifiers. Additionally, in this research an embedded system-based
classification approach of hand movement was used for designing an upper limb prosthesis. This
approach is different than previous techniques as MYO is used with an external Bluetooth module
and different libraries that make its movement and performance boundless. The results of this study
also inferred the operations which were easy for hand recognition and can be used for developing a
powerful, efficient, and flexible prosthetic design in the future.

Keywords: electromyography (EMG); MYO gesture control; prosthesis; ensemble classifier

1. Introduction

Electromyography (EMG) is a diagnostic approach that use motor neurons to control
and evaluate the health of muscles and neuron cells. These motor neurons are responsible
for transmitting electrical signals through muscles to contract them. A lot of applications of
EMG testing exists in clinical and biomedical fields. It can either be used as a diagnostic tool
to locate the neuromuscular diseases or to control the prosthetic hand movement. Medical
research denotes that different parts of forearm muscles and EMG signals related to hands
and fingers can still be measurable even after the loss of the hand. Detection, analysis,
and classification of the EMG signal is a well-known topic these days in the biomedical
industry, especially in the case of prosthetic hand movement. For detection of EMG data
from muscles, various invasive and noninvasive techniques are available [1].
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In [2], the author proposed a unique method that controls the prosthetic hand using
EMG signals produced by forearm muscle when hand and finger movement occurs. For
measuring the sequence of EMG potential in this technique, EMG sensors were used with
the help of a Personal Computer sound card. Eleven miniature electromagnetic sensors
were mounted in this novel 3D electromagnetic positioning system along with a data-
glove [3]. These 11 electromagnetic sensors had the capacity to capture the corresponding
hand poses in a real-time scenario [4–6]. To collect the motor unit action potential (MUAP)
on the skin area, highly reliable and responsive surface electromyogram (sEMG) electrodes
were used in [7]. In [8], the author used SEMG sensors to carry out the EMG data for six
healthy subjects. Two types of muscle contraction (isometric and isotonic) and (anisometric
and anisotonic) were considered taking EMG data for applied forces. The surface electrodes
show the limited ways to assess the muscular activity. In the case of sEMG, a pair of
electrodes or a complex array of multiple electrodes would be used to record the muscle
data. As EMG recording exhibits the potential difference between the two electrodes, that
is why we need more than one electrode to capture data [9].

Intramuscular EMG electrodes also play a vital role in acquiring EMG data through
various recording techniques. The monopolar needle electrode is one of the simplest ap-
proaches of intramuscular EMG electrodes consisting of fine wire to penetrate a muscle
with a surface electrode as a reference outside [10]. Two wire monopolar needle electrodes
are also used to inject in muscle for data acquisition concerning each other. These monopo-
lar EMG electrodes are insulated and stiff enough to insert in the skin with the tip exposed
to reference using surface electrodes. Most commonly, these intramuscular electrode fine
wire recordings are used for research or in studies of kinesiology [11]. The change in the
upper limb movement shows the vital change in amplitude and features of the surface
electromyographic (sEMG) signals [12].

A three dimensional (3D) printed prosthesis used for below elbow amputees is paired
with an MYO armband to provide an affordable, practical, and convenient solution for
amputees [13,14]. The study of feature extraction is carried out from the acquired EMG
data for normal and amputee subjects in time domain and frequency domain [15,16].
The approach of classification of hand movements for healthy subjects and to predict the
same for amputees is under discussion in our study rather to extract time domain and
frequency domain features that is a quite different mode of study. In [17], the author used
the MYO armband with interfacing a developed app of MYO Analyzer that supports the
movement of MYO with its own Bluetooth module. While, we used a different library
of MYO Bridge with compatibility of an external BLE (Bluetooth-Low-Energy) HM-10
(Jinan Huamao Technology Co., Ltd., Jinan, China) and different movements than installed
gestures of MYO armband as used in previous approach. Moreover, they did not mention
the subjects and data segmentation while we used two different gender groups with variety
of ages, vast data set and movement classification. In [18], the author basically compares
both approaches of acquiring data from MYO and conventional EMG data acquisition
system for pattern recognition. For this purpose, he used the classification phenomenon. In
comparison with proposed approach, our study is very different in terms of data acquisition
technique for MYO, classification of EMG data for various hand movements and the novelty
of the embedded system for our mechanical design of the prosthesis.

Although the previous approaches improve the cost of amputation, it is still very
expensive, particularly for the patients of underdeveloped countries. Therefore, the novelty
in this study is to give a noninvasive, feasible and cost-effective solution for people with
amputations. The paper presents an advancement in the embedded based classification
approach of hand movements which has application in various control applications, espe-
cially upper limb prostheses and robotics. Additionally, this work addresses the issue of
latency and accuracy in such applications which are a bottleneck in many of the current
biomedical device applications. The approach that is adopted in this study is compara-
tively feasible and cheaper as compared to previous approaches as it uses the noninvasive
simple device of the MYO armband which can be wearable on any size of muscle without
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shuffling of wires, an embedded controller with low price and an HM-10 Bluetooth module
for transmitting data. For further progress in the future, we can design a cost-efficient
prosthetic upper limb to perform an action through this embedded system.

2. Background and Related Work

The electromyography (EMG) pattern recognition system acquired the EMG data from
passive sensors, an innovative analog front-end system, and a power microcontroller to get
different hand gestures. The data was acquired with the help of Cerebro AFE (Analog Front
End IC for broadband communication) and fed into an MCU (microcontroller unit) [19].
In order to recognize the different hand gestures, the fed data was passed through the
SVM classifier.

The author in [20] used the feature extraction methodology from the EMG data
acquisition while we do not use the feature extraction methodology here. Our approach is
just based on the classification of mentioned hand movements for the better performance
of our mechanical design of prostheses. Moreover, this approach deals only with the
features of amputees while we test the data of healthy subjects as well as to test for
amputees. In [21], the author used a feature extraction-based methodology (time domain
and frequency domain) that were extracted from raw EMG data to predict the behavior
of hand gestures while we used the real time based raw EMG data classification of four
movements without going into feature extraction methodology. Our one study of related
feature extraction methodology was also published in ACM series publication with the
name of “Comparative Analysis of EMG Signal Features in time domain and Frequency-
domain using MYO Gesture Control”. Finally, in [22] the author proposed the EMG data
acquisition approaches with various set ups performing different gestures. The goal of their
study to provide the best way of EMG data acquisition after classification phenomenon
while in our case the stream of study is different as we want to develop an embedded
system base classifier that predicts the future movement of an amputee with our undertaken
mechanical design of prostheses.

For de-noising, classification and feature extraction, multiscale principle component
analysis (MSPCA), a decision tree and discrete wavelet transform (DWT) was implemented,
respectively, in [23,24]. This framework classified the EMG signal as taken by normal,
myopathic and ALS (Amyotrophic lateral sclerosis) automatically with C4.5 algorithm,
classification and regression tree (CART), and random forest decision tree classifiers. In [25],
the author compared the classification performances of multilayer perception (MLP) and
support vector machine (SVM). Surface electrodes obtained the EMG signals from the ulnar
nerve of patients with DAQ (Data Acquisition) board and 16-bit A/D (Analog to Digital)
converter which was stored in a computer’s hard disk. The stored EMG data was then used
for feature extraction using FFT (Fast Fourier Transform) and PCA (Principal Component
Analysis). The PCA coefficients were applied to both MLP and SVM classifiers which show
that SVM has a high rate of anticipation in diagnosing neuromuscular disorders.

To detect the wandering behavior of men/women through human recognition activity
an approach of data mining was used in [26]. For this purpose, an MYO armband was
used to capture the EMG data from muscles. The data obtained from volunteers then
transferred to the computer wirelessly from MYO armband through a Bluetooth device.
The MEX file of MATLAB (R2018b, Mathworks, Natick, MA, USA) was used to obtain data
as MYO works in C/C++ but does not work in MATLAB. The 10-cross validation was used
to recognize their motion activities using the frame of SVM, KNN, and naïve Bayes.

In [27], the author reveals the characteristics of different gestures via MYO armband
and a gives a case study of an MYO armband that can use it to recognize gestures in
map navigation with the help of Apple Maps Connector. In [28], the author proposed a
comprehensive study for supervised classification of multichannel surface EMG signals.
This representation shows the discrete wavelet transform (DWT) of EMG signals along
with unconstrained parameterization of the mother wavelet [29–34]. The approach of
support vector machine (SVM) is used to classify in a space of multichannel representation.
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The results of this study show the discrimination of six hand gestures by getting a rate of
5% misclassification [35–38].

3. Proposed Methodology

The study in this paper involves the MYO armband with an embedded system to
evaluate the EMG signals. For this approach, we interface our MYO armband to a controller
board through an external HM-10 Bluetooth module. The proposed methodology block
diagram is shown in Figure 1. The MYO armband is a manufactured product of Thalamic
labs that can be used to detect the EMG signals of the forearm muscle. MYO contains
eight EMG sensors to recognize the movement of arms and hand gestures. Besides these
EMG sensors, MYO also has a nine-axis inertial measurement unit (IMU) to mark the
hand movement. The IMU consists of a three-axis accelerometer, three-axis gyroscope, and
three-axis magnetometers to account for the different movements. In our case, we used this
device because it can be worn on any forearm due to its elasticity and wireless behavior.

Figure 1. Proposed methodology block diagram.

There were 13 features of time domain and frequency domain selected in this research.
These features were analyzed linearly and nonlinearly with specific parameters. Addition-
ally, these features and attributes were used for classification of four-class hand gestures.

The time domain features consist of

• mean absolute value (MAV),
• variance of EMG signal (VAR),
• standard deviation (SD), skewness, kurtosis,
• standard error (SE),
• mean absolute deviation (MAD).

Likewise, the frequency domain features carry the attributes of

• mean frequency,
• median frequency,
• power bandwidth,
• total harmonic distortion (THD),
• signal to noise ratio (SNR),
• power spectral density (PSD) of signal.

3.1. Interfacing MYO with Arduino

A different embedded system can be utilized to interface the MYO armband, but in
proposed approach, the Arduino UNO controller board is used to interface the MYO armband.
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To access the raw EMG data, we used an external HM-10/CC2541 BLE Bluetooth
module that must be flashed out with MyoBridge firmware before communicating to MYO
as shown in Figure 2a. In order to make Arduino enabled for use with MYO, we used the
library of MyoBridge that includes the EMG, IMU, and hand pose functions. The EMG
data transfer rate is at 200 Hz while for IMU it comes out at 50 Hz. That is why in our
dataset we obatined four times more EMG data than IMU data as shown in Figure 2b.

Figure 2. (a) Hardware interfacing of MYO. (b) Measurement system for eight-channel EMG (elec-
tromyography) and IMU (inertial measurement unit).

In this experiment, we selected five healthy male and five female subjects of different
age groups (25–55 yr) to perform four hand movement gestures such as stationary, double-
tap, single finger movement, and finger spread. These four gestures were further used to
classify the different hand movements for both males and females separately. The EMG
graph of the 8-channel MYO armband for different hand movements of males is shown in
Figure 3.
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Figure 3. EMG graph of eight-channel MYO armband for male subjects. (a) Stationary EMG signal,
(b) double tap EMG signal, (c) single finger movement EMG signal, and (d) finger spread EMG signal.

EMG signals are usually the product of motor unit action potentials (MUAPs) from
various motor units. Different motor units have different MUAPs with change characteristic
shapes and sizes. The size and shape of MUAPs depend upon the position of the electrode
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or sensor with respect to muscle fibers and it can be changed with a moving electrode or
sensor from its position.

The muscle tissues are normally inactive at rest as shown in Figure 3a. Whenever
the muscle gets contracted voluntarily, the action potentials start to occur. Muscle fiber
produces more and more action potential with the relatively increased strength of muscle
contraction. That is why in Figure 3b,c the different orders of action potentials with
increasing rates and amplitudes can be seen. Peaks with varying amplitude in Figure 3b
show the motion of double tap with each double tap movement. Similarly, in the case of
single finger movement as mentioned in Figure 3c, the normal contraction of muscle with
orderly action potentials and smaller amplitude. When the muscle is fully contracted as
in the case of finger spread, a group of action potentials from several motor units appear
disorderly with higher rates and amplitudes as shown in Figure 3d. The same muscle
activation for various hand movements can be seen in the female test group as well where
stretching of tissues and peaks of action potentials shows the saturation in finger spread
and single finger movement as shown in Figure 4.

3.2. Classification and Recognition of Hand Gesture

In this section, the classification approaches used for EMG signal classification are
described. This system aims to classify the various hand movements with high accuracy
rate. Figure 5 shows the study of four gesture EMG data plus stationary, double tap, single
finger movement, and the finger spread. For this purpose, seven classifiers were used
to classify our hand movements based on classification tools of WEKA, rapid minor and
classify learners in MATLAB (R2018b).

3.3. Quadratic Discriminant Analysis (QDA)

Quadratic Discriminant Analysis (QDA) can be used for classifying or distinguishing
the dimensions of two or more classes of objects within a surface quadrature. Quadratic
Discriminant Analysis (QDA) is a very closely linked group of linear discriminant analysis
(LDA), where it has been noticed that the dimensions from each class are normally dis-
persed. Though, in contrast to LDA, QDA has no postulation in which covariance of each
of the classes is identical. When the normality postulation is true, the best conceivable test
for the hypothesis that a given measurement is from a given class is the likelihood ratio
test. As we mentioned that QDA is not very dissimilar from LDA except that you assume
that the covariance matrix can be diverse for each class, therefore, we will estimate the
covariance matrix Σk separately for each class k as k = 1, 2, . . . , K.

Figure 4. Cont.
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Figure 4. EMG graph of eight-channel MYO armband for female subjects. (a) Stationary EMG signal
to double tap EMG signal, (b) single finger movement EMG signal, and (c) finger spread EMG signal.

Figure 5. Four-gesture hand movement.
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Quadratic discriminant function [12]:

δk(x) = −1
2

log |∑
K
| − 1

2
(x− µk)

T
−1

∑
k
(x− µk) + log πk (1)

In Figure 6 the discriminant function is basically a second order classifier. The pattern
of classification is parallel as well. You just bargain the class k which capitalizes on the
quadratic discriminant function. The decision boundaries are quadratic equations in x.

Figure 6. The quadratic discriminant analysis (QDA) function [12].

Classification rule:
∧
Q(x) = argmaxδk(x) (2)

QDA has significantly more parameters than LDA because it has more litheness for
the covariance matrix as it inclines to fit the data better than LDA. Therefore, for QDA
assessment, you would have a discrete matrix of covariance for each class. If you have
numerous classes and not enough sample points for it, then it will be problematic.

3.4. SVM Classifier

The support vector machine is basically a supervised learning model with specific
learning algorithms used to compute the data for classification. In contrast with linear
classification, SVM can also be used for nonlinear classification using the feature of kernel
trick as shown in Figure 7.

A binary classifier is a function f: X→ Y which nominates every point as x ∈ X with
some y ∈ Y. Both linear SVM and quadratic SVM are based on kernel version classifiers.

f (x) = ∑
i

αiyi(xT
i x) + b (3)

where w > x + b = 0 and c (w > x + b) = 0 define the same plane [15]. We can choose
the normalization of w for both cases as positive and negative support vectors. Choose
normalization such that:

wTx+ + b = +1 (4)

wTx− + b = −1 (5)



Electronics 2021, 10, 1322 10 of 24

Figure 7. The graphical representation of SVM classifier [15].

Margin is given as:

w
‖w‖ .(x+ − x−) =

wT(x+ − x−)
‖w‖ =

2
‖w‖ (6)

The learning algorithm of SVM can be formulated as:

max
w

2
‖w‖ subject to wTxi + b

≥ 1
≤ −1

i f
i f

yi = +1
yi = −1

for i = 1 . . . N
min‖w‖2 subject to yi(wTxi + b) ≥ 1for i = 1 . . . N

3.5. Ensemble (Bagged Tree)

An ensemble classification method is a supervised learning approach that synthesizes
the multiple predictions of various machine learning algorithms together in order to get
the better prediction than a single algorithm. Bagging or bootstrap aggregation can be
used to train data for prediction and to reduce the variance of high variance algorithms
like classification and regression tree (CART). Decision trees are very sympathetic and
acute towards trainee data. If any changes occur in training data, then it also affects the
resulting decision trees which in turn change the results of prediction. In the case of bagged
decision trees, we are less apprehensive toward the single tree overfitting the trainee data.
For efficiency and higher accuracy, the single decision trees should grow deep with each
leaf-node containing a few trainee samples as shown in Figure 8.

For classification or regression of data we have

(Xi, Yi) (i = 1, . . . , n),

where Xi ∈ IRd mentions the d-dimensional predictor variable and the response Yi ∈ IR
(regression) or Yi ∈ {0, 1, J − 1} (J-class classification).

For regression the target function is IE [Y |X = x] and for classification of multivariate
functions it should be:

IP [Y = j|X = x] (j = 0, J − 1)
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Figure 8. A model of ensemble (bagged tree) [20].

The function estimator which in turn is the result of the base procedure is given as:

g (·) = hn ((X1,Y1), . . . , (Xn,Yn))(·): IRd→ IR, (7)

The variables for the bagged trees algorithm only include the number of samples and
the number of trees to count. Models that have large data take time for training, but it will
not follow the overfitting in training data.

3.6. Gradient Boosted (Tree)

Gradient boosted is a method that also exists to perform the different supervised
machine learning tasks i.e., classification and regression just like the random forests (RF)
method. The implementation of this technique is very easy and recalled as with different
names. The most common name is gradient boosting machines (GBM) and XGBoost. It
is an ensemble learner the same as RF that creates an end model based on the collection
of individual models. It has very weak power as an individual model but when these
individual models (weak power) combine as a group, it provides a better-quality result. A
commonly used type of weak model in GBM is a decision tree as shown in Figure 9.

In boosting, individual models i.e., weak learners are not just built by random subsets
of data and features except that it also puts some more weight in the form of incorrect
predictions and highly faulty data for the better training. In this way, these models learn
in a better way from previous errors/mistakes. This type of boosting is upgraded with
a name called stochastic gradient boosting (SGB) in which each ensemble trains with a
subset of data. This provides the most generalized and improved model for results.

Minimization of the loss function is done with gradient, in which neural networks are
trained by using gradient descent for optimization of the weights. For the training of this
model, the weak learners are built, and their predictions are compared with the correctly
obtained results. Error rate of this model is defined as the distance between prediction
value and its true (correct) value. Therefore, these errors find the gradient. It is simply a
derivative of the given loss function. It also provides a direction in which errors of the
model can be reduced by “descending the gradient” for the next step of training.

In this case a gradient descent is implemented in order to calculate the learning rate
(descending the step size of the gradient), shrinkage (decreasing the learning rate) and loss
function used as hyperparameters in GBM.
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Figure 9. Features of gradient boosted (tree) [20].

Algorithm: In many supervised learning problems, there is an output variable y and a
vector of input variables x described through a joint probability distribution P (x, y). Using
a training set {(x1, y1), . . . , (xn, yn)} of known values of x and corresponding values of y,
the goal is to find an approximation of a function F (x) that minimizes the expected value
of some specified loss functions L (y, F (x)) [20].

∧
F = argmin

F
Ex,y[L(y, F(x))] (8)

3.7. Random Forest

Random forest is the improved version of bagged decision trees. The combined effect
of multiple predictions from various models can give a better prediction rate from the
uncorrelated sub models or weakly correlated models of prediction. In the decision trees
algorithm, a problem arises especially in CART that they are greedy algorithms, so they
pick a variable to split through the greedy algorithm to minimize the error. There are a lot
of similarities in pattern and design configuration for decision trees in case of a bagged tree
and they have a high correlation in their prediction level. While in the case of the random
forest shown in Figure 10, they changed the algorithms as sub-trees learned in their training
process, so their resulting predictions have less correlation among these sub-tresses. The
algorithm used for training in the case of random forest applies the same approach as used
by bagging or bootstrap aggregation trees to learn. If the data set is given as:

X = x1, . . . , xn with responses Y = y1, . . . , yn, bagging to select a random sample of
trainee data and try to fit trees to these samples: For b = 1, . . . , B:

Where sample with replacement, B training examples from X, Y represent as Xb, Yb
and train a decision or regression tree fb on Xb, Yb. Then, after training, predictions of
unseen data can be achieved by computing the prediction average of individual trees on x’.
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Figure 10. Random forest-based classification [18].

3.8. Ensemble Subspace KNN

The random subspace method works based on stochastic process. It picks various
components randomly from the characteristic vector during the construction of each
classifier as shown in Figure 11. For the nearest neighbor classifiers (KNN), a sample
test is compared with a prototype, that provides the selected characteristics only that
have contribution other than zero to the distance. From a geometric point of view, this
is equivalent to projecting all points in the selected subspace and the closest neighbors k
are calculated by the projected distances. A new set of k closest neighbors is calculated by
selecting a random subspace every time. Nearest neighbors k in every selected subspace
meet for a majority vote in the membership class test sample. If closest neighbor k is
selected more times, this obtained the same training samples that appear more times in the
set than once.

Figure 11. The ensemble (subspace KNN) [21].

Formally, given a set of N points in an n-dimensional feature space

{(x1, x2, . . . , xn)|xi is real for all 1 ≤ i ≤ n}

the m-dimensional subspaces

{(x1, x2, . . . , xn)|xi = 1 f or i ∈ I, xi = 0 f or i /∈ I}

where I is a subset of elements m of {1,2, . . . , n} and m < n. In each step, a subspace is
chosen by randomly selecting an I from C (n, m). All points are projected onto the chosen
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subspace. For each test point, past KNN (k nearest neighbors) (1 < k 1), the test point is
assigned to the class that has the most frequent incidences in list C.

∧
F = Fargmin

F
Ex,y[L(y, F(x))]

4. Results and Discussion

In this research, the behavior of four hand gestures including the stationary, double
tap, single finger movement and finger spread were observed to understand attributes and
features of hand movements for male and female subjects using a number of classifiers.
Different classification approaches named as LDA, QDA, SVM, NN, ensemble (bagged
tree), random forest, gradient boosted, and subspace KNN were adopted in our case to
utilize and classify the hand movements.

In the experimental procedure, a total of four gestures were performed per trial
of different subjects of different age groups (25–55 yr). The two groups were classified
as male and female. For the male group, each subject performed all four gestures in a
sequence of stationary, double tap, single finger movement and finger spread. Performing
window of each gesture was selected of 1 min duration. Therefore, the proposed MYO
based embedded system took data of 4 min for completion of each set of movements for
a single subject. The same procedure was followed for extracting data in the case of the
female group.

To employ the classification approach, we used the 5-fold cross-validation tech-
nique in our model of classify learner with four classes of EMG data. In the case of
WEKA, 10-fold cross-validation approaches are used to classify our EMG data as shown in
Figure 12. The scatter plot of four classes of EMG signals in classify learner is shown in
Figures 13 and 14 where we can see the scatter plot of EMG data among each channel of
MYO (as column 1 = channel 1, column 2 = channel 2, and so on) for both cases of male
and female (As VarName 3 = channel 1, VarName 4 = channel 2, and so on). In our model
of classify learner, we defined a response variable to classify the predictive behavior of
four classes of EMG signal. For this reason, we marked our four-class hand gestures as 0
for stationary, 1 for double tap, 2 for movement of single finger and 3 for finger spread as
response variable as shown in Table 1.

Figure 12. Classification results of WEKA.
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Figure 13. The eight−channel EMG scatter plot for males.
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Figure 14. The eight−channel EMG scatter plot for females.
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Table 1. The four classes of hand gestures.

Sr No. Gesture Nomination

1 Stationary 0
2 Double tap 1
3 Single finger movement 2
4 Finger spread 3

The results of this experiment show a high rate of accuracy with F-measure, MCC,
and ROC. As from the results, we concluded that the ensemble bagged tree shows a higher
rate of accuracy for both male and female subjects among the listed classifiers with 83.9%
and 78.4%, respectively, as given in Tables 2 and 3.

Table 2. The performance results of classification (for males).

Sr No. Classification Algorithm Performance

1 QDA 72.4%
2 Quadratic SVM 82.6%
3 Fine Gaussian SVM 80.1%
4 Random forest 83.3%
5 Gradient boosted (tree) 81.2%
6 Ensemble (bagged tree) 83.9%
7 Ensemble (subspace KNN) 80.4%

Table 3. The performance results of classification (for females).

Sr No. Classification Algorithm Performance

1 QDA 69.4%
2 Quadratic SVM 72.2%
3 Fine Gaussian SVM 62.5%
4 Random forest 75.5%
5 Gradient boosted (tree) 71.2%
6 Ensemble (bagged tree) 78.4%
7 Ensemble (subspace KNN) 70.1%

Figures 13 and 14 demonstrate the real time scatter plot of EMG data acquired from
the MYO armband. In this figure plot, four colors represent the four classes (stationary,
double tap, single finger movement and finger spread) for a complete set of movements by
a single subject.

The colors of related gestures are classified as

• red: stationary;
• blue: double tap;
• yellow: single finger movement;
• purple: finger spread.

Figures 13 and 14 present a set of eight subgraphs which represent the performance
of each sensor of MYO with the other. As the MYO armband consists of eight EMG
sensors, the given figures describe the behavior of all eight sensors with each other. Refer
to Results and Discussion block (Column 1 = Channel 1, Column 2 = Channel 2 etc.).
The dominance of different colors shows the action potential of muscles during each
movement. For example, Figure 13 shows the maximum dominance of purple color which
means that muscle concentration maximizes with finger spread as compared to other
gesture movements.

The confusion matrix and ROC curve for both cases (male and female) are shown
in Figure 15. The recognition rate of various hand movements after classification gives
92% for stationary, 68% for double tap, 83% for single finger movement and 82% for finger



Electronics 2021, 10, 1322 18 of 24

spread gesture in male movement as shown in Figure 15a. While in the case of random
forest for males, it gives the recognition accuracy for each gesture as 91% for stationary,
67% for double tap, 83% for movement of single finger and 82% for finger spread as given
in Table 4.

Figure 15. Confusion matrices of four-class hand gesture for females. (a) For males; (b) for females.

Table 4. Recognition rate for hand gestures.

Classification Algorithm Stationary Double Tap Single Finger Movement Finger- Spread

Ensemble (bagged tree) 92% 68% 83% 82%
Random forest 91% 67% 83% 82%

The recognition rate of hand movements in the female test case after classification
gives up to 83% for stationary, 69% for double tap, 73% for single finger movement and
61% for finger spread gesture as shown in Figure 15b.

The region of convergence (ROC) curve was used to find the quality and accuracy of
the running classifier. The marker on the plot exhibits the performance of the classifier as it
shows the true positive rate (TPR) and false positive rate (FPR) of the running classifier
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as shown in the Figures 16 and 17. For example, if it states the behavior of false positive
rate (FPR) as 0.25 then it means that the classifier picks the 25% incorrect observations for
the positive class. In turn, if the true positive rate (TPR) signifies the behavior of classifier
as 0.75 then actually it shows that the classifier picks 75% correct observations for the
positive class.

Figure 16. ROC curve of four classes of EMG data (for males): (a) stationary, (b) double tap hand gesture, (c) single finger
movement, and (d) finger spread hand gesture.

In Figure 16, the top left corner with the right angle of the curve represents the perfect
results with no misclassification rate. While, the point that lies with 45 degrees of curve line
shows the poor results of classification. The AUC (area under the curve) is the measurement
of recognition, classification, and quality of classifier results. A large area under the curve
(AUC) represents the superior results of classification while the small area under curve
indicates the inferior performance of classifiers.
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Figure 17. ROC curve of four classes of EMG data (for females): (a) stationary, (b) double tap hand gesture, (c) single finger
movement, and (d) finger spread hand gesture.

Comparative Analysis

In the field of biomedical engineering, various design techniques and approaches
have been used to develop efficient and cost-effective solutions for handicaps. For this
purpose, some developers use invasive electrodes on muscles to acquire EMG data and
some give preference to noninvasive design techniques through a controller or DAQ board.
MYO armband is the latest approach and has become very widely used in a number of
studies. As it is mentioned above in the literature that although previous design techniques
improve the results of accuracy and reduce the cost of prosthetic design, it still requires
some improvement in the cost of design.
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The detailed comparison of different approaches with our proposed approach is given
below in Table 5. As compared to previous approaches, we gave an idea of the MYO
armband as a motion device for various upper limb movements through an embedded
system and an external Bluetooth module with a good performance classifier. The overall
system developed in the proposed case is relatively cheaper, noninvasive and gives good
performance too compared to other costly systems with a high rate of accuracies. Moreover,
the previous approaches used the surface EMG electrodes and sensors to capture data for
upper limbs which comprises many obstructions such as motion artifacts, electromagnetic
resonance of wires, signal to noise ratio and the most prominent of them is an invasive
approach that quite painful for subjects.

Table 5. Comparison of different approaches used for classifying hand movements with the proposed approach.

Paper Ref. Technique/Apparatus Gestures/Purpose Classifiers Accuracy

[3] 11 electromagnetic sensors
on a glove Free hand movement, Using GUI to explore gesture

in real-time
NA/just connecting of a

prosthetic hand

[12] Five noninvasive surface
electrodes

Three movements/upper arm
flexion and extension, forearm
pronation and supination and

palmar flexion and dorsiflexion

AR model, backpropagation
neural networks (BPNN) 81%

[13]
Three dimensional (3D)

printed prosthesis
with MYO

To provide an affordable, practical,
and convenient solution

for amputees
NA NA

[14] MYO armband To control virtual robotic arm
generated in unity 3D NA NA

[15] Six pairs of surface
electrodes (Ag/AgCl)

Nine gestures/wrist flexion, wrist
extension, thumb close, making a

fist, fingers spread, four-finger
close, forearm supination, forearm

pronation, open, and no motion

LDA and SVM
(WT/SVM-OVO) 92.3%

[18] Six surface EMG sensors
Three grasping things (mug,
marker, rectangle) at three
different places to observe

LDA, QDA, SVM, ANN,
KNNand random forest 83%

[19] Eight surface EMG sensors
located on the forearm

Six gestures/wrist flexion, wrist
extension, hand supination, hand

pronation, hand opening, and
hand closing

Discrete wavelet transform
(DWT) of EMG signals with an

unconstrained
parameterization of mother

wavelet using SVM to classify

5% misclassification rate

[20]
Surface electrodes with
DAQ board and 16-bit

A/D converter

59 person data with 19 normal, 20
myopathy patient and 20

neuropathy patients to classify

MLP and SVM under the
supervision of PCA and FFT to

enhance the accuracy
85.4%

[21]
MYO armband with

Bluetooth using MEX file
bridging with (laptop)

Nine subjects walking, running,
resting and open door (to check

wandering), a disease
SVM, naïve bias and KNN More than 90%

[22] MYO with help of Apple
map connector (App)

Zooming, focusing and panning
the map navigation using five

gestures of MYO (fist, the finger
spread, wave in, wave out and

double tap)

Questionnaire-based study NA

[39]
Multiscale principle
component analysis
surface EMG sensors

Normal, myopathy, ALS (types of
muscles to detect) to classify data

of these muscles

C4.5, CART and random forest
decision tree 96%

[40]

Low-cost passive sensors,
an innovative analog

front-end system and low
power microcontroller

Six gestures/power grip, precision
grasp, open hand, pointed index

and flexion/extension of the wrist
LDA, ANN, and SVM 92%

proposed

MYO
armband/embedded

controller/HM-10
Bluetooth module

Four gesture movements include
stationary, double tap, single finger

movement and finger spread

QDA, SVM, ensemble (bagged
tree), gradient (boosted tree),

random forest, ensemble
(subspace KNN)

83.9%

We classified the four basic and general hand movements to study the liability of our
system. The results of this study show comparatively good performance in detecting four
hand movements with an accuracy of more than 80–92%. Moreover, this study can be used
in the future to develop a cheap prosthetic design for an amputee.
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5. Conclusions and Future Work

The aim of this research paper was to classify and recognize the hand movements
for various upper limb movements. For this purpose, a novel method was proposed to
acquire the EMG signals from forearm muscle with the MYO gesture control system on an
embedded platform through a Bluetooth module. For getting different hand gestures, a
total of 10 healthy subjects (five males and five females) participated in this research work.
After acquiring EMG data from these participants, five-fold cross-validation approaches
were used to classify these hand movements. The results based on classification using
ensemble (bagged tree) gave a high rate of accuracy among other classifiers with a better
recognition rate for various hand movements.

The results of this study can also be used in the future to develop an efficient, cost-
effective and flexible assistive device or prosthesis. This work will also be extended to
more or other gesture classification, as per need, based on same framework.
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