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Abstract: This paper is concerned with the formation maintenance of a group of autonomous agents
under generalized cyclic pursuit (GCP) law. The described pattern for agents under such formation
is epicycle-like. For a network of agents to achieve such a formation, marginal stability of the overall
network is required. The desired marginal stability of the network relies on each agents’ gain values,
and uncertainties in these gains can occur. Previous studies have used fixed gains, we enhance the
stability of the gains via a dynamic approach using an integral sliding controller (ISC). An ISC can
ensure sliding behavior of the gains throughout the entire response, and it is shown that the gains are
robust toward variations and thus make the network keep its marginal stability and its formation.

Keywords: control theory; cyclic pursuit; dynamic gain; formation control; marginal system; multi-
agent systems; sliding control

1. Introduction

Multi-agent systems (MAS) are composed of a group of agents interacting under a
cooperation protocol. The essential focus of MAS literature is made on obstacle avoidance
as well as formation control and maintenance. Formation control is not new as it presents
important practical and theoretical significance, and we direct the reader to [1] for a recent
survey regarding multi-agent formation control. Among the formation control approaches,
cyclic pursuit is one of the most studied [2–8]. A cyclic pursuit scheme is defined by the
representation of a group of n leaderless agents, labeled by a number, and where agent i
pursues its leading neighbor labeled i + 1 (the pursuit), modulo n (the cycle). A part of the
cyclic pursuit research concentrates on formation around a fixed or moving target.

On one side, researchers focus on agents that maintain a constant or dynamic inter-
agents spacing while rotating around a target. This circular formation pattern is of interest
when surveillance, or observation, is defined as the objective [6,9–14]. One of the specific
properties of circular formation is that constant values can be used by agents in order to
correct their gains and hence maintain their formation [12]. As at least one value is fixed
(e.g., inter-agent distance, or distance to a target), it can be used to compute the error and
thus correct the gains of the agents.

On the other hand, researchers have focused on non-circular pattern generation. By
employing a single agent, a plethora of patterns were achieved by Sinha A., Tripathy T. et al.
throughout various approaches and algorithms [15–19]. By deploying more agents under
a general cyclic scheme, it was possible to generate epicycle or trochoidal-like patterns
for a groups of agents modeled as single integrator [20–23]; which is of interest in the
present paper. In these papers, the control law developed to reach epicycle or trochoidal
patterns uses fixed-gain methods. The analysis of the overall stability of the system leads
the authors to the fact that to reach such motion, the overall system has to be marginally
stable, which is the key problem that we propose to solve in this paper. As will be seen
in Section 2, the eigenvalue repartition relies on the gains of the agents, and with fixed
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value, no correction of the gains is possible. A major difference with circular formation
is the fact that, under a more generalized cyclic pursuit (GCP) scheme, as the inter-agent
distance and the distance to the target are time-varying, no method using a constant value
as a reference to correct the positions or the gains can be used.

To address this problem and thus sustain the formation, the method here focuses on
a dynamic gains approach. To name only a few results, the use of adaptive methods for
cyclic pursuit can already be found in [24], where the authors use time-varying feedback
coupling gains in order to synchronize the evolution of a complex network. In addition,
the work conducted in [25] deals with synchronization of MAS by using weightage based
on local information. Recently, the authors in [26,27] use model reference adaptive control
on a MAS under generalized cyclic pursuit scheme to maintain the formation despite the
present uncertainties.

Dynamic gains approach to maintain circular formation combined with the idea of
generating epicycle-like pattern constitute the backbone of our contribution. Agents are
homogeneous, meaning they all have the same control gain, selected properly to lead the
agents to behave in an epicycle way. We bring our attention to the gains themselves and
turn them into dynamic versions. In this dynamic version, the gains correct themselves and
are robust to uncertainties. Thus, the problem can be reduced to a one-dimensional problem.
As the formation patterns depend on the initial positions of agents and their gains’ value, it
is mandatory to fix the gains’ value to their final value at the fastest pace possible. Sliding
control or sliding mode control (SC) is a well-known topic, its robustness reputation is
now well-established, and by adding an integral term, the SC is turned into integral sliding
mode controller (ISC). The curious reader is refer to [28–32] for reviews of sliding control
under a mathematical approach and its modified types for robotic application as well as
literature about the ISC. To our knowledge, no such approach has been yet developed.

We first state the problem with a mathematical explanation in a more developed form.
The proposed gains control law will then be derived and detailed. Simulations showing
the pertinence of this law will then be exposed, and the conclusion and remarks will close
the paper.

Notation 1. The bold mathematical letters define matrix and/or vector. m is the dimension of the
network (m = 2 for plane and m = 3 for space representation). The subscript m, n and 2n are
added to help the reader with the size of the squared matrices. The subscript f indicates the final
value of the variable of interest. The superscript T means transpose. The bold letter i stands for the
imaginary number such that i2 = −1; it should not be mistaken with i which represent the agents’
identification number. The words pattern/formation are interchangeable as they are used in the
same sense.

2. Problem Statement

Consider a fleet of n agents in the plane, where every agent is aware of its own position
relative to a fixed target with fixed axis (absolute position) and the position of its leader
(relative position, or measurement).

Suppose a target located at the origin of an absolute frame of reference. The aim is to
let the fleet of agents to surround this target and simultaneously cover an annulus defined
by an inner and outer radii, rin and rout, respectively. The design constraints being defined,
it will bring some design parameters that have to be respected, namely a and b that will
be developed further. By using an appropriate design model for each agents, the specific
gains, based on the constraints, will be deduced. A graphical representation of the design
constraints and the parameters is depicted in Figure 1. Moreover, those agents will be
under a general cyclic pursuit law for their motion to be epicycle.
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Figure 1. Agents in the 2-D plane and annulus parameters.

First, the kinematics of each agents is described as

ṗi = rp, i , i = 1, 2, ..., n (1)

where pi =
[
px, i py, i

]T is the absolute position vector of agent i in the 2-D plane and rp, i
is its control law defined as

rp, i = R(θ f )yi − gp pi (2)

where

yi =

[
px, i+1 − px, i
py, i+1 − py, i

]
(3)

is the measurement vector of agent i. Note that every agent obeys the same law (2) and, by
consequence, the constant gains defined by R(θ f ) and gp have to be homogeneous. Define
the line of sight (LoS) as the line from an agent’s “eye” to its leader and θ f as the common
clockwise rotation angle of this LoS, then its rotation matrix is

R(θ f ) =

[
cos θ f sin θ f
− sin θ f cos θ f

]
(4)

The following selection of the gains

θ f = (2h∗ + 1)
π

n
, h∗ = 0, 1, · · · , n− 1 (5a)

gp = cos
(π

n

)
− cos(θ f ) (5b)

will bring the agents to describe an epicycle-like motion. It can be seen from (5) that θ f is
the key parameter that gives the value of the gains. The parameter h∗ has also to be chosen
according to the type of desired motion. Table 1 (taken from [20]) summarizes the link
between the couple n, h∗ and the possible formations. However, circle and ellipse cases
by choice of h∗ are degenerate cases and will not be considered. It has to be noted that the
case h∗ = 1 is always possible as long as n > 4 and, hence, it is assumed in the rest of the
paper that h∗ = 1.
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Table 1. Relationship between the patterns and (n, h∗).

Formation (n, h∗)

Circle ∀n, h∗ = 0 or n− 1

n even, h∗ = n
2 − 1 or n

2

Ellipse n odd, h∗ = n−1
2

Algebraic (6, 1), (6, 4)

Transcendental (5, 1), (5, 3), (7, 1), (7, 2), (7, 4), (7, 5), (8, 1), (8, 2), (8, 5), (8, 6), ...

The overall dynamic of the network is then

ẋ = Ax (6)

where x =
[
pT1 pT2 · · · pTn

]T is the stacked position vector, and

A = −gp I2n −Wn ⊗ R(θ f ) (7)

is the state matrix that will determine the stability of the system.
Wn is the following circulant matrix

Wn =


1 −1 . . . 0
0 1 . . . 0
...

...
. . .

...
−1 0 . . . 1

 (8)

and “⊗” represents the Kronecker product. Definitions and properties for circulant matrices
and Kronecker product are given in Appendix A.

The properties of the Kronecker product coupled with the ones of circulant matrix
show that the eigenvalues of (7) are

λj = −gp −
(

1− exp
(

i
2π j

n

))
exp

(
±iθ f

)
, j = 1, · · · , n (9)

Putting (5) into (9), the computations reveals that two specifications has to be noted

1. The overall network posses two pairs of imaginary-axis eigenvalue expressed as

λa = ±iωa , λb = ±iωb (10)

where
ωa = sin θ f − sin

π

n
, ωb = sin θ f + sin

π

n
(11)

and thus epicycle motion is rendered.
2. By developing (9), it can be seen that the real and imaginary parts of the eigenvalues

rely on θ f .

Based on the ideas presented in [20,33], we enhance the robustness of the system by
extending the static-gain control law to a dynamic-gain control law. By using (2), all agents
experienced an epicycle motion, but it has to be noted that agents can also render trochoid
motion. This extension has been made in [22], where trochoidal pattern formation are
detailed; examples of epicycle and trochoidal-like formation are depicted in Figure 2.
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Figure 2. Examples of eigenvalue repartition and the corresponding pattern of agents.

The formation pattern relies on the eigenvalue repartition, and the eigenvalues them-
selves rely on the common value of θ f in (5a); hence, it is the key determinant for the
motion to be sustained. As with a fixed value, uncertainties can occur, and the overall
network is prone to being unstable. To sustain the formation, the following dynamic
method is proposed.

3. Dynamic Gain Proposal

As stated, θ f is a value that can be subjected to uncertainties. In addition, this value
must be the same for all agents. This value is leading the gain so it is considered in the
following that the terms gains and angle are interchangeable. The gains thus have to be
resistant to uncertainties. We define θ f as the value that all agent angles must tend to.
Variations in the angle can happen at any time under any form; however, only matching
uncertainties are taken into account by assumption, and the following theorem is stated.

Theorem 1. If a network of n agents modeled by a single integrator are under the control law (2)
in which the gains of each agent are set to

θ̈i = ui + di (12a)

gp,i = cos
(π

n

)
− cos(θi) (12b)

with di a bounded disturbance, and ui the command defined as

ui = −κp

(
θi − θ f

)
− κv θ̇i −misign(s) (13a)

s = σ + z (13b)

where κp, κv, mi are positive value, s is the sliding surface in which σ may be designed as a linear
combination of the system dynamic angles and z is designed to be seen as an integrator, then at
steady-state the eigenvalues of (7) will possess two pairs of imaginary axis eigenvalues and the
network (6) will keep its marginal stability despite uncertainties in agents’ gains.

Proof of Theorem 1. First of all, considering di = 0 and steady-state, θi in (12a) tends to
θ f in (5a) and thus rejoins the statement linked with Equation (10); thus the eigenvalues’
repartition is ensured.

The choice of (13) will be demonstrated here, where ui will be developed into two parts

ui = u0,i + ud,i (14)

with u0,i being the nominal control and ud,i being designed to reject the disturbance term.
Start by establishing (12a) in state-space form

ω̇i = Λωi + Πui + di(ωi, t) (15)
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with ui the control gain law, the following matrices

ωi =

[
θi
θ̇i

]
, Λ =

[
0 1
0 0

]
, Π =

[
0
1

]
, (16)

and di the bounded disturbance function of ωi and t. The disturbance comprises the per-
turbation owed to parameter variations, unmodeled dynamics, and external disturbances
and is assumed to fulfill the matching condition; that is, perturbations that enter the state
equation at the same point as the control input, i.e.,

di = Πuδ,i

with
|di| ≤ Li

where Li being known positive value.
At first, consider that no disturbances occur in (15). By so, the nominal control is

chosen as
u0,i = −κp

(
θi − θ f

)
− κv θ̇i (17)

in which κp and κv are fixed gains appropriately chosen for the heading angle to reach θ f
in desired time. Equation (17) would give the perfect heading angle dynamic

ω̇0,i = Λω0,i + Πu0,i (18)

u0,i is not robust enough to abrogate the effects of uncertainties. Hence, the addition of ud,i.
To satisfy ωi ≡ ω0,i, the perfect control of ud,i, denoted up,i, has to fulfill

Πup,i = −di

in other words
up,i = −uδ,i (19)

and hence up,i will perfectly describe the angles’ trajectories when sliding along s(ωi) = 0
in (13b). Replacing (14) in (15) provides

ω̇i = Λωi + Π(u0,i + ud,i) + di(ωi, t)

and by recalling the sliding surface (13b), the sliding manifold σ and the integral term has
to be developed. The following manifold σ is selected

σ̇(ωi) =
∂σ

∂ωi
ω̇i

in which we assume that ∂σ
∂ωi

Π is non-singular.
The achievement of (19) is based on the choice of z and the condition ṡ(ωi) = 0 has to

be reached; thus from (13b)
0 = σ̇(ωi) + ż (20)

choosing

ż = − ∂σ

∂ωi
(Λω0,i + Πu0,i) (21)

and replacing (21) in (20), one gets (19). It has to be noted that z(0) is based on the fact that
s(0) = 0, i.e., where sliding mode occurs from the initial time moment. As (19) is satisfied,
the motion of the angles in sliding mode will be like (18), in which the disturbances do
not exist.

Stating
ud,i = −misign(s) (22)
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where mi is a constant specifying the converging rate of s selected in accordance to

mi > Li,

the sliding mode can be enforced in the surface s = 0, where the disturbances are rejected.
Putting (22), (21) into the derivative of s gives

ṡ =
∂σ

∂ωi
Π
(
uδi −misign(s)

)
and hence gives the law (13).

By using the aforementioned (13), the sliding mode of the gains is enforced on s = 0
and uncertainties in the heading angle gain are rejected for every agent.

As the network’s formation relies on the eigenvalues’ repartition, and the eigenvalues
themselves rely on the angle’s gains, the overall system keeps its marginal stability.

An important part of the heading angle law is the discontinuity. The constant switch-
ing will lead to high frequency oscillations. By replacing (14) with

ui = u0,i + uq,i (23)

where
u̇q,i = −

mi
ε

sign(s)− 1
ε

uq,i (24)

with ε is a small time constant [34], the chattering can be eliminated as we use a low-pass
filter on (22) in the proof of theorem 1. Yet, decreasing ε may lead to chattering in the
control law. We will now demonstrate our method on some specific simulations.

4. Simulations

A group of n = 5 agents has the aim of describing an epicycle motion while enclosing
a target located at the origin. The covered area is defined according to the inner and an
outer radii, and as explained in [20,33], the initial positions of agents are related to the
constraints parameters by

pi, 0 = a
[

cos(ϕi)
sin(ϕi)

]
+ b
[

cos(ψi)
sin(ψi)

]
where

rin = a− b ϕi = 2h∗(i− 1)
π

n

rout = a + b ψi = 2(h∗ + 1)(i− 1)
π

n

and ϕi and ψi are covered area design parameters; see Figure 1.
The agents are thus subject to the motion described by (6) and (7), in which gp,i is

expressed in (12b). Each agents’ dynamic angle follows (12a) where ui is expressed in (13)
and di is selected to be

di(t) = δi(sin(ωit) + U(ti))

where δi, ωi are constants appropriate to each agent, and U(ti) is a step disturbance
happening at time ti. The following values are selected for the simulation

rout = 20, rin = 9, h∗ = 1

and the results are shown in Figures 3 and 4.
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Figure 3. Pattern and angle variations, control, and disturbances under (13).

Figure 4. Eigenvalue repartition for the first simulation.

At t = 0, all agents angle are set to be θi(0) = θ f ± 0.15. Thus, the overall network
eigenvalues are not yet properly set; the eigenvalues of interest present a positive real part
as shown in Figure 4. As theta is dynamic, its response is shown in Figure 3, and the theta
of all agents tends to the same common value computed by (5a); in this example

θ f =
3π

n
≈ 1.885

uncertainties present in the gains are also shown in Figure 3 along with the control effort.
It can be seen that the uncertainties are perfectly rejected. In addition, it has to be noted
that agents stay in the specified annulus, with an acceptable margin as shown in Figure 3.
The dashed lines represent the bounds of the covered area and it is seen that agents stay
within these bounds. The settling time needed for heading angles to settle down have an
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impact on those margins. If every angle initial value were set perfectly and agents’ initial
positions also perfect, the area would be covered perfectly within the bounds.

As a large control effort is required to counterattack the disturbances, a second simu-
lation using (23) and (24) is depicted in Figure 5.

Figure 5. Angle variations, control, and disturbances under (23).

It can be seen that the control effort is largely reduced compared to the previous
simulation while keeping the angle to the desired value.

5. Conclusions and Future Work

In this paper, a group of homogeneous agents is deployed to surround a target and
cover a specific annulus around it. Using a generalized cyclic pursuit scheme, agents
describe epicycle-like motion to cover the area. The eigenvalue repartition of the overall
network reveals the presence of purely imaginary axis eigenvalues that are necessary to
ensure the formation to be described. As the eigenvalue repartition relies on the gains of
the agents, we propose to ensure the robustness of these gains via the use of an integral
sliding control. Uncertainties may arise in the gains, and the ISC rejects those uncertainties
and ensures, then, that the network keeps its formation.

Further improvements are still to be made, such as in formation pattern diversity or a
more optimal choice in u0,i. Moreover, enhancement in the choice of the ISC could lead to
even more robust controllers.
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and revised the paper. Both authors have read and agreed to the published version of the manuscript.
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Appendix A. Circulant Matrix and Kronecker Product

A circulant matrix is a square matrix in which each row vector is rotated one element
to the right relative to the preceding row vector. It has a specific eigenvalue repartition,
and for (8)

λk = 1− exp
(

i
2πk

n

)
, k = 1, · · · , n (A1)

where λk are the eigenvalues. The matrix (8) is a special case of Laplacian matrix, which
represents, in formation control and graph theory, the communication graph among agents.
The Kronecker product “⊗” is an operation on two matrices of arbitrary size resulting in a
block matrix. If W is an m× n matrix whose elements are wij, i = 1, ..., m and j = 1, ..., n,
and R is a p× q matrix, then the Kronecker product W ⊗ R is the mp× nq block matrix

W ⊗ R =


w11R w12R . . . w1nR
w21R w22R . . . w2nR

...
...

. . .
...

wm1R wm2R . . . wmnR

 (A2)

Suppose that W and R are square matrices of size n and p respectively. Let η1, . . . , ηn
be the eigenvalues of W , and µ1, . . . , µp be the eigenvalues of R, then the eigenvalues of
W ⊗ R are

λij = ηi µj , i = 1, . . . , n. j = 1, . . . , p. (A3)

See [35–38] for further explanations.
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