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Abstract: Predictive maintenance is a field of research that has emerged from the need to improve the
systems in place. This research focuses on controlling the degradation of photovoltaic (PV) modules
in outdoor solar panels, which are exposed to a variety of climatic loads. Improved reliability,
operation, and performance can be achieved through monitoring. In this study, a system capable of
predicting the output power of a solar module was implemented. It monitors different parameters
and uses automatic learning techniques for prediction. Its use improved reliability, operation, and
performance. On the other hand, automatic learning algorithms were evaluated with different metrics
in order to optimize and find the best configuration that provides an optimal solution to the problem.
With the aim of increasing the share of renewable energy penetration, an architectural proposal based
on Edge Computing was included to implement the proposed model into a system. The proposed
model is designated for outdoor predictions and offers many advantages, such as monitoring of
individual panels, optimization of system response, and speed of communication with the Cloud.
The final objective of the work was to contribute to the smart Energy system concept, providing
solutions for planning the entire energy system together with the identification of suitable energy
infrastructure designs and operational strategies.

Keywords: predictive maintenance; LSTM networks; solar panels; PV degradation; edge computing;
smart renewable energy

1. Introduction

At the moment, we are witnessing major technological developments that make cities
smarter in each and every one of their processes. As cities strive to become “smart”, we
cannot lose sight of importance of using renewable energies to achieve the cities’ goals.
To provide intelligence to the processes, it is necessary to make use of the industry 4.0
paradigm, known as the ”fourth industrial revolution”, which primarily involves the use
of IoT (Internet of Things) on interconnected facilities where a large volume of data is
collected and processed by Big Data and Machine Learning (ML) techniques [1]. The
renewable energy sector is in need of technological solutions capable of perfectly optimizing
and integrating processes in the smart city ecosystem by reducing costs and enabling a
truly effective and competitive deployment model. For these reasons, the application of
novel methods is needed which use a series of smart renewable energy strategies that
combine actions in all the energy sectors [2]. Given that photovoltaic (PV) systems are the
cheapest source of electricity in sunny locations, we are witnessing significant investment
in PV infrastructures and their rapid deployment around the world. However, the outdoor
degradation processes are a cause of uncertainty for PV community regarding the reliability
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and long-term performance of PV modules [3]. The main motivation of this work is to
solve the problem of predicting PV energy in solar panels, taking into account the problems
associated with the degradation phenomenon in PV modules throughout their lifetime. As
solar panels operate in the outdoors, PV modules experience significant performance loss
which must be taken into account when performing predictive maintenance and process
monitoring. This article’s main focus is predictive maintenance on solar panels. We are in a
time of change where energy from fossil fuels are no longer the primary source of energy,
and renewable sources, such as solar energy, are much more relevant. Leaman focuses
on the benefits of solar energy [4], analyzing its impact and growth in the U.S. in recent
years. In 2014 alone, the solar energy industry created more jobs than the big technology
companies, such as Apple, Google, Facebook, or Twitter, combined. Moreover, it has come
at a crucial time in the energy economy where the rise in electricity prices is not ceasing.
Making this type of energy operational is one of the reasons why we are looking for a
reduction in the costs of maintaining these facilities. The main novelty of this article lies
in the application of an improved model for detecting degradation in PV modules based
on Long Short-Term Memory (LSTM) Networks, as well as the proposal of an architecture
based on Edge Computing that allows for its operational and scalable implementation.
Table 1, below shows the list of abbreviations used in this paper.

Table 1. List of abbreviations.

Abbreviation Full Form

DKASC Desert Knowledge Australia Solar Center
ENNs Echo-State Neural Networks
IoT Internet of Things
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MQTT Message Queue Telemetry Transport
ML Machine Learning
MSE Mean Square Error
NoSQL not only SQL
SVM Support Vector Machines
PV Photovoltaic
ReLU Rectified Linear Unit
RMSE Root Mean Square Error
RMSprop Root Mean Square Propagation
RNN Recurrent Neural Network
sMAPE Symmetric Mean Absolute Percentage Error

The article is structured as follows: Section 2 is a review of the state of the art on
predictive maintenance in solar panels. Section 3 describes the proposed solution for solar
panel monitoring and fault detection, detailing the methodology. Section 4 outlines the
conducted case study and its results. Moreover, in this section, the architecture based on
Edge Computing is proposed. Finally, in Section 5, the conclusions and future lines of
research are presented.

2. Related Works

Among the models that effectively detect failures in photovoltaic (PV) modules,
there are architectures that apply predictive methods accompanied by the monitoring of
systems in real time and the use of mathematical heuristics to detect abnormal behavior.
There are architectures, such as the Edge Computing architectures [5,6], which improve
communication with the cloud and relieve computation load by doing the calculations
directly on the node. This technique has many benefits, and its standardization is described
further on in this article.

Among the algorithms used, it should be noted that most are specific solutions to
a given problem using probabilistic models [7–9]. As they are specific solutions, they
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cannot be adjusted to the particularity of each case, which means that they fall behind other
types of solutions. Other algorithms to take into account are neural networks and Support
Vector Machines (SVM) [10–12]. Neural networks have been widely used in recent years,
particularly those that are convolutional [13–15]. In terms of image recognition [16–19], the
research has focused on two different aspects. One focuses on cloud recognition as a means
of predicting the output power of the PV module and the other on the recognition of hot
spots or breaks in the panels through images captured by a drone or similar. However,
these studies have been discarded as a reference for this proposal because very specific
resources are needed, and they are beyond the scope of this study.

The following studies are considered of great interest for this research since they have
many points in common with the approach presented here: References [5,11,14,15,20–23].

Among the methodologies that have been studied there are those that predict the
PV power generated by solar modules. In Reference [22], the authors build a predictive
algorithm that is capable of predicting the output power of a panel through weather data
predictions. As a result, they obtained the best configuration of a neural network, Long
Short-Term Memory (LSTM), through statistical metrics, such as mean square error, mean
absolute error, etc. In addition, it makes predictions 24 h ahead. Another very similar
study is the one proposed in Reference [14], but, in this case, the predictor was based
on a convolutional network. They obtained a system to predict consumption peaks in
housing communities through wind and solar predictions. When comparing the average
error of the square root of the solar predictions, they obtained a superior performance of
7.6% with respect to other studies. However, the cited works do not apply any method of
failure prediction.

Another methodology that has been studied is failure analysis as proposed in Refer-
ence [20]. It uses a time window of the output power of the PV modules. The temporal
curve is then classified either as a correct operation or a specific failure. Given that there
were N panels, the worst result that could be obtained is 2N− 1 failure. One of the strengths
of this methodology is its ability to detect failures in specific parts of the solar module array.
Another approach to consider is the monitoring of solar panels through a neural network,
as in Reference [21]. In this study, the authors obtained a power predictor with a network
in which precision was not less than 98% and a difference of less than 0.02 between the
real value and the predicted value. This difference allowed them to detect degradations
in the solar panels and their malfunctioning. Specifically, the work seeks solutions to a
problem of regression, focused on time series. To make this prediction, models that can
take advantage of time information are usually used. In machine learning, one of the most
known models when dealing with time series and making predictions are recurrent neural
networks (RNNs). Echo-State Neural Networks (ESNs), is also based on, the projection of a
RNN to model the temporal dependencies of the data. They could be of great interest for
the problem posed here, since they have demonstrated good performance in time series
prediction in solar energy solutions [24–26].

Finally, the above studies do not apply their research to a decentralized architecture.
However, Reference [5] proposed an architecture where different IoT nodes are monitored.
As a result, the authors obtained a year-long analysis of the performance of the solar
panels, where highest power production peaks occurred in September and October. They
also observed the lowest production in May and March. The biggest problem with this
architecture is that it does not implement any automatic learning algorithm to improve the
performance of the station. Despite this, the case study is valuable because it describes the
deployment of an IoT-based architecture where Edge Computing can be used to reduce
latency times and data traffic in communications.

3. Methodology

The present study is a methodological proposal for predictive maintenance involving
the elaboration of a system capable of solving a time series problem. Time series problems
consist of the study of repetitive patterns over time. Thus, values are determined in the
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near future and make it possible to make decisions accordingly. It is based on the regression
problems, but there are some differences, such as:

• The variables are time-dependent and, therefore, do not comply with all the observa-
tions being independent.

• It shows trends of a seasonality, growth, or decrease.

A proposed system capable of obtaining the weather forecast and using it to predict
the output power of the solar modules. To this end, the LSTM networks are used, which
are described in detail in Section 3.1. Finally, a confidence interval is calculated in real time,
and it makes it possible to determine degradations in PV systems, which is described in
detail in Section 3.2.

3.1. Definition of LSTM Networks

Long Short-Term Memory (LSTM) networks [27] are an adaptation of RNNs, in partic-
ular the change is focused on the hidden layer of the network. This hidden layer is called
the LSTM cell, which is made up of three gates, one input, one output, and one override
that controls the data flow of the network. In Figure 1, the general scheme of the cell that
constitutes the LSTM networks is illustrated. Consider an instant of time t with an input
Xt, the output of the hidden layer Ht, and its previous output Ht−1, which results in the
input state being C̃t, the output state Ct and the previous state Ct−1. Besides, the gate states
take the values of it, ft, and ot. It should be noted that the values Ct and Ht are propagated
through the network, as shown in the scheme.

To obtain these two values, a series of equations are required. First, states of the three
doors and the state of the cell input must be calculated:

it = σ(Wi
1 · xt + Wi

h · ht−1 + bi) Input gate, (1)

ft = σ(W f
1 · xt + W f

h · ht−1 + b f ) Forget gate, (2)

ot = σ(Wo
1 · xt + Wo

h · ht−1 + bo) Output gate, (3)

C̃t = tanh(WC
1 · xt + WC

h · ht−1 + bC) Cell entrance, (4)

where Wi
1, W f

1 , Wo
1 , WC

1 are the arrays of weights that connect Xt to the three gates and the

cell entrance, Wi
h, W f

h , Wo
h , WC

h are the weight matrices that connect ht−1 to the three gates
and the cell entrance, bi, b f , bo, bC are the bias terms of the three gates and the cell entry,
σ represents the function 1

1+exp(−x) , and tanh represents the hyperbolic tangent function
exp(x)−exp(−x)
exp(x)+exp(−x) . Secondly, the output state of the cell is calculated:

Ct = it · C̃t + ft · Ct−1, (5)

where it, ft, C̃t, Ct, Ct−1 has the same dimension. Thirdly, the output of the hidden layer
is calculated:

ht = ot · tanh(Ct), (6)

The output of the cell is defined as:

x̃t+1 = W2 · ht + b, (7)

where W2 is the weighting array between the input layer and the output layer, and b is the
bias of the output layer.

The size of the window should be taken into account since not having an infinite
history limits the window of the network. Historical data go through the whole network,
changing its states to obtain the desired prediction.
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Figure 1. Scheme of a Long Short-Term Memory (LSTM) cell.

3.2. System Description

This subsection outlines the network configuration used in the study to develop the
power predictor. The design of the neural network was based on trial and error until
the best configuration has been obtained that provided the best solution to the problem.
The structure can be seen in Figure 2, which contains the following characteristics:

• In the first layer, the number of times to be passed and the number of parameters that
form it are specified. In the design, it was specified that it would receive 120 instants
of time and three input parameters.

• Two hidden layers are defined with 24 and 48 neurons in which function of activation
is ReLU (rectified linear unit). This activation function is the most used in the recurrent
neural network (RNN), hence its choice.

• The dense layer with 72 neurons was used as an output in order to obtain the 72 pre-
dictions that would form the future window.

The design of the network was based on trial and error [28], until finding the best
configuration that encompasses the problem. For the layout of the LSTM network, the
TensorFlow library in Python was used. This library allows to handle the Keras module,
capable of designing neural networks with a high level of complexity. The training flow
of the proposed model involved the manual tunning of the model hyperparameters to
boost performance by simple training, validation and test split. The training data are
split into 70% training data and 30% validation data (24,283 inputs). On the basis of the
regression problem, the loss function that was used was the Mean Square Error (MSE). The
performance of the training model is evaluated on the basis on various metrics, including
RMSE, MAE, and MSE, detailed in Section 4.1.

On the one hand, the gradient descent algorithm was defined. The Adam algo-
rithm [29] was used, characterized by its notably decreasing learning rates. On the other
hand, the number of times specified for the training was 50, and the size of the lots was 120.



Electronics 2021, 10, 78 6 of 16

Figure 2. Outline of the proposed LSTM network.

Once the network was trained, a prediction window was obtained as a result. The ob-
jective of these prediction windows was to analyze the possible anomalies in the PV module.
The real power produced by the panel is compared with the power predicted by the neural
network. The confidence margins are calculated as those used in the reference article [21],
being established on a 10% deviation of the real value from the upper and lower confidence
limit. If the predicted value of the network is outside these margins, it is considered that the
module may have entered a degradation process. This does not mean that the module is
broken, but its operation is anomalous and could become a more serious fault in the future.

Pnetwork > Preal × 1.1 Exceeds the superior limit, (8)

Pnetwork < Preal · 0.9 Below the lower limit, (9)

where Pnetwork is the value obtained by the neural network, and Preal is the real power value
of the PV panel.

4. Case Study

Subsequently, a case study has been conducted to test the functioning of the neural
network and to evaluate its performance.

In the case study, the data provided by the DKASC (Desert Knowledge Australia Solar
Center) were used [30], from the Alice Sprint project located in Australia. The selected station
is number 25, which was installed in 2016. It belongs to the Hanwha Solar brand with
polycrystalline silicon technology. In Table 2, the main characteristics can be observed.
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Table 2. Information on the main characteristics of the solar module.

Name Value

Array Rating 5.83 kW
Panel Rating 265 W
Number of Panels 22
Panel Type HSL 60S
Array Area 36.74
Inverter Size/Type SMA SMC 6000A
Installation Completed Saturday, 2 July 2016
Array Tilt/Azimuth Tilt = 20, Azi = 0 (Solar North)

The data set consists of measurements that have been taken every 5 min from July
2016 to February 2020. These data have been recorded in an excel spreadsheet that can be
accessed publicly from the organization’s website. The file is made up of twelve columns
but the six most important columns were extracted according Reference [21]:

• The variable “Timestamp” is used to group the data set because it represents the
instant of time when the data was taken.

• The variable “Rainfall” represents the average precipitation measured in millilitres (mL).
• The variable “ActPower” represents the output power of the solar module, measured

in kilowatts (kW), and is the target variable that is predicted.
• The variable “Temperature” represents the temperature that is recorded in the zone

measured in Celsius (◦C).
• The variable “DiffuseRadation” represents diffuse radiation, that is, radiation that

does not directly affect the panel. It is also measured in W/m2.

The correlation between the 12 features in the data set is analyzed, shown in Figure 3,
with the aim of discarding those that do not contribute knowledge to the model. The main
focus was to obtain the output power. It is true that, if the algorithm were to detect clouds,
it would make more sense to predict the solar incidence, or, if the model were applied
to wind energy, it would have more value than the radiation index. The variable “active
energy delivered-received” has been discarded as it represents the energy status of the
entire solar station. In the case study, the focus is on a specific station, not on all the solar
plants in the park. On the other hand, the variable “Current Phase Average” is the output
variable of the panel but is measured in amperes. In future research, it can be taken into
account, however not as an input for the model, as it does not provide information. As the
variable “Performance Ratio” represents the area of the active board, but does not have
knowledge of the relationship between the module arrays, it could not be applied to detect
malfunctioning in parts; rather, the overall evaluation of the board as a whole has been
chosen. The solar station is located in a warm climate, with no precipitation and no wind,
so the variables associated with these phenomena do not provide any knowledge to this
particular model (“Wind speed”, “Wind Direction”, “Weather Relative Humidity”, and
“Rainfall”). It is proposed to incorporate these variables from data sets created in other
geographical points. This would improve the model further.

The most relevant features were those linked to diffuse radiation (RD), global radiation
(RG), and temperature (T). These three features were selected as inputs to the neural
network, as shown in Figure 2, with the aim of extracting the output window with the
output power prediction for the PV panel.
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Figure 3. Feature selection: correlation of data set variables.

In Figure 4, it is possible to see a representation of the data processed over time. In
addition, it can be observed how the radiation values are similar to the power output of
the panel, so it was considered that they have a high correlation and can be used by the
model. Moreover, the variable that represents the precipitation was eliminated because it
does not provide value to the model. The station is located in Australia, so it has a very
hot climate and most of its territory is a desert. If the location of the plant had a different
climate, the importance of rainfall in the model could be evaluated.
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Figure 4. Selection of variables processed over time.

4.1. System Evaluation

The objective of the tests is to verify if there was a significant difference in the treat-
ments applied, and if so, which method was the best. Metrics, such as mean absolute error
(MAE), mean square error (MSE), root mean square error (RMSE), and Symmetric Mean
Absolute Percentage Error (sMAPE), were used to evaluate the system because it is based
on a regression problem. These metrics measure the distance between the predicted value,
Ỹi, and the actual value, Yi (real data):

• The Mean Absolute Error (MAE) calculates the average of the errors in the set of
predictions. This metric takes into account all individual differences for the same
weight. In addition, its value is absolute, so the signs in the errors are eliminated.

MAE =
1
n

n

∑
j=1
|Yi − Ỹi|. (10)

• The Mean Square Error (MSE) measures the average squared error of the actual value
of the estimate. This metric was used as the value of the losses in the configuration of
the neural network.

MSE =
1
n

n

∑
i=1

(Ỹi −Yi)
2. (11)

• The Root Mean Square Error (RMSE) is the quadratic scoring rule that measures
the average of errors. It calculates the value through the square root of the average
squared differences between predictions and actual observations.

RMSE =

√
1
n

n

∑
i=1

(Yi − Ỹi)2. (12)
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• Symmetric Mean Absolute Percentage Error (sMAPE) is the measure for forecast
accuracy based on percentage errors.

sMAPE =
100%

n

n

∑
i=1

|Yi − Ỹi|
(|Yi|+ |Ỹi|)/2

. (13)

The smaller the values of MAE, MSE, RMSE, and sMAPE, the better the performance
of a forecasting model. A validation set of 735 instances has been used to test the model.
Various configurations were tested by adding a certain number of neurons in various layers
of the network. In addition, two test sets were made with different optimization algorithms.
The first optimization algorithm that has been used is called Root Mean Square Propagation
(RMSprop). The RMSprop algorithm tries to find a smaller oscillation in the gradient slope
by choosing a single learning rate for each specific parameter. Table 3 shows the obtained
outcome.

Table 3. Root Mean Square Propagation (RMSprop) algorithm test results.

Name Number of Neurons MAE MSE RMSE

Test 1 Layer1: 6 0.0899 0.0178 0.1334
Test 2 Layer1: 12 0.0904 0.0196 0.1483
Test 3 Layer1: 24 0.0821 0.0165 0.1284
Test 4 Layer1: 48 0.0731 0.0157 0.1254
Test 5 Layer1: 72 0.0744 0.0162 0.1273
Test 6 Layer1: 6 Layer2: 3 0.1160 0.0253 0.1590
Test 7 Layer1: 12 Layer2: 6 0.0751 0.0154 0.1241
Test 8 Layer1: 48 Layer2: 12 0.0730 0.0168 0.1298
Test 9 Layer1: 48 Layer2: 24 0.0749 0.0170 0.1304
Test 10 Layer1: 12 Layer2: 48 0.0745 0.0163 0.1275
Test 11 Layer1: 24 Layer2: 48 0.0740 0.0169 0.1298
Test 12 Layer1: 12 Layer2: 6 Layer3: 3 0.0867 0.0173 0.1315
Test 13 Layer1: 48 Layer2: 12 Layer3: 6 0.0850 0.0186 0.1363

In each of the tests, the number of neurons in the hidden layer of the network was
increased to see whether the results improved or not. Up to 72 neurons were tested where
it was observed that the obtained result did not improve with the previous test. Then, an
attempt had been made to increase the number of layers. The number of neurons was
increased in the first layer and decreased in the second, and vice versa. But, starting from
the best results of the previous tests, such as 0, 1, and 3, the best configurations obtained
were in test 7 and test 8. The number of hidden layers was increased to 3, but there was no
improvement in the result. Finally, the most optimal configuration was obtained, where
two layers have 12 neurons in the first layer and 6 neurons in the second layer. Test 7
was selected even though it had a higher MAE than test 8, since, in the RMSE, it has a
considerably lower value.

A second test has been performed by switching the algorithm using the Adam al-
gorithm. This algorithm is based on algorithms, such as RMSprop, used in the first test,
Adadelta, or Momentum. The same configuration of neurons was used as in the previous
test in order to make a comparison of the results obtained by both algorithms. The results
obtained from these tests are shown in Table 4.
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Table 4. Adam algorithm test results.

Name Number of Neurons MAE MSE RMSE

Test 1 Layer1: 6 0.1035 0.0220 0.1483
Test 2 Layer1: 12 0.0738 0.0155 0.1245
Test 3 Layer1: 24 0.0847 0.0189 0.1374
Test 4 Layer1: 48 0.0704 0.0159 0.1261
Test 5 Layer1: 72 0.0708 0.0159 0.1262
Test 6 Layer1: 6 Layer2: 3 0.2634 0.0875 0.2958
Test 7 Layer1: 12 Layer2: 6 0.0757 0.0154 0.1240
Test 8 Layer1: 48 Layer2: 12 0.0716 0.0157 0.1251
Test 9 Layer1: 48 Layer2: 24 0.0712 0.0162 0.1272
Test 10 Layer1: 12 Layer2: 48 0.0768 0.0165 0.1284
Test 11 Layer1: 24 Layer2: 48 0.0684 0.0141 0.1188
Test 12 Layer1: 12 Layer2: 6 Layer3: 3 0.0762 0.0158 0.1256
Test 13 Layer1: 48 Layer2: 12 Layer3: 6 0.0850 0.0164 0.1280

In order to complete the study, a final analysis is carried out in order to select the
best architecture. Tests performed and shown in both Tables 3 and 4 are filtered out by
identifying the two best results and the two worst for each test bank in both algorithms.
In this final analysis, the sMAPE metric is incorporated. For the RMSprop algorithm, the
worst pair (test 2 and 6) and the best (test 5 and 8) are identified, for which the results
are shown in Table 5. The same procedure is carried out by selecting the best results with
the Adam algorithm (test 4 and 11) and the worst (test 1 and 6), shown in Table 6. In this
second analysis, the sMAPE metric clearly and definitively discriminates the final results.

As a result, test 11, shown in Table 6, had the best result even if we compare it with the
results of the previous test. The final design of the network was based on two hidden layers;
the first one had 24 neurons, and the second one had 48 neurons. In addition, according
to the results in Table 6 and in Table 5, better results are achieved when using the Adam
algorithm as a gradient optimization algorithm.

A comparison is made between the model proposed in this work and the starting
model that has already been introduced and analyzed as a methodological basis in previous
sections and described in Reference [14], where a model based on convolutional networks
with multiple heads is proposed. Using MAE, RMSE, and sMAPE metrics, Table 7 shows
the comparison. The model with which this proposal is compared also uses a neural
network as a predictive system to provide the solution, and the same metrics have been
used in its evaluation, in order to compare the range of values.

Table 5. RMSprop algorithm final test results.

Name Number of Neurons MAE MSE RMSE sMAPE

Test 2 Layer1: 12 0.0787 0.0174 0.1319 21.56%
Test 5 Layer1: 72 0.0867 0.0205 0.1431 23.06%
Test 6 Layer1: 6 Layer2: 3 0.2634 0.0876 0.2960 30.04%
Test 8 Layer1: 48 Layer2: 12 0.0745 0.0104 0.1281 18.50%

Table 6. Adam algorithm final test results.

Name Number of Neurons MAE MSE RMSE sMAPE

Test 1 Layer1: 6 0.0763 0.0172 0.1313 20.94%
Test 4 Layer1: 48 0.0731 0.0174 0.1319 17.09%
Test 6 Layer1: 6 Layer2: 3 0.2634 0.0875 0.2958 29.94%
Test 11 Layer1: 24 Layer2: 48 0.0693 0.0161 0.1267 16.34%

As a result, Table 7 shows that the proposed model is better than the one in the
referenced article. Specifically, it shows that the proposed model has an improvement of
5.37% in RMSE, 24.42% in MAE, and that 1.6% in sMAPE was achieved.



Electronics 2021, 10, 78 12 of 16

Table 7. Metrics comparison of the proposed model.

Model MAE RMSE sMAPE

The referenced model [14] 0.0917 0.1339 17.94
Proposed Model 0.0693 0.1267 16.34
Improvement % 24.42 5.37 1.6

4.2. Model Assessment

Once the final network structure with two hidden layers of 24 and 48 neurons has
been selected using Adam’s algorithm, according to the previous section, the evaluation
data set can be applied. This way, the results of the proposed case study can be observed.
To display the results graphically, graphs, such as the Figures 5–8, show the variation of
the active power normalized with values between 0 and 1 of the solar panel over the hours.
The daily power cycles (24 h) are clearly perceived in Figures 5 and 7 show, reaching the
maximum power in the central hours of the day and descending to 0 at night, in the hours
when there is no sun.

Figure 5. Output power of the solar module in the evaluation window.

The neural network has an input time window where parameters, such as global solar
panel radiation and diffuse radiation, are entered at each instant of time. This is done by
creating a set of data formed by periods that represent these time windows. The neural
model processes the input, and, as a result, a forecast is obtained with as many instances as
there were neurons in the output.

Figures 5 and 6 show in blue the input window representing the active power of the
panel and the resulting output in red. An approach was designed in which a time window
was introduced that was composed of a five-day history of measurements and a forecast
for the next day. As a result, the output power of the solar panel has been obtained. These
results were compared with the real value provided by the data set.

Figure 5 shows the continuous blue line, that represents the normalized power record
that the module had in the last 5 days (−120 h). This period of time was the input to
the neural network with the normalized global radiation and diffuse radiation values.
The output power of the solar panel has been obtained with a 12-h forecast, as can be seen
in both Figures 5 and 6, where it is magnified.

The red dots represent the predictions made by the neural network using the input
data. The continuous blue line represents the power it has held in the past in the time
window, while the blue points are the real values of the solar module in that instant of time.

The confidence margins, which had been detailed in the system description, were
applied. These limits are represented graphically to see that the predictions are within the
normal values. These results are shown in Figures 7 and 8.



Electronics 2021, 10, 78 13 of 16

Figure 6. Magnified output power of the solar module in the evaluation window.

Figure 7. Output power with limit of the solar module in the evaluation window.

Figure 8. Extended output power with limit of the solar module in the evaluation window.

The lower limit is represented by the black line and the upper limit is represented by
the green line. It can be seen that the predictions are within the limits calculated as a zone
of optimal solar panel performance.

4.3. An Architectural Proposal

To complete the proposal, on the basis of the obtained results, a possible application
of the system is proposed within an architecture based on Edge Computing and Big Data
ingestion. The objective of the proposed architecture is to allow for the generation and
integration of a real-time fault control system for a solar panel infrastructure.
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The idea is based on each PV module being associated with an edge node where system
operations are performed. The answer would be unique for the associated module and
thus save communication costs and latency. Apart from obtaining the data from the board,
the node receives the meteorological data from the area in order to make the prediction.
The communication data flow would be done through Message Queue Telemetry Transport
(MQTT) or similar communications. These communications would be programmed every
certain period of time with the cloud to store all the events that take place. The cloud
would be in charge of managing all the operations performed by the architecture, apart
from recording all plant activity. In addition, a service-based platform would be developed
where the entire station could be monitored in real time. This platform would show the
predictions that would be made in the nodes. These nodes would in turn manage a series of
actuators that control the current flow of the solar panels in case the network has a critical
failure. Figure 9 gives an outline of the proposal.

Figure 9. Component scheme of the architectural proposal.

5. Conclusions and Future Work

Throughout the paper, a systematic mapping of predictive maintenance technology
has been done, focusing mainly on PV modules for solar energy. A proposal has been
defined that is capable of detecting degradation in solar modules.

A neural network has been developed, capable of predicting the output power of solar
panels on the basis of weather forecasts. Once obtained, the time window was compared
with the real value of the module. By applying some confidence limits, it is possible
to determine the possible malfunctioning of the panel. As a result, a predictive model
has been obtained in which performance is up to 25.4% better than that of the published
proposals.

Additionally, the design of an architecture based on Edge Computing has been pro-
posed, where the developed system would be applied. This architecture would connect the
IoT devices and would be able to store large volumes of data in the cloud.

In a future research, the system’s performance will be studied under adverse weather
conditions and seasonal changes. The application of different algorithms for the prediction
of models based on time series, such as ESNs, will be evaluated, as they have proven
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to obtain good performance in time series prediction in researches that focused on sim-
ilar problem presented here. In addition, the proposed architecture will be used for the
detection of degradation in solar modules.
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