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Abstract: Cloud computing use is exponentially increasing with the advent of industrial revolution
4.0 technologies such as the Internet of Things, artificial intelligence, and digital transformations.
These technologies require cloud data centers to process massive volumes of workloads. As a result,
the data centers consume gigantic amounts of electrical energy, and a large portion of data center
electrical energy comes from fossil fuels. It causes greenhouse gas emissions and thus ensuing in
global warming. An adaptive resource utilization mechanism of cloud data center resources is vital
to get by with this huge problem. The adaptive system will estimate the resource utilization and
then adjust the resources accordingly. Cloud resource utilization estimation is a two-fold challenging
task. First, the cloud workloads are sundry, and second, clients’ requests are uneven. In the literature,
several machine learning models have estimated cloud resources, of which artificial neural networks
(ANNs) have shown better performance. Conventional ANNs have a fixed topology and allow only to
train their weights either by back-propagation or neuroevolution such as a genetic algorithm. In this
paper, we propose Cartesian genetic programming (CGP) neural network (CGPNN). The CGPNN
enhances the performance of conventional ANN by allowing training of both its parameters and
topology, and it uses a built-in sliding window. We have trained CGPNN with parallel neuroevolution
that searches for global optimum through numerous directions. The resource utilization traces of
the Bitbrains data center is used for validation of the proposed CGPNN and compared results
with machine learning models from the literature on the same data set. The proposed method has
outstripped the machine learning models from the literature and resulted in 97% prediction accuracy.

Keywords: cloud computing; cloud server; computations complexity; cartesian genetic program-
ming; evolutionary algorithms; genetic programming; graph-based search; machine learning; neu-
ral networks; workload prediction

1. Introduction

Demand for cloud computing applications upsurges with the advent of new technolo-
gies like the Internet of Things and smart cities. According to Gartner’s survey, the mandate
for IaaS services will be sturdy in the future (https://www.gartner.com/doc/3849464/
survey-analysis-impact-iaas-paas). The projected per second Internet traffic spawned
by the data center in 2021 will be 655,864 Giga Bytes (https://www.cisco.com/c/en/us/
solutions/collateral/service-provider/global-cloud). The profoundly loaded data centers
will consume colossal volumes of energy. In a data center, the information technology (IT)
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equipment such as communication links, switching and aggregation elements, servers con-
sume 40% of the total data center energy [1,2], and servers consume 27% of the data
center energy [3]. A cloud data center server remains idle from 70% to 80% of the time [4].
For energy saving in an idle time of the server, investigators in [5] and [6,7] have proposed
dynamic voltage and frequency scaling (DVFS) and hot plugging of CPU cores. The DVFS
and hot plugging mechanisms implement scaling reactively without using any intelli-
gence/knowledge about resource usage or the workload patterns and trends. The energy
conservation capability of DVFS and hot plugging mechanisms can be boosted by using
CPU usage estimation/prediction beforehand the scaling of frequency or cores [7,8].

Cloud servers execute diverse workloads with diverse CPU (Central Processing Unit)
requirements. On the other hand, clients’ requests reach at uneven interludes to cloud
servers. Consequently, the diverse nature of workloads and the irregular arrival of clients’
requests make CPU usage prediction a puzzling task [9]. We propose a Cartesian genetic
programming (CGP) based parallel neuroevolutionary prediction model to solve the CPU
usage prediction problem.

Neuroevolution is a technique used for evolving parameters of a neural network using
evolutionary operators such as mutation and crossover. A neural network is encoded into
strings called chromosomes, and each substring is called a gene. The encoded genes of the
chromosome are evolved with mutation/crossover to form new chromosomes (offspring).
These chromosomes are evaluated for fitness, and the best one is selected as the parent
for producing next-generation offspring. This process of generation, evaluation, and the
selection continues until either producing the desired solution or reaching the maximum
number of generations/iterations [10].

In conventional neuroevolution, the topology of the neural network is fixed, and only
the weights of the network are evolved. In the proposed technique, we use parallel
neuroevolution varying weights, topology, and the number of neurons in the network.
It boosts the learnability of the network. Moreover, we use diverse initialized seeds to
avoid local optima and to enhance prediction accuracy. The architecture uses a sliding
window that averages the predicted outputs. Technical contributions are in resource usage
estimation accuracy, improved learnability, and escaping from local optima. We highlight
our technical contributions as follows:

• We present the mathematical model of CGP based neural network with parameters
and hyperparameters;

• We evolve synaptic weights, topology, and the number of neurons for boosting learn-
ability;

• We conduct multiple search path optimization to avoid local optima;
• We use a sliding window-based parallel architecture that makes several parallel pre-

dictions. These predictions are averaged for improving accuracy.

2. Purpose of Resource Prediction and Related Work

CPU usage can be realized as a function of time; hence it belongs to the time-series
class. In literature, numerous statistical and machine learning techniques have been
proposed for time series (e.g., workload, CPU usage) forecasting. In statistical techniques,
linear regression (LR), autoregression (AR), and autoregressive integrated moving average
(ARIMA) have been used for forecasting CPU usage time-series. Rodrigo N Calheiros
et al. used ARIMA for workload prediction of real traces of requests to web servers [11].
They used a built-in library (i.e., auto.arima) of the forecast package (of the R statistical
language) for predicting web servers’ request time-series. Sadeka Islam et al. [12] used
ANN and LR for predicting CPU usage. They used third-party packages dynlm [13] and
nnet [14] in the R-Project [15] for LR and ANN, respectively. John J. Prevost et al. [16]
prophesied clients’ requests on the cloud with both ANN and AR for hot plugging of cloud
nodes. They used the back-propagation optimization scheme for the training of ANN
weights. Ismaeel et al. [17] used an extreme learning machine (ELM) with control of the
training process for fast learning. F. Farahnakian et al. in [18] used k-nearest neighbor
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(KNN) for forecasting over-utilized and under-utilized cloud servers. A.Y. Nikravesh
et al. [19] applied SVR (support vector regression) and ANN to the IaaS cloud resources
estimation. Their results indicated that SVR has better forecast accuracy in periodic and
developing workloads prediction, while ANN has superiority in forecast accuracy for
unpredicted workload configurations over SVR.

Predictive elastic resource scaling (PRESS) in [20] casted-off configuration matching
(signal processing techniques) and state-driven (discrete-time Markov chain) methodolo-
gies for foretelling workloads. S. Sudevalayam et al. used linear regression models for
prophesying CPU usage of a virtual machine (VM) [21]. AR-NN (autoregressive neural
network) and ARIMA based adaptive prediction system is used for predicting future
CPU usage of an IaaS cloud [22]. AR-NN uses back-propagation for learning its weights,
and it can be enriched by training through evolutionary methods, i.e., through crossover
and/or mutation [23]. N. B. Rizvandi et al. proposed a polynomial regression model
for envisaging total CPU usage (in clock cycles) of jobs in the MapReduce environment
before their actual deployment on clusters and/or clouds [24]. Dinda et al. casted-off
autoregression (AR), moving average (MA), autoregressive integrated moving average
(ARIMA), autoregressive moving average (ARMA), and fractional ARIMA for guessti-
mating CPU load [25]. They claimed the AR model as the best estimation model due to
its low computational penalty. Authors in [26] proposed numerous low overheads and
one-step-ahead forecasting models for time-series. Liang et al. proposed a multi-resource
prophecy model, which can improve forecast accuracy by correlation among resources [27].
In References [28,29], the authors proposed a parameter-adaptive hybrid model for cloud
workload approximation. Their model adaptively fluctuates to variable patterns of the load.

Although time-series forecasting has been deliberated by several researchers, it is
still a hot topic due to its integral obscurity and complexity [30]. Besides designing new
linear and nonlinear estimation models, the amalgamation of diverse models is also being
revealed [31,32]. Cao, Jian et al. [33] suggested a collaborative technique for foretelling
the CPU load of the cloud server. They pooled different forecast models for the same
training data. Their methodology is ensemble but time-inefficient as online training of
several models for the same data may take minutes or hours. M. Verma et al. [34] used
an amalgamation of binary classification and linear forecast models for estimation of the
core-wise CPU load of a cloud server. Sandeep K. Sood in [35] used linear regression and
ANN for forecasting resource usage based on the number of points computed from the
users’ requests. Chen, Jianguo et al. proposed a periodicity-based parallel time-series
forecast algorithm for large-scale time-series data. They employed their model on the
Apache Spark cloud computing environment [36].

Methods like KNN and SVR used in literature for CPU usage time-series forecasting
have large computation time complexities than ANNs [7]. The computation time complex-
ity of KNN is around O(nk + nd) ≈ O

(
n×
√

n
)

where d = 1 and k =
√

n, where n denotes
the number of training examples in the data set, k symbolizes neighbors in a direction, and d
characterizes the dimension/features of the data set [37]. Similarly, the computation time
complexity of SVR is O(nS) ≈ O

(
n2), where n denotes the number of training examples,

and S symbolizes the number of support vectors. In the worst-case scenario, the num-
ber of support vectors almost equals the number of training examples that make SVR’s
complexity in the order of quadratic time [38]. Therefore, KNN and SVR based forecast
schemes will have enormous forecast overheads that will vitiate the performance of the
cloud server. On the other hand, large forecast overheads lead to hindered scaling decisions
of the DVFS/hotplugging system in cloud servers [7]. On the other hand, linear techniques
like AR, LR, ARMA, MA, and ARIMA will be incompetent to tackle the nonlinear behavior
of CPU usage time series. In literature, linear models have shown poor forecast accuracy
for CPU usage estimation than ANNs [39,40]. Conventional ANNs have limited learning
ability as these learn only synaptic weights [41,42]. In one of our preceding works, we used
recurrent CGP-based ANN [7]. As recurrent ANNs require memory for storing prior states
of the network, thus we propose a feed-forward form of Cartesian genetic programming
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(CGP) with boosted learning ability by learning synaptic weights, synaptic connections,
and the number of neurons.

Comprehensive analysis and comparison of the proposed technique with techniques
from literature are tabulated in Table 1. We investigate cloud resource prediction mech-
anisms based on the type of machine learning model, the data set, and the optimization
procedure used. For each contribution, we provided remarks with a focus on the mer-
its/demerits of the hypothesis and the optimization method. Moreover, we also provided
remarks on the learnability of the optimization method (training parameters and hyper-
parameters) and the mechanism for avoiding local optima. It is clear from the analysis of
Table 1 that the proposed CGP-based parallel neuroevolution has a better mechanism for
escaping local optima and has enhanced learnability characteristics than the models used
in the literature.

Table 1. Analysis and comparison of proposed and related work.

Ref.,
Year Contribution Model (s) Data Set Optimization

Method Remarks

[16],
2011

Prediction of
the number of
cloud resource

requests

Multilayer
perceptron

(MLP)
URL: www.

server@NASA
and www.

server@EPA

Back-
propagation

The back-propagation cannot avoid local
optimum thus may have less prediction
accuracy [43]. Linear hypothesis cannot

capture the nonlinear behavior of the
CPU usage data set (unseen) [44].

Autoregression
(AR)

Gradient descent

[12],
2012

Cloud resource
estimation

Linear regression
(LR)

TPC-W
benchmark

based CPU usage

QR-
decomposition

Linear hypothesis cannot capture the
nonlinear behavior of the CPU usage

data set (unseen) [44]. The
back-propagation cannot avoid local

optimum thus may have less
prediction accuracy [43].

Artificial neural
network (ANN)

Back-
propagation

[18],
2013

Hosts CPU
usage

prediction for
deciding about

ON/OFF of
hosts.

K-nearest
neighbor (KNN) Planet Lab

Euclidean
distance with K

values 1–10

KNN can have poor run-time
performance when the training set is

large [45]. Computation cost is quite high
because we need to compute the distance

of each query instance to all
training samples [45].

[46],
2013

CPU load
prediction in

cloud
computing

Recurrent neural
network (RNN)

Google Trace
data

Genetic
algorithm

The genetic algorithm may stick in
local optimum [43].

[47],
2014

Load
forecasting
based cloud

resource
provisioning

Support vector
regression (SVR)

Google Trace
data

SVR-type:
epsilon-

regression kernel:
radial basis

Support vector regression has large
time complexity [48].

[11],
2015

Cloud
workload
prediction

Autoregressive
integrated

moving average
(ARIMA)

Traces of
requests to the

web servers from
the Wikimedia

Foundation

Hyndman–
Khandakar
algorithm

Low accuracy for unseen data [49] and
model linearity [44] are issues of the

autoregressive integrated
moving average.

www.server@NASA
www.server@NASA
www.server@EPA
www.server@EPA
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Table 1. Cont.

Ref.,
Year Contribution Model (s) Data Set Optimization

Method Remarks

[19],
2015

Machine
learning

techniques for
auto-scaling
prediction

Support vector
regression (SVR)

TPC-W
benchmark

based number of
user requests per

minute

Not given The authors found that SVR has better
prediction accuracy for growing and

periodic workload patterns than ANN.
However, in the case of un-predicted
workload, ANN outperforms SVR.

Artificial neural
network (ANN)

Not given

[17],
2016

Cloud data
center

workload
prediction

Extreme learning
machine (ELM)

Google Trace
data (VM
requests)

The Levenberg–
Marquardt

algorithm (Trust
Region Search)

The performance can be unstable for
large-scale, imbalanced, and noisy

data sets [50].

[51],
2017

An autonomic
prediction suite

for cloud
resource

provisioning

ANN TPC-W
benchmark

based number of
user requests per

minute

Back-
Propagation and

Back-
Propagation with

weight decay

Authors used prediction models for
predicting periodic, growing, and
unpredictable types of workloads.

The back-propagation based
optimization used for the neural network
may be influenced by the local optimum

[43]. In contrast, the support vector
regression has large time and space

complexities [48].

SVR

SVR type:
Epsilon

regression,
Kernel: Radial

Basis

[43],
2018

Cloud host
CPU utilization

prediction

Recurrent neural
network (RNN)

Planet Lab CPU
usage

Optimization
(PSO) particle

swarm
In PSO, the non-oscillatory route can

quickly cause a particle to stagnate, and
also, it may prematurely converge on

suboptimal solutions that are not even
guaranteed to be local optimum [52].

Thus, the authors found prediction with
PSO based optimization with the mean
absolute error of 0.1564. CMA-ES does
not work well for large population size

and has large time complexity O
(
n6) [53].

The authors found prediction with
CMA-ES-based optimization with the

mean absolute error of 0.1498.

Covariance
matrix

adaptation
evolutionary

strategy
(CMA-ES)
algorithm

[54],
2019

Resource
prediction for

energy
efficiency in

cloud
environment

ARIMA
Planet Lab

workload traces

Not given The authors compared the resource
prediction accuracy of the models under
study. Their study showed that ANN has

the best accuracy of all the models.
They used back-propagation for weights
optimization of artificial neural networks

that may be influenced by
local optimum [43].

ANN Back-
propagation

Moving average
(MA) Not given

Random walk
(RW) Not given

[22],
2017

Adaptive
resource

prediction of
cloud server

ARIMA Bitbrains
workload traces

Hyndman–
Khandakar’s
(auto.arima)

algorithm

The adaptive system analyses the
distribution of the data set and selects the

appropriate prediction model

AR-NN Back-
propagation
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Table 1. Cont.

Ref.,
Year Contribution Model (s) Data Set Optimization

Method Remarks

[7],
2020

Predictive
scaling of iaas

server
resources

Recurrent
Cartesian genetic

programming-
based ANN

(RCGPANN)

Bitbrains
workload traces,

Geekbench
workloads

Neuro-evolution The predictive scaling system is tested on
a computer with a few CPU cores.

Proposed

Parallel neuro-
evolution

based cloud
resource

estimation

Cartesian genetic
programming-
based Parallel

neuroevolution-
ary neural
network

(CGPNN)

Bitbrains
workload traces

Parallel
neuro-evolution

The prediction model trained with
parallel neuroevolution enhances the
prediction accuracy by avoiding the

local optima.

3. CGP-Based Neuroevolutionary Neural Network (CGPNN)

Cartesian genetic programming (CGP) is a genetic programming method in which the
genetic code of the program is denoted by integers placed in the form of a directed graph.
Programs signified in the form of a graph can be applied to many problems in electronic
circuits, scheduling and neural networks [55].

Cartesian genetic programming-based neuroevolutionary neural network (CGPNN)
is an ANN that uses the basic principles of CGP. A CGPNN neuron is shown in (1) that has
three types of parameters. The first type of parameter is Ψ that triggers/disables a CGPNN
neuron (i.e., defines neural plasticity). The second type parameter is Φ, which delineates
the plasticity of synaptic connections of a neuron. The 3rd type of parameter is the weight
θ of the synaptic connection of a neuron. In (2), we present a mathematical model of the
linear combination of inputs, synaptic connections plasticity and synaptic weights used by
sigmoid hypothesis h.

hΨΦθ(x) = Ψ
(

1
1 + e−θT(Φx)

)
, Φ =

 Φ0 0 0
0 Φ1 0
0 0 Φ2

 ∈ R3×3

x =

 x0
x1
x2

 ∈ R3×1 , θ =

 θ0
θ1
θ2

 ∈ R3×1 (1)

where Ψ ∈ {0, 1} for single neuron it is scalar, Φ ∈ R3×3 matrix and θ ∈ R3×1 matrix for
x ∈ R3×1.

hΨΦθ(x) = Ψ× h(θ0Φ0x0 + θ1Φ1x1 + θ2Φ2x2) (2)

where h is the sigmoid hypothesis defined in (1).
In CGP, the processing units (nodes) are placed in the Cartesian plane. The processing

units may use any of the microscopic functions like AND, OR, XOR, Multiplexer, etc.
Whereas in CGPNN, the processing units are artificial neurons as an alternative to the
microscopic functions of CGP. Besides neurons, all doctrines and directions of the CGP are
followed by CGPNN.

We present a four-layer ANN in Figure 1 and then renovate this network to CGPNN,
as shown in Figure 2. The ANN model, displayed in Figure 2, presents a basic architecture
of ANN that has four layers, of which two middle layers are hidden layers, one input
and output layer, respectively. The parameters (θ′s) and activation function(s) are not
shown here for providing a modest illustration of the ANN. The input layer consists of
two system inputs x1 and x2 and a bias input x0 (where input x0 = 1). Layers 2 and 3 are
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hidden layers; each has two processing neurons and bias input. In layer 2, c0 is the bias
input while c1 and c2 are processing neurons. In layer 3, d0 is the bias input while d1 and d2
are processing neurons. Layer 4 has one processing neuron o1 that outputs the hypothesis
(hθ(x)) result. Where hθ(x) is a hypothesis h that maps the given inputs x0, x1 and x2 onto
the given output y by fine-tuning the parameters/weights (θ′s).
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A general architecture of CGPNN is shown in Figure 2, which is transmuted from
the ANN of Figure 1. The processing neurons (i.e., c1, c2, d1, d2, and o1) are placed in
the Cartesian plane where the vertical coordinate is one (i.e., one row), and horizontal
coordinates are five (i.e., five columns, first four columns have hidden layers neurons and
the 5th column has output neuron). The number of neurons in hidden layers’ columns and
output layer column may vary. All the bias inputs are placed in the input layer along with
inputs according to the CGP convention.

In CGPNN, the number of hidden layers’ neurons contributing to the production of
hypothesis estimate is not fixed in contrast to the ANN. In Figure 3, there are four hidden
layers of neurons (i.e., c1, c2, d1, and d2), the total possible combinations are fifteen, so
fifteen different networks may be spawned based on varying the number and location of
neurons. The possible networks of neurons may be either [c1, c2, d1, d2] or [c1, c2, d1] or
[c1, c2, d2] or [c2, d1, d2] or [c1, d1, d2] or [c1, c2] or [c1, d1] or [c1, d2] or [c2, d1] or [c2, d2]
or [d1, d2] or [c1] or [c2] or or [d2]. Thus, there are fifteen possible networks to be generated
from the network shown in Figure 3.
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The matrix n lists the neurons of the hidden layer as given in (3). In (3), we use
parameter matrix Ψ that describes neural plasticity of the network by triggering or dis-
abling a neuron or neurons in the hidden layers of the network. Whereas Ψj is used to
trigger/disable a neuron in the jth layer. Thus, neural plasticity parameters matrix Ψ is
multiplied with matrix n to select the neurons for a new configuration of the network.

n =


c1
c2
d1
d2

, Ψ =


Ψ2

0
0
0

0
Ψ3

0
0

0
0

Ψ4

0

0
0
0

Ψ5

 (3)

where
{

Ψ2, Ψ3, Ψ4, Ψ5} ∈ {0, 1}.
Similarly, the synaptic inputs for hidden layer neurons and output layer neurons of

CGPNN are not fixed in contrast to the ANN. After selecting the neurons, as mentioned
earlier, the synaptic inputs for each neuron are then selected by evolution. Layer 2 can get
inputs from layer 1 (except c0 and d0). Layer 3 can get inputs from both layer 1 and layer 2
(except c0 and d0). Layer 4 can get inputs (except x0 and d0) from all previous layers (i.e.,
layers 1, 2, 3). Layer 5 can have inputs from 1st, 2nd, 3rd, and 4th layers (except x0 and
d0). Similarly, the output layer can get inputs from 1st, 2nd, 3rd, 4th, and 5th layers (except
x0 and c0). The matrices I2, I3, I4, I5, and I6 given in (4), represent the possible inputs for
2nd, 3rd, 4th, 5th, and 6th layers, respectively. Where I j represents the input matrix for jth

layer neurons. The parameter α
j
i in (4), shows the output of ith neuron in jth layer.

In ANN, the number of inputs for each processing neuron is fixed, but in CGPNN, it is
not obligatory that a neuron will get all these synaptic inputs simultaneously. As in ANN
of Figure 1, each processing neuron gets three inputs, but here in CGPNN, each processing
neuron may get any amalgamation of inputs from the given list of inputs. Thus, we
define synaptic input parameters in (5). The synaptic inputs plasticity parameters are
listed in matrices Φ2, Φ3, Φ4, Φ5 and Φ6 for synaptic inputs matrices I2, I3, I4, I5, and I6,
respectively. The synaptic inputs plasticity parameters matrices Φ2, Φ3, Φ4, Φ5 and Φ6

defines the plasticity of synaptic inputs listed in matrices I2, I3, I4, I5, and I6, respectively.
Where Φj represents synaptic plasticity matrix for jth layer neurons inputs. The parameter
Φj

k defines plasticity of kth input in jth layer.
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I2 =

 x0
x1
x2

, I3 =


x0
x1
x2
α2

1

, I4 =


x1
x2
c0
α2

1
α3

1

, I5 =



x1
x2
c0
α2

1
α3

1
α4

1

, I6 =



x1
x2
α2

1
α3

1
d0
α4

1
α5

1


(4)

Φ2 =

 Φ2
1

0
0

0
Φ2

2
0

0
0

Φ2
3

, Φ3 =


Φ3

1
0
0
0

0
Φ3

2
0
0

0
0

Φ3
3

0

0
0
0

Φ3
4

 Φ4 =


Φ4

1
0
0
0
0

0
Φ4

2
0
0
0

0
0

Φ4
3

0
0

0
0
0

Φ4
4

0

0
0
0
0

Φ4
5

Φ5 =



Φ5
1

0
0
0
0
0

0
Φ5

2
0
0
0
0

0
0

Φ5
3

0
0
0

0
0
0

Φ5
4

0
0

0
0
0
0

Φ5
5

0

0
0
0
0
0

Φ5
6

Φ6 =



Φ6
1

0
0
0
0
0
0

0
Φ6

2
0
0
0
0
0

0
0

Φ6
3

0
0
0
0

0
0
0

Φ6
4

0
0
0

0
0
0
0

Φ6
5

0
0

0
0
0
0
0

Φ6
6

0

0
0
0
0
0
0

Φ6
7



(5)

where
{

Φ2, Φ3, Φ4, Φ5, Φ6} ∈ {0, 1}.
The parameters Ψ and Φj delineate plasticity of CGPNN two-fold, first by trigger-

ing/disabling neuron(s), also called neural plasticity, and second by triggering/disabling of
synaptic inputs, also called synaptic plasticity. Here we define the third type of parameter
that is common to both ANNs and CGPNN, i.e., the weights matrix of neuron inputs.
The weight matrix for jth layer neurons inputs are represented by θj. Where θ

j
k represents

the weight of kth input in the jth layer. The weights matrices are given in (6).

θ2 =

 θ2
1

θ2
2

θ2
3

, θ3 =


θ3

1
θ3

2
θ3

3
θ3

4

 ,θ4 =


θ4

1
θ4

2
θ4

3
θ4

4
θ4

5

 ,θ5 =



θ5
1

θ5
2

θ5
3

θ5
4

θ5
5

θ5
6

 ,θ6 =



θ6
1

θ6
2

θ6
3

θ6
4

θ6
5

θ6
6

θ6
7


(6)

After defining all three types of parameters of CGPNN, we now formulate layer-wise
outputs. Here h j

i is the sigmoid hypothesis of ith neuron in jth layer and α
j
i represents

output of ith neuron in jth layer.
The output of the 2nd layer of CGPNN shown in Figure 2 is represented by α2

1 and is
given in (7). The output of the 3rd layer is given in (8) that is characterized by α3

1. Layer 4
output is defined in (9), and the 5th layer’s output is given in (10). The CGPNN output is
represented by hΨΦθ(x) as given in (11). As in (11) the neural plasticity operator for output
layer neuron, i.e., Ψ6 = 1. The hypothesis that maps the inputs of the output layer (i.e.,
the 6th layer) with the desired output y is represented by h6

1. This hypothesis is h6
1 a linear

combination of inputs when CGPNN is used for solving a regression problem. In the case
of the classification problem, h6

1 is the sigmoid function of its inputs that is defined in (11).

α2
1 = Ψ2 × h 2

1

(
θ2

1 Φ2
1 x0 + θ2

2 Φ2
2 x1 + θ2

3 Φ2
3 x2

)
(7)

α3
1 = Ψ3 × h 3

1

(
θ3

1 Φ3
1 x0 + θ3

2 Φ3
2 x1 + θ3

3 Φ3
3 x2 + θ3

4 Φ3
4 α2

1

)
(8)

α4
1 = Ψ4 × h 4

1

(
θ4

1 Φ4
1 x1 + θ4

2 Φ4
2 x2 + θ4

3 Φ4
3 c0 + θ4

4 Φ4
4 α2

1 + θ4
5 Φ4

5 α3
1

)
(9)

α5
1 = Ψ5 × h 5

1

(
θ5

1 Φ5
1 x1 + θ5

2 Φ5
2 x2 + θ5

3 Φ5
3 c0 + θ5

4 Φ5
4 α2

1 + θ5
5 Φ5

5 α3
1 + θ5

6 Φ5
6 α4

1

)
(10)
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hΨΦθ(x) = Ψ6 × h 6
1

(
θ6

1 Φ6
1 x1 + θ6

2 Φ6
2 x2 + θ6

3 Φ6
3 α2

1 + θ6
4 Φ6

4 α3
1 + θ6

5 Φ6
5 d0 + θ6

6 Φ6
6 α4

1 + θ6
7 Φ6

7 α5
1

)
(11)

where Ψ6 = 1 for output layer neuron

h6
1(z) =

{
z for regression problems(

1
1+e−z

)
for classification problems

The mathematical model of CGPNN in terms of Ψ, Φ, θ and network inputs x0, x1, x2,
d0, d1 and d2 by substituting for α2

1, α3
1, α4

1 and α5
1 from (7)–(10) in (11), is given in (12).

hΨΦθ(x) = Ψ6 × h 6
1
[
θ6

1 Φ6
1 x1 + θ6

2 Φ6
2 x2 + θ6

3 Φ6
3
{

Ψ2 × h 2
1
(
θ2

1 Φ2
1 x0 + θ2

2 Φ2
2 x1 + θ2

3 Φ2
3 x2

)}
+ θ6

4 Φ6
4
{

Ψ3 × h 3
1(θ

3
1 Φ3

1 x0 + θ3
2 Φ3

2 x1 + θ3
3 Φ3

3 x2 + θ3
4 Φ3

4 (Ψ
2

×h 2
1
(
θ2

1 Φ2
1 x0 + θ2

2 Φ2
2 x1 + θ2

3 Φ2
3 x2

)
))
}
+ θ6

5 Φ6
5d0

+ θ6
6 Φ6

6
{

Ψ4 × h 4
1(θ

4
1 Φ4

1 x1 + θ4
2 Φ4

2 x2 + θ4
3 Φ4

3 c0 + θ4
4 Φ4

4 (Ψ
2

×h 2
1
(
θ2

1 Φ2
1 x0 + θ2

2 Φ2
2 x1 + θ2

3 Φ2
3 x2

)
) + θ4

5 Φ4
5 (Ψ

3 × h 3
1(θ

3
1 Φ3

1 x0 + θ3
2 Φ3

2 x1
+ θ3

3 Φ3
3 x2 + θ3

4 Φ3
4
(
Ψ2 × h 2

1
(
θ2

1 Φ2
1 x0 + θ2

2 Φ2
2 x1 + θ2

3 Φ2
3 x2

)))
))}

+ θ6
7 Φ6

7
{

Ψ5 × h 5
1(θ

5
1 Φ5

1 x1 + θ5
2 Φ5

2 x2 + θ5
3 Φ5

3 c0 + θ5
4 Φ5

4 (Ψ
2

×h 2
1
(
θ2

1 Φ2
1 x0 + θ2

2 Φ2
2 x1 + θ2

3 Φ2
3 x2

)
) + θ5

5 Φ5
5 (Ψ

3 × h 3
1(θ

3
1 Φ3

1 x0 + θ3
2 Φ3

2 x1
+ θ3

3 Φ3
3 x2 + θ3

4 Φ3
4
(
Ψ2 × h 2

1
(
θ2

1 Φ2
1 x0 + θ2

2 Φ2
2 x1 + θ2

3 Φ2
3 x2

)
)
)
) + θ5

6 Φ5
6 (Ψ

4

×h 4
1
(
θ4

1 Φ4
1 x1 + θ4

2 Φ4
2 x2 + θ4

3 Φ4
3 c0 + θ4

4 Φ4
4 (Ψ

2

×h 2
1
(
θ2

1 Φ2
1 x0 + θ2

2 Φ2
2 x1 + θ2

3 Φ2
3 x2

)
) + θ4

5 Φ4
5 (Ψ

3 × h 3
1(θ

3
1 Φ3

1 x0 + θ3
2 Φ3

2 x1
+ θ3

3 Φ3
3 x2 + θ3

4 Φ3
4
(
Ψ2 × h 2

1
(
θ2

1 Φ2
1 x0 + θ2

2 Φ2
2 x1 + θ2

3 Φ2
3 x2

)
)
)
))))}]

(12)

The parameters Ψ, Φ, and θ in (12) are optimized for minimizing the difference be-
tween the estimates made by the hypothesis hΨΦθ(x) and the actual output of a system, i.e.,
y, defined by a loss function J(Ψ, Φ, θ). The loss function J(Ψ, Φ, θ) is the mean absolute
percentage error (MAPE) as given in (13). We use MAPE because it measures residual
errors that give a global idea of the difference between estimates made by hypothesis
hΨΦθ(x) and the actual output y. In (13), m represents the number of training examples,
and s represents an index for each training example that ranges from 1 to m. The loss
function J(Ψ, Φ, θ) is minimized by the evolutionary optimization method given in figure.

J(Ψ, Φ, θ) =
∑m

s=1

∣∣∣ ys−hΨΦθ(xs)
ys

∣∣∣
m

× 100 (13)

4. CGPNN Optimization Method

CGPNN follows the basic principles of CGP for optimization. During optimization,
each neuron is denoted by its genotype. In Figure 3, the genotype of a generic CGPNN
neuron is shown. Inputs range from input0 to inputq, along each input are respective
synaptic plasticity parameters Φ and weight θ.

Now, the genotype CGPNN of Figure 2 is placed in an array. Inputs x0, x1, x2, c0
and d0 are represented by integers 0, 1, 2, 3 and 4, respectively. The hidden layers neurons
c1, c2, d1 and d2 are represented by integers 5, 6, 7 and 8, respectively. In array first five
locations are dedicated to the CGPNN input layer. Each neuron of hidden and output
layers is placed in eleven consecutive locations of the array. The layer 2 neuron c1 is placed
at indices 5 to 15 of the array,c2 at indices 16 to 26, d1 at indices 27 to 37, d2 at indices 38 to
48 and o1 at indices 49 to 59 of the array. The inputs indices of the array for c1 may have
values 0, 1, and 2, for c2 input values maybe 0, 1, 2 and 5, for d1 input locations may have
values 1, 2, 3, 5, and 6, for d2 input locations may have values 1, 2, 3, 5, 6, and 7, while for
o1 input locations may have values 1, 2, 4, 5, 6, 7, and 8. All locations of the array having Ψ
and Φ will have values 0 or 1. As we are using two types of hypothesis functions, so for a
neuron having a logistic sigmoid function, then in genotype its code will be 0, and for linear
hypothesis function code will be 1. Thus, in all function’s locations of neurons except for o1,
the function genetic code is 0. For o1 function, code maybe 0 for classification problem and
1 for a regression problem. All parameters and bias inputs are initialized, as presented in
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the algorithm shown in Figure 4. The genes of the initialized array are mutated (e.g., 10%
mutation) so as to make λ mutants (e.g., λ = 9, where mutant is offspring generated after
mutation operator). The value of loss function J(Ψ, Φ, θ) for each mutant is calculated
according to the definition of (13). The mutant with the lowest J(Ψ, Φ, θ) value is selected
for the next generation. In the next generation, the parent mutant is again mutated to
generate λ offspring mutants, again J(Ψ, Φ, θ) is calculated. The mutant with the lowest
J(Ψ, Φ, θ) is selected for the next generation, and the process continues. Until the lowest
limit of J(Ψ, Φ, θ) is reached or the maximum number of iterations is completed, then the
optimization stops. The last mutant is the genotype of the CGPNN that has optimized
parameters Ψ, Φ, and θ.
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5. Experimental Platform and Methodology

We execute the training and testing experiments on HP Pro Desk 400G3 MT Business
PC (HP, Palo Alto, CA, USA) that has Intel® Core™ i7-6700 CPU 3.40 GHz processor
and 8 GB RAM (Intel, Santa Clara, CA, USA). We used real CPU traces of Bitbrains
(http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains) data center during our experi-
ments. The dataset is composed of records of performance metrics of 1250 VMs from
a distributed datacenter Bitbrains. Bitbrains is a service provider that is specialized in
managed hosting and business computation for enterprises. Customers include many
major banks, credit card operators, and insurers. In this study, we use resource usage traces
of 120 VMs running on a single cloud server of the (from the fastStorage data set) Bitbrains

http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains
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data center. For each VM, the data set has monthly usage records for CPU, memory, net-
work, and storage. We have selected CPU as a candidate for estimation due to its excessive
usage for CPU intensive workloads. We have divided the CPU data set into two halves
for each half for training and testing. We have conducted the experiments according to
the methodology pictorially shown in Figure 5. In the experiments, we used six different
prediction points/instances, five different seeds, and three different initial chromosome
size (number of neurons). Before running an experiment, we select prediction points either
1 or 2 or 3 or 4 or 5 or 6. Then we select the seed number (i.e., either 1, 2, 3, 4 or 5). After the
selection of prediction points and the seed number, we then select the chromosome size
from three possible options of 50, 100 and 500. After these initial settings, we feed the
training data to the neuroevolutionary algorithm for training the CGPNN.
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Then we feed the testing data set to the trained CGPNN for testing. We extract the
CGPNN model accuracy on test data and its space and time complexities for storing in
a buffer. We repeat the above-mentioned process until all possible initial conditions for
prediction points, seed numbers, and chromosome sizes are checked/executed. When all
possible conditions/options are checked, we then compare all CGPNNs results stored
in the buffer. Moreover, select the CGPNN model with the best prediction accuracy and
possibly least space and time complexities.
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6. Results and Discussion

Table 2 presents the results of the experiments for each prediction instance. It can be
seen that the one instance prediction has the least mean absolute error (MAE). Two instances
of prediction have the least space complexity. While one, three, and six instances prediction
have smaller time complexities than two, four, and five instances prediction models.
To avoid scaling errors/overheads, space complexity can be compromised for MAE. Thus,
the one instance prediction can be chosen that has the least MAE and time complexity by
compromising on space complexity.

Table 2. Summary of prediction results for different numbers of prediction samples.

Number of
Instances

Space
Complexity

Time
Complexity MAE MAPE

1 O(14) O(14) 0.0463 3%
2 O(9) O(16) 0.0467 4%
3 O(10) O(14) 0.0472 5%
4 O(16) O(22) 0.0493 7%
5 O(14) O(18) 0.0498 8%
6 O(12) O(14) 0.0549 11%

Table 3 presents the results for a one-point prediction with five different seeds and
three different chromosome sizes. In the table, we have shown time complexity in terms of
critical path multipliers and logistic sigmoid functions. It can be seen that seeds one and
five have the least number of critical path multipliers and logistic sigmoid functions for
optimal networks with initial chromosome sizes of hundred and fifty neurons, respectively.
In contrast, the optimal network of seed five with an initial chromosome size of fifty
neurons has the least MAE (i.e., 0.046356). The space complexity is represented by the
number of active neurons in Table 3. In seeds two, three, and five, the networks with
chromosome size fifty and hundred and in seed four, the network with chromosome
size of five hundred, have the least number of active neurons. Thus, the network with a
chromosome size of fifty in seed five can be chosen as the final optimal network due to its
least MAE, least number of active neurons, least number of critical path multipliers, and
logistic sigmoid functions.

Table 3. Summary of results of optimal networks for one sample/instance prediction.

Seed
Neurons per

Chromo-
some

No. of
Active

Neurons
MAE Critical Path

Multipliers
Sigmoid

Functions

1
50 16 0.046493 9 9
100 15 0.046413 7 7
500 69 0.046591 32 32

2
50 14 0.046629 8 8
100 14 0.046558 9 9
500 24 0.046650 16 16

3
50 14 0.046580 8 8
100 14 0.046502 9 9
500 16 0.047080 10 10

4
50 17 0.046560 9 9
100 16 0.046580 8 8
500 14 0.046567 10 10

5
50 14 0.046356 7 7
100 14 0.046444 8 8
500 34 0.046803 22 22
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Figure 6 presents the prediction results of the network of seed five with an initial
chromosome size of fifty neurons that shows one-day CPU usage prediction results of the
Bitbrains data center server. It is clear from the results that our CGP based neuroevolution-
ary model predicts CPU usage with an accuracy (MAE) of 0.046356. In the next section,
we compare our CGP based neuroevolutionary model with models from literature for
accuracy and space and time complexities.
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Comparison with Related Work

Table 4 presents the model comparison for testing accuracy (MAE), space, and time
complexities. For comparison, we trained all models from the literature on training data of
Bitbrains CPU data set. The tabulated results are based on test data.

Table 4. Comparison of cloud server prediction models: proposed vs. related work.

Model Type/Characteristics Space Complexity Time Complexity MAE

AR-NN Univariate/hybrid, no built-in window O(1) O(1) 0.11874602
ARIMA Univariate/parametric, nobuilt-in window O(1) O(1) 0.16476377

MLP Multivariate/non-parametric, no
built-in window O(1) O(1) 0.1172989

ANN Multivariate/non-parametric, no
built-in window O(1) O(1) 0.1100977

SVR-linear Epsilon with linear kernel, no
built-in window O(n2) O(n2) 0.1108303

SVR-sigmoid Epsilon with the sigmoid kernel, no
built-in window O(n2) O(n2) 0.1112155

SVR-radial Epsilon with the radial kernel, no
built-in window O(n2) O(n2) 0.1158454

SVR-polynomial Epsilon with the polynomial kernel, no
built-in window O(n2) O(n2) 0.1127533

ELM No built-in window O(1) O(1) 0.1193865
RNN-Elman Elman, no built-in window O(1) O(1) 0.1133194
RNN-Jordan Jordan, no built-in window O(1) O(1) 0.1139574

LR No built-in window O(1) O(1) 0.1690222
KNN No built-in window O

(
n×
√

n ) O
(
n×
√

n ) 0.1978246
Proposed model Built-in window O(1) O(1) 0.046356
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AR-NN has MAE 0.16874602 and constant time Space and time Complexities. ARIMA,
MLP, and ANN have constant time Space and time Complexities. MAE of ARIMA is
0.11476377. Whereas MLP and ANN have 0.1172989 and 0.1200977 MAE values, respec-
tively. SVR with linear, sigmoid, radial, and polynomial kernels have Space and time
Complexities of order O

(
n2), while their MAE values are 0.1208303, 0.1212155, 0.1358454,

and 0.1227533, respectively. ELM, RANN (recurrent artificial neural network ) -Elman,
RANN-Jordan, and LR have constant time space and time complexities. While their MAE
values are 0.1193865, 0.1133194, 0.1239574, and 0.1190222, respectively. Similarly, KNN has
Space and time Complexities of order O

(
n×
√

n
)

and MAE 0.1978246. While the proposed
neuroevolutionary model has constant time space and time complexities and MAE 0.046356.
The proposed model has the least MAE that makes it the best predictor of all the models
under research.

Results show that all trained models except SVR and KNN have constant-time space
and computation time complexities. We have used the notation O(1) for constant time
space and time complexities (there are slight differences among space and time complexities
of models). Results show that our neuroevolutionary model has lesser space and time
complexities than KNN and SVR models. The model has better prediction accuracy
than other neural networks like feed-forward ANNs and recurrent ANNs (RNNs) [41,42].
While the proposed model has the best prediction accuracy (MAE) of all models from the
literature. To present the proposed model’s difference in performance/accuracy from other
models more clearly, we have plotted the MEs of all models in Figure 7. That shows that
the proposed model has the least MAE. In other words, Figure 7 shows that the proposed
model has the best prediction performance/accuracy of all models under study.

Electronics 2021, 10, x FOR PEER REVIEW 15 of 18 
 

 

While the proposed neuroevolutionary model has constant time space and time complex-
ities and MAE 0.046356. The proposed model has the least MAE that makes it the best 
predictor of all the models under research. 

Results show that all trained models except SVR and KNN have constant-time space 
and computation time complexities. We have used the notation 𝑂(1) for constant time 
space and time complexities (there are slight differences among space and time complex-
ities of models). Results show that our neuroevolutionary model has lesser space and time 
complexities than KNN and SVR models. The model has better prediction accuracy than 
other neural networks like feed-forward ANNs and recurrent ANNs (RNNs) [41,42]. 
While the proposed model has the best prediction accuracy (MAE) of all models from the 
literature. To present the proposed model’s difference in performance/accuracy from 
other models more clearly, we have plotted the MEs of all models in Figure 7. That shows 
that the proposed model has the least MAE. In other words, Figure 7 shows that the pro-
posed model has the best prediction performance/accuracy of all models under study. 

Table 4. Comparison of cloud server prediction models: proposed vs. related work. 

Model Type/Characteristics Space Complexity Time Complexity MAE 
AR-NN Univariate/hybrid, no built-in window O(1) O(1) 0.11874602 
ARIMA Univariate/parametric, no built-in window O(1) O(1) 0.16476377 

MLP Multivariate/non-parametric, no built-in window O(1) O(1) 0.1172989 
ANN Multivariate/non-parametric, no built-in window O(1) O(1) 0.1100977 

SVR-linear Epsilon with linear kernel, no built-in window O(n2) O(n2) 0.1108303 
SVR-sigmoid Epsilon with the sigmoid kernel, no built-in window O(n2) O(n2) 0.1112155 

SVR-radial Epsilon with the radial kernel, no built-in window O(n2) O(n2) 0.1158454 
SVR-polynomial Epsilon with the polynomial kernel, no built-in window O(n2) O(n2) 0.1127533 

ELM No built-in window O(1) O(1) 0.1193865 
RNN-Elman Elman, no built-in window O(1) O(1) 0.1133194 
RNN-Jordan Jordan, no built-in window O(1) O(1) 0.1139574 

LR No built-in window O(1) O(1) 0.1690222 
KNN No built-in window O(n × √n) O(n × √n) 0.1978246 

Proposed model Built-in window O(1) O(1) 0.046356 

 
Figure 7. Cloud server CPU usage prediction performance comparison. 

7. Conclusions and Future Directions 
With the increasing demand for cloud services, the load on cloud data centers in-

creases in an irregular fashion. For executing the irregular workload patterns, cloud serv-
ers use predictive scaling mechanisms to conserve energy in idle/low load times [7]. The 
energy conservation capability of predictive scaling mechanisms can be enhanced by ac-
curately predicting CPU demand before the scaling of resources. 

Figure 7. Cloud server CPU usage prediction performance comparison.

7. Conclusions and Future Directions

With the increasing demand for cloud services, the load on cloud data centers increases
in an irregular fashion. For executing the irregular workload patterns, cloud servers use
predictive scaling mechanisms to conserve energy in idle/low load times [7]. The energy
conservation capability of predictive scaling mechanisms can be enhanced by accurately
predicting CPU demand before the scaling of resources.

We introduced a CGP-based parallel neuroevolutionary model and evaluated its
accuracy for future CPU usage prediction using real CPU usage traces of Bitbrains data
center. We also evaluated the model for space and computation time complexities with
six different instances of prediction, five different seeds, and three different initial net-
work/chromosome sizes. Our model has achieved the best prediction accuracy of all
models (i.e., AR, ARIMA, KNN, ELM, SVR, and ANNs). Experimental results showed that
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our model achieved 97% prediction accuracy, which will lead to correct scaling decisions
in predictive scaling mechanisms of cloud servers.

In the future, we plan to integrate our CGP-based parallel neuroevolutionary model
with a predictive scaling mechanism on a multicore cloud server. In addition, our model
can be used with hotplugging mechanisms in hand-held devices for conserving battery
charge.
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