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Abstract: Enhancing the frequency band of the electromagnetic wave is regarded as an efficient way
to solve the communication blackout problem. In this paper, frequency of incident wave is raised to
Terahertz (THz) band and the radar cross section (RCS) of the three-dimensional conductive model is
calculated and simulated based on the Runge–Kutta Exponential Time Differencing–Finite Difference
Time Domain method (RKETD-FDTD). Interaction of THz wave and magnetized plasma sheath
is discussed. Attenuations in incident wave frequencies of 0.34 THz and 3 GHz and different plasma
densities are analyzed. The monostatic RCS is used to compare the penetration in different incident
wave frequencies while the bistatic RCS is fixed on 0.34 THz to study its characteristics. The simula-
tion result has almost the same RCS as that of the model without coating plasma when the frequency
of incident wave reaches 0.34 THz. The advantages of THz wave at 0.34 THz on increasing RCS and
reducing the attenuation are demonstrated from different aspects including polarizations, incident an-
gles, magnetization and anisotropy of plasma, thickness of plasma, scan planes and inhomogeneous
distribution of plasma. It can be concluded that 0.34 THz has unique advantages in increasing the
radar cross section and can be applied to solve the problem of communication interruption.

Keywords: THz wave; RCS; RKETD-FDTD; magnetized plasma; blackout problem

1. Introduction

The communication blackout problem remains to be completely solved. When the
supersonic vehicle is moving in the near space, it is surrounded by a mixture of gas and
plasma called a “plasma sheath” [1]. Most of the time, the communication frequency
is lower than the cut-off frequency of the sheath and the communication is interdicted.
Researchers all over the world have come up with methods in response to the blackout prob-
lem. Changing the aerodynamic profile of the vehicle [2], using the crossed electromagnetic
field to reduce the density of the plasma sheath [3], using the magnetic field to form a “mag-
netic window” to let the wave pass through [4–6], placing the antenna on the low-density
Leeward side of the plasma sheath [7] and increasing the frequency of communication are
methods that have been developed to solve the blackout problem. Researches have pointed
out that one of the important reasons for communication failure is that the electromagnetic
wave (EM wave) frequency is lower than the plasma frequency, which leads to a huge
attenuation while the EM wave is spreading in the plasma [8]. The peak of the plasma den-
sity can reach up to 1021 m−3 as is recorded in flight data [9]. Comprehensively considering
the above reason, it turns out that THz wave is an efficient method to solve the problem.
Additionally, a number of developments for the 0.34 THz transceiver front end have been
proposed which makes the telecommunications in this frequency band realizable [10,11].
Therefore, it is of great significance to study the propagation and scattering characteris-
tics of THz wave at 0.34 THz from a comprehensive perspective. Hence, in this work,
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bistatic RCS of the 3D model is fixed on 0.34 THz to study the scattering characteristics in
the magnetized plasma and verify the function in solving the blackout problem.

To date, several groups have used a numerical algorithm to study EM wave and plasma.
Wang et al. studied the THz propagation characteristics of dusty plasma slab [12]. Yuan et al.
researched THz wave propagation in high-temperature plasma [13]. Kang et al. used
the precise integration time-domain (PITD) method instead of the Finite-Difference Time-
Domain (FDTD) method to study the propagation in magnetized plasma [14].
On the other hand, the RCS is a physical quantity to characterize the echo intensity of
the target irradiated by the radar wave and is of great importance in studying scattering
characteristics [15,16]. Theoretical studies on RCS and scattering characteristics in a certain
frequency band have been reported [17–22]. However, most of the simulation models are
limited to one-dimension and the frequency of incident wave is lower than 0.1 THz.

In this paper, we increase the frequency of the differential Gaussian pulse to the THz
band and calculate both monostatic RCS and bistatic RCS of the three-dimension conductive
model coated with magnetized plasma using the RKETD-FDTD method. Besides, the at-
tenuation in different electron densities is analyzed using the Wentzel–Kramer–Brillouin
(WKB) method. Generally speaking, the RKETD-FDTD method is used to solve the electro-
magnetic characteristics of the dispersion medium as it has higher calculation efficiency and
accuracy than the convolution FDTD algorithm formula [23,24]. In order to demonstrate
the effect of increasing the frequency of incident wave on reducing the attenuation effect
of the plasma, the monostatic RCS curves are calculated in the frequency band 0–0.6 THz.
From simulation results of monostatic RCS, it can be found that EM wave frequency at
0.34 THz has almost the same RCS value as that of the no plasma coating curve. To prove
all-around excellent performances concerning 0.34 THz waves, the bistatic RCS at 0.34 THz
with different polarization ways, distributions of plasma, plasma parameters, cyclotron
resonance directions, incident angles in a certain range and planes are also discussed.
The results demonstrate the superiority of the 0.34 THz wave in solving the problem
of blackout when facing different situations. The RKETD-FDTD method and model are
introduced in Section 2. Results and discussions are displayed in Section 3. Conclusions
are given in Section 4.

2. RKETD-FDTD Method and Model

For the colliding cold anisotropic magnetized plasma dispersion medium, Maxwell’s
equations and the associated simultaneous equations are given below

∇×H = ε0
∂E
∂t

+ J (1)

∇× E = −µ0
∂H
∂t

(2)

dJ
dt

+ υJ = ε0ω2
pE + ωb × J (3)

where J refers to the polarization current density, ε0 is the dielectric constant in vacuum,
µ0 is the magnetic conductivity in vacuum, υ is the collision frequency, ω2

p refers to the
square of the angular frequency, ωb = eB0/m is the cyclotron frequency, in which B0 is
the outside magnetic field, e and m refer to the quantity of electric and the mass of elec-
trons, respectively.

The expressions of E and J according to reference [23] are given directly below.
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For the magnetic field, the average amounts of the four surrounding points are calcu-
lated, respectively,
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Due to limited computer resources, RCS is calculated in a limited field. The side

length of the total FDTD calculation field is 80 cells, and the perfectly matched layer (PML)
absorbing boundary is set to 5 cells [25]. The time step in simulation dt = 9.8× 10−14 s
and the space step cell δ = 5.9× 10−5 m. Relative electrically small models are used to
compute the RCS [26]. Simulations in most of the study are based on the 3D von Karman
conductive model. Figure 1 is the schematic of the model.
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Figure 1. (a) Finite difference time domain (FDTD) for computing the radar cross section (RCS) of
the von Karman model; (b) Direction of the incident wave and scan angle.

Symbol h refers to the height of the model, which is 20 cells, and r is set as the radius
of the circle at the bottom with a length of 10 cells. Plasma is applied to the surface of the
model with a thickness of d. θ is the angle between incident wave and the positive semi-axis
of the z coordinate and ϕ is for RCS scanning from 0 to 360 degree in the x–y plane.

Using the FDTD method to calculate the RCS follows the steps below: Derivation of it-
erative equation of scattering field, setting incident plane wave source, absorbing boundary,
near-field to far-field outside derivation and calculation of the conductive model. The RCS
defining formula is

σ = lim
R→∞

4πR2 |Es|2

|Ei|2
(22)

Es represents the scattering electric field and Ei is the incident electric field; R is the
distance between the radar and the target.

3. Results and Discussions
3.1. Attenuation and Monostatic RCS

In this part, the monostatic RCS is discussed to illustrate the increasing RCS function of
the EM wave at 0.34 THz. As the radio wave travels through the plasma, free electrons and
ions vibrate back and forward; their energy comes from the EM wave. Vibrating electrons
and ions collide with neutral particle, thus causing the energy loss of EM waves. Before RCS
calculation, firstly, the propagation mechanism of the electromagnetic wave in plasma is
introduced [27]. Considering the parameters of dense plasma formed in the re-entry process
introduced in relative works [1,28], the electron density of the homogeneous plasma is set
as 1× 1019 m−3 and the collisional frequency is 0.1 THz in the simulation; the magnetic field
is applied in the Z direction with the cyclotron resonance 2× 1011 rad/s, θ is 90 degrees
and the incident wave is applied along the negative x semi-axis. The relationship of plasma
frequency and density Ne are given below [29].

ωp ≈ ωpe =

√
Nee2

ε0me
(23)

ε0 is the dielectric constant in vacuum, me is the mass of the electron and e represents
the electric charge of the electron. The attenuation constant α [30]

α =
ω

c
1√
2


(

ω2
p

v2 + ω2 − 1

)
+

(1−
ω2

p

v2 + ω2

)2
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(24)

ω is the angular frequency, c is the light speed and ν is the collisional frequency
in expression (24). Using the attenuation constant expression, the return attenuation is
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further discussed with the WKB method. For the incident wave that enters the homoge-
neous plasma at z = 0, spreading to a reflecting target at z = z0, the WKB approximation
concerning the return attenuation in dB is

ATT =

∣∣∣∣10lg
P(Z0)

P0

∣∣∣∣ = ∣∣∣∣17.37(
∫ z0

0
k(z)dz)

∣∣∣∣ (25)

where the wave number k is given by the expression

k = k0
√

εr = β− jα (26)

k0 is the wave number in free space, p0 is the power at z = 0, α is the attenuation con-
stant, β is the phase constant. The attenuation results are shown in Figure 2.
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0  is the dielectric constant in vacuum, em is the mass of the electron and e  repre-
sents the electric charge of the electron. The attenuation constant   [30] 
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  is the angular frequency, c is the light speed and   is the collisional frequency 
in expression (24). Using the attenuation constant expression, the return attenuation is 
further discussed with the WKB method. For the incident wave that enters the homoge-
neous plasma at z = 0, spreading to a reflecting target at 0zz , the WKB approximation 
concerning the return attenuation in dB is 
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where the wave number k is given by the expression 
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0k  is the wave number in free space, 0p  is the power at z = 0, α is the attenuation 
constant, β is the phase constant. The attenuation results are shown in Figure 2.
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The results in Figure 2 correspond to the analysis that a larger density of plasma has a
higher attenuation. While the frequency of the incident wave is raised from 0.05 to 1 THz,
the attenuation decreases. However, the peaks of the curves of different plasma densities
move to higher incident frequency in the range of 0–0.05 THz. It can be explained that
plasma with higher density has a higher cut-off frequency, which makes the EM wave
below the cut-off frequency reflect straight and have less attenuation. As can be seen
from Figure 3, due to the high-pass characteristics of plasma, RCS is not increased by an
EM wave of 0–0.05 THz. In the range of 0.05–0.3 THz, RCS is obviously reduced by the
magnetized plasma, while two curves are close when the frequency is greater than 0.3 THz.
Therefore, for the frequency of 0.34 THz, the EM wave absolutely has less attenuation than
a microwave and a low-THz wave.
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3.2. Electric Field Polarization and Thickness of Plasma

In this section, the frequency of the incident wave is fixed at 0.34 THz and the bistatic
RCS in different polarization ways of horizontal and vertical polarizations is calculated.
Additionally, both magnetized and unmagnetized plasma are discussed. The electron
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density of the homogeneous plasma is set as 1× 1019 m−3 and the collisional frequency
is 0.1 THz in the simulation. The magnetic field is applied in the z direction with the
cyclotron resonance 2× 1011 rad/s, θ is 90 degree and the incident wave is applied along
the x negative directions. Results are displayed in Figure 4.
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Figure 4. (a) Bistatic RCS in polar coordinates with magnetized plasma and horizontal polarization. (b) RCS with
unmagnetized plasma and horizontal polarization. (c) RCS with magnetized plasma and vertical polarization. (d) RCS with
unmagnetized plasma and vertical polarization.

In Figure 4a, with the increase of the thickness of plasma d, the RCS becomes lower,
which means the EM wave has more attenuation in the thicker plasma. The RCS at
180 bistatic degrees is slightly greater than the RCS calculated without plasma. As for
the von Karman model established, the bistatic RCS near the bistatic angle 180 degrees
can be regarded proportional to the target projection area. If we take the conductor
cylinder and magnetized plasma into consideration, the projection area truly increases.
Additionally, the magnetic field is applied in the z direction. The electric field couples and
plasma is anisotropy; therefore, the bistatic RCS is asymmetrical in ϕ from 0 to 360 degrees.
Combining Figure 4a,b, it can be found that the RCS of unmagnetized plasma is higher
than the RCS of magnetized plasma when simulated in horizontal polarization. As shown
in Figure 4c,d, in vertical polarization, no matter whether the plasma is magnetized
or not, the RCSs of different thicknesses of plasma have almost the same values as the
results calculated with d = 0. This should be explained from the polarization mechanism:
The longitudinal component Ex and the transverse component Ey of horizontal polarization
combine as the hybrid wave and the plasma is anisotropy. However, the plasma in vertical
polarization shows isotropy. For plasma magnetization and electric field polarization,
some of the contents in this part are consistent with those in the literature [31].

Generally speaking, the bistatic RCS of 0.34 THz simulated with different plasma and
polarizations are close to the curve with d = 0, which is corresponding to the monostatic
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RCS results. 0.34 THz has polarization insensitivity and strong penetration ability when
the thickness d increases in a certain range.

3.3. Incident Directions

The incident direction of 0.34 THz wave is discussed in this section. In this section,
the electron density of the homogeneous plasma is set as 1× 1019 m−3 and the collisional
frequency is 0.1 THz in the simulation, the magnetic field is applied to Z direction with the
cyclotron resonance 2× 1011 rad/s, d = 6 cells and the electrical field is vertical polarization.
Results are shown in Figures 5 and 6.
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Figure 5. (a) Bistatic RCS with the incident wave along the x positive axis. (b) Bistatic RCS with different thicknesses of
plasma when the incident wave is along the y positive axis.
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Figure 6. (a) Bistatic RCS with θ = 45 degrees (b) Bistatic RCS with θ = 60 degrees.

It is obvious that the RCS will be changed when the incident angle is changed. We dis-
cussed the influence of the incident directions of 0.34 THz wave. RCS is scanned in x–y
plane for ϕ from 0 to 360 degree. From simulation results abovementioned in Figure 5,
it can be concluded that although the curve shapes are changing dramatically, bistatic RCS
of 0.34 THz has almost the same value compared with the d = 0 situation.

The bistatic RCS is discussed with the change of θ in Figure 6. The results show that
the bistatic RCS reduces slightly when the model is coated with the magnetized plasma.
For EM waves coming in from different directions, 0.34 THz can have good performances
in these different simulation situations. When the re-entry vehicles are moving in the
near space, the directions will change quickly and 0.34 THz may have a better penetration
in the whole re-entry progress.
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3.4. Parabolic Time-Varying Plasma

In fact, the distribution of free electron may not be always uniform. In the low iono-
sphere, distribution of free electron density can be simulated by parabolic and time-varying
distribution [32]. Formulas below are the angular frequency expressions of parabolic and
time-varying distribution plasma:

ωp(l, t) =
(

ωp1 + ωp2
l
d

)
t

Tr
(27)

In expressions (27), l represents the vertical distance between any point in plasma
and the surface of the conductive target, t is the time step, d is the thickness of the plasma,
Tr is the relaxation time and ωp1 = 2π × 1010 rad/s, ωp2 = 20π × 1010 rad/s, respec-
tively. For simulation conditions, the collisional frequency is 0.1 THz in the simulation,
the magnetic field is applied to Z direction with the cyclotron resonance 2× 1011 rad/s, θ is
90 degree, and the incident wave is applied along x negative semi-axis. The RCS simulated
parabolic plasma and its relaxation time are displayed in Figure 7.
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Figure 7. (a) RCS with different distributions of plasma in magnetized plasma (relaxation time 150 dt). (b) RCS versus
relaxation time (160–200 bistatic degrees).

In Figure 7a, RCS with homogeneous plasma is close to the curve d = 0, while the
parabolic and time-varying plasma curve has a lower RCS in the bistatic angle from
150 to 210 degrees. Inhomogeneous plasma can reduce the RCS more significantly than
homogeneous plasma. This is because inhomogeneous plasma is a gradual changing
and discontinuous distribution and the electromagnetic wave is refracted, absorbed and
weakened after entering the plasma. The targets have fewer echoes and smaller RCS.
However, 0.34 THz can increase the RCS in both homogeneous and parabolic and time-
varying distribution plasmas because they have almost the same values in most bistatic
angles ϕ from 0 to 360 degrees. In Figure 7b, the influence of the relaxation time is
discussed and displayed. As the relaxation time increases from 150 to 300 dt, there is a
slight strengthening in bistatic RCS near 180 bistatic degrees, which means larger relaxation
time has less attenuation. For this phenomenon, lager relaxation time makes plasma take
more time to reach the max density and reduce the absorption of EM waves. Concerning
the results and phenomena shown in Figure 6, they are consistent with the research work
in reference [17].

4. Conclusions

In this paper, increasing the frequency of the incident wave to solve the blackout
problem and realizability concerning 0.34 THz in telecommunications are introduced.
The derivation of the numerical method is introduced in detail. The interaction between the
THz wave and magnetized and inhomogeneous plasma is discussed based on the method.
Attenuation of EM wave propagating in plasma is discussed using the WKB method
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and used as a theoretical base. Using the RKETD-FDTD numerical method extended to
three dimensions, monostatic RCS is calculated to illustrate that raising the frequency to
0.34 THz can reduce the attenuation more than microwave and low-THz (around 150 GHz)
and bistatic RCS of 0.34 THz to discuss its advantages for enabling telecommunications.
We establish a von Karman model to calculate the RCS in different simulation conditions.
Results of the bistatic RCS of 0.34 THz exhibit excellent performance in different polariza-
tions of the electric field, parabolic and time-varying plasma sheath, different thicknesses
of the plasma, the magnetic field applied situations, different incident angles and different
planes for RCS calculation. Additionally, physical explanations are made and comparisons
with previous work for the phenomena are shown in figures displayed to verify the accu-
racy of the simulation; 0.34 THz can make the numerical results of RCS almost the same as
results simulated when the thickness of the plasma is 0. Generally speaking, increasing
frequency is actually a realizable and effective way to solve the blackout problem. Tera-
hertz waves at 0.34 THz are effective tools for keeping telecommunication unobstructed
when faced with complex situations.
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