
electronics

Article

Singular Value Decomposition in Embedded Systems Based on
ARM Cortex-M Architecture

Michele Alessandrini †, Giorgio Biagetti † , Paolo Crippa *,† , Laura Falaschetti † , Lorenzo Manoni † and
Claudio Turchetti †

����������
�������

Citation: Alessandrini, M.; Biagetti,

G.; Crippa, P.; Falaschetti, L.; Manoni,

L.; Turchetti, C. Singular Value

Decomposition in Embedded Systems

Based on ARM Cortex-M Architecture.

Electronics 2021, 10, 34. https://doi.org/

10.3390/electronics10010034

Received: 11 November 2020

Accepted: 25 December 2020

Published: 28 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

Department of Information Engineering, Università Politecnica delle Marche,
Via Brecce Bianche 12, I-60131 Ancona, Italy; m.alessandrini@univpm.it (M.A.); g.biagetti@univpm.it (G.B.);
l.falaschetti@univpm.it (L.F.); l.manoni@pm.univpm.it (L.M.); c.turchetti@univpm.it (C.T.)
* Correspondence: p.crippa@univpm.it; Tel.: +39-071-220-4541
† These authors contributed equally to this work.

Abstract: Singular value decomposition (SVD) is a central mathematical tool for several emerging
applications in embedded systems, such as multiple-input multiple-output (MIMO) systems, data an-
alytics, sparse representation of signals. Since SVD algorithms reduce to solve an eigenvalue problem,
that is computationally expensive, both specific hardware solutions and parallel implementations
have been proposed to overcome this bottleneck. However, as those solutions require additional
hardware resources that are not in general available in embedded systems, optimized algorithms
are demanded in this context. The aim of this paper is to present an efficient implementation of the
SVD algorithm on ARM Cortex-M. To this end, we proceed to (i) present a comprehensive treatment
of the most common algorithms for SVD, providing a fairly complete and deep overview of these
algorithms, with a common notation, (ii) implement them on an ARM Cortex-M4F microcontroller,
in order to develop a library suitable for embedded systems without an operating system, (iii) find,
through a comparative study of the proposed SVD algorithms, the best implementation suitable for a
low-resource bare-metal embedded system, (iv) show a practical application to Kalman filtering of
an inertial measurement unit (IMU), as an example of how SVD can improve the accuracy of existing
algorithms and of its usefulness on a such low-resources system. All these contributions can be used
as guidelines for embedded system designers. Regarding the second point, the chosen algorithms
have been implemented on ARM Cortex-M4F microcontrollers with very limited hardware resources
with respect to more advanced CPUs. Several experiments have been conducted to select which
algorithms guarantee the best performance in terms of speed, accuracy and energy consumption.

Keywords: singular value decomposition (SVD); matrix decomposition; embedded systems; micro-
controllers; ARM Cortex-M; Kalman

1. Introduction

Singular value decomposition (SVD) is one of the basic and most important mathemat-
ical tools in modern signal processing. The method was firstly established by Beltrami and
Jordan [1] and successively generalized by Autonne [2], Eckart and Young [3]. Since then
SVD has successfully been applied on a huge number of different application fields, such
as biomedical signal processing [4–10], image processing [11–19], Kalman filtering [20–22],
array signal processing [23], dynamic networks [24], speech processing [25], simultaneous
localization and mapping (SLAM) systems [26], and variable digital filter design [27], to
cite just a few.

Various algorithms have been developed during the last decades for solving SVD [28],
among these Golub–Reisch [29], Demmel–Kahan [30], Jacobi rotation [31], one-sided Jacobi
rotation [32], and divide and conquer [33] algorithms are largely used since they guarantee
good performance in common applications. An overview of SVD as well as the methods
for its computation can be found in [34,35].

Electronics 2021, 10, 34. https://doi.org/10.3390/electronics10010034 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6601-0039
https://orcid.org/0000-0003-4504-7550
https://orcid.org/0000-0003-3183-7682
https://orcid.org/0000-0001-6996-6928
https://orcid.org/0000-0001-8713-9790
https://doi.org/10.3390/electronics10010034
https://doi.org/10.3390/electronics10010034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10010034
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/1/34?type=check_update&version=2

Electronics 2021, 10, 34 2 of 29

In recent years, there has been intense interest for emerging applications in em-
bedded systems, such as multiple-input multiple-output (MIMO) systems [36,37], data
analytics [38–41], sparse representation of signals [42–47], that require efficient SVD al-
gorithms. Since SVD algorithms reduce to solve an eigenvalue problem, that is compu-
tationally expensive, both specific hardware solutions [48–56] and parallel implementa-
tions [57,58] have been proposed to overcome this bottleneck.

For example, optimized libraries such as Linear Algebra PACKage (LAPACK) and
Basic Linear Algebra Subprograms (BLAS) (in their several implementations) that represent
the state-of-the-art solution on computer-class CPUs, use several optimizations to efficiently
take advantage of the hardware resources. An important optimization is reorganizing
the operation flow and the data storage to make a better use of the processor’s cache
memory, in order to speed-up the access to the large amount of data from and to the slower
RAM. Another improvement comes from parallelism, that is splitting the problem in
several smaller subsets and exploiting the parallel execution of modern multi-core CPUs. A
further form of parallelism is given by single instruction multiple data (SIMD) technology,
consisting of single instructions that perform the same operation in parallel on multiple
data elements of the same type and size. For example, a CPU that normally adds two 32-bit
values, performs instead four parallel additions of 8-bit values in the same amount of time.
Therefore, SIMD makes better use of the available resources in a microprocessor observing
that when performing operations on large amount of data on a microprocessor, parts of the
computation units are unused, while continuing to consume power.

It is worth to notice that all the SVD algorithms exhibit a large quantity of data-level
parallelism, making them well suited to be implemented with SIMD acceleration and
multi-core parallelism.

However, none of the cited hardware resources (cache memory, parallel execution
units) exist in microcontrollers, so all the relevant optimization techniques are not useful on
this class of embedded systems. About SIMD, actually the Cortex-M4 and newer embedded
architectures offer a primitive form of SIMD instructions that are limited to operate on 8 or
16-bit integer values, so they are not suitable for complex computations requiring higher
precision floating-point values for their stability.

Regarding more complex architectures, there is a rich literature on how to imple-
ment mathematical algorithms on Field Programmable Gate Arrays (FPGAs) and other
programmable hardware [53–56]. Those are generally sophisticated and expensive sys-
tems, used for high-end applications and exploiting a completely different computation
model, based on massive parallelism. Conversely the scope of this paper is on affordable,
low-power and low-resource embedded systems, generally based on microcontrollers, as
universally used in distributed scenarios like for example the Internet of Things concept.

Many embedded systems have a very limited amount of available memory, especially
data memory, and may not employ an underlying operating system to further reduce
resource usage. Because of this, the existing optimized libraries intended for computer-
class CPUs are not readily usable in embedded systems, nor easily portable. For this reason,
the demand of specific accelerating techniques that are able to implement SVD algorithms
in embedded processors, has seen a growing interest in the past few years [59].

Regarding the SVD implementation a large variety of algorithms exist, thus from
the embedded system designer point of view, comparing the performance achieved with
different algorithms implemented in a high-performance embedded processor is of great
interest.

The aim of this paper is to present an efficient implementation of the SVD algorithm
on ARM Cortex-M (Arm Ltd., Cambridge, UK). More specifically, as the SVD algorithm
is a central mathematical tool for several emerging applications in embedded systems
and, to our knowledge, no previous implementations of this algorithm exists in literature
for bare-metal microcontrollers, i.e., without an operating system, it is of paramount
importance to develop a library suitable for these devices, specifically for the ARM Cortex-
M4F architecture [60] . To achieve this goal, we proceeded:

Electronics 2021, 10, 34 3 of 29

(i) to provide a comprehensive treatment of the most common SVD algorithms, writing
the existing formulations found in literature in a more compact and uniform manner,
suitable to be used as a comprehensive reference;

(ii) to implement them on an ARM Cortex-M4F (Arm Ltd., Cambridge, UK). microcon-
troller, in order to develop a library that is suitable for embedded systems that work
without an operating system. As already mentioned, LAPACK and BLAS represent
the state-of-the-art solution on computer-class CPUs, but these optimized libraries
are not readily available and easily portable for embedded systems, because of the
very limited available memory and the lack of an underlying operating system of
these devices. To this end, we decided to implement five common SVD algorithms
(Golub–Reinsch, Demmel–Kahan, Jacobi rotation, one-sided Jacobi rotation and divide
and conquer) in order to adapt them to operate in limited resource embedded systems
and without an operating system.

(iii) to find the best implementation that fits the low-resources of bare-metal embedded
systems. For the purpose of finding the algorithms with the best performance for an
embedded system, this paper reports a comparative study of their performance in
terms of several implementation metrics: speed, accuracy and energy consumption.

(iv) to show a practical real-time application of the SVD in an embedded system, by
using the proposed optimized library for ARM Cortex-M4F in the Kalman filtering
of an inertial measurement unit (IMU). This example also proofs the advantage of
implementing the SVD on this class of systems, showing the improvement of the
numerical accuracy of Kalman filtering by applying the SVD algorithm with respect
to the conventional Kalman approach.

Thus, the paper is a good starting point for researchers and practitioners interested in
developing new algorithms to be implemented in low-resource microcontrollers.

This paper is organized as follows. Section 2 is mainly focused on the five most repre-
sentative SVD algorithms and gives a comprehensive treatment of them, with
Appendix A summarizing the basic concepts of matrix algebra related to SVD
transformation. Section 3 reports a comparative study of the five algorithms performance.
Section 4 presents an application of SVD to Kalman filtering of data from an IMU, showing
important improvements with respect to traditional algorithm implementation. Finally,
some conclusions end this work.

2. Algorithms for the Singular Value Decomposition

Let A be a real (m× n) matrix with m ≥ n. It is known that the decomposition

A = UΣVT (1)

where
UTU = VTV = VVT = I, Σ = diag(σ1, . . . , σn) (2)

exists [35]. The matrix U consists of n orthonormal eigenvectors corresponding to the n
largest eigenvalues of AAT , and the matrix V consists of the orthonormal eigenvectors of
AT A. The diagonal elements of Σ are the non-negative square roots of the eigenvalues of
AAT , called singular values. Assuming

σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 (3)

thus if rank(A) = M, it results σM+1 = σM+2 = . . . = σn = 0. The decomposition (1) is
called the singular value decomposition (SVD) of matrix A.

2.1. Golub–Reinsch Algorithm

This method, developed by G. H. Golub and C. Reinsch [29], acts directly on the
matrix A thus avoiding unnecessary numerical inaccuracy due to the computation of AT A.
The algorithm can be divided into these consecutive steps:

Electronics 2021, 10, 34 4 of 29

(i) Householder’s bidiagonalization (see Appendix A.2 for details);
(ii) implicit QR method with shift (see Appendix A.6 for details);

The pseudo-code of the algorithm is reported in Algorithm 1.

Algorithm 1 Golub–Reinsch

Require: A ∈ Rm×n(m ≥ n), ε a small multiple of the unit round-off

Use Algorithm A1 to compute bidiagonalization. B

0

← (U1 . . . Un)T A(V1 . . . Vn−2)

Repeat

for i = 1, . . . , n− 1 do

• Set bi,i+1 to zero if |bi,i+1| ≤ ε(|bii|+ |bi+1,i+1|)

• Find the largest q and the smallest p such that if

B =

B11 0 0 p

0 B22 0 n− p− q

0 0 B33 q

p n− p− q q

then B33 is diagonal and B22 has a nonzero superdiagonal.

if q = n then

STOP

end if

if any diagonal entry in B22 is zero then

zero the superdiagonal entry in same row

else

apply the Algorithm A3

end if

end for

2.2. Demmel–Kahan Algorithm

The structure of the algorithm is based on the Golub–Reinsch algorithm previously
described. Nevertheless the Demmel–Kahan algorithm [30] can achieve a better accuracy
for small singular values. This algorithm consists of the following main consecutive steps:

(i) Householder’s bidiagonalization (see Appendix A.2 for details);
(ii) QR iteration with zero-shift (see Appendix A.7 for details);

The description of this algorithm is shown in Algorithm 2.

Electronics 2021, 10, 34 5 of 29

Algorithm 2 Demmel–Kahan

Require: A ∈ Rm×n(m ≥ n) ∈ a small multiple of the unit round-off

Use Algorithm A1 to compute bidiagonalization. B

0

← (U1 . . . Un)T A(V1 . . . Vn−2)

Repeat

for i = 1 : n− 1 do

• Set bi,i+1 to zero if a relative convergence criterion is met

• Find the largest q and the smallest p such that if

B =

B11 0 0 p

0 B22 0 n -p -q

0 0 B33 q

p n-p-q q

than B33 is diagonal and B22 has a nonzero superdiagonal.

if q = n then

STOP

end if

if any diagonal entry in B22 is zero then

zero the superdiagonal entry in same row

else

apply the implicit zero-shift QR algorithm

end if

end for

2.3. Jacobi Rotation Algorithm

In this case given the real and symmetric matrix A ∈ Rn×n the algorithm [31] aims to
obtain a diagonal matrix B ∈ Rn×n through the transformation

B = JT AJ (4)

where J represents a sequence of rotation matrices. In particular for the k-th rotation or
sweep can be rewritten as

Ak+1 = JT
k Ak Jk, A0 = A (5)

where Jk = J(p, q, θ) is the Jacobi rotation matrix that rotates rows and columns p and q of
Ak through the angle θ so that the (p, q) and (q, p) entries are zeroes. The p and q values
are chosen properly at each iteration step. With reference to the sub matrices corresponding
to the p, q columns we have[

bpp bpq
bqp bqq

]
=

[
c s
−s c

]T[app apq
aqp aqq

][
c s
−s c

]
(6)

The key point of the algorithm is to determine the rotation coefficients c and s in such
a way the off-diagonal terms bpq and bqp are zeroed.

The algorithm is reported in Algorithm 3.

Electronics 2021, 10, 34 6 of 29

Algorithm 3 Jacobi rotation

Require: A ∈ Rn×n symmetric

B← A ∈ Rn×n

Repeat

for i = 1 : n− 1 do

for j = i + 1 : n do

Compute the rotations coefficients s, c such that bii 0

0 bjj

 =

 c s

−s c

T aii aij

aji ajj

 c s

−s c

 (7)

if off(A) < ε, where off(A) =
√

∑i 6=j a2
ij and ε is a small multiple of the unit

round-off then

STOP

end if

end for

end for

2.4. One-Sided Jacobi Rotation Algorithm

The main idea of this algorithm [32] is to rotate columns i and j of A through the angle
θ so that they become orthogonal to each other. In such a way the (i, j) element of AT A is
implicitly zeroed resulting in the scalar product of the i, j columns.

Let J(i, j, θ) be the Givens matrix that when applied to the matrix A yields

B = (b:1 · · · b:i · · · b:n) = AJ = (a:1 · · · a:i · · · a:n)

1 · · · 0 · · · 0
. . . c s

−s c 0
0 0 · · · 0 1

 (8)

where the i, j columns of B are given by

b:i = c a:i − s a:j (9)

b:j = s a:i + c a:j

The key point of the algorithm is to determine the rotation coefficients c and s in such
a way the elements (BT B)ij and (BT B)ji of the product B = AJ(i, j, θ) are zeroed.

The pseudo-code of the algorithm is reported in Algorithm 4.

Electronics 2021, 10, 34 7 of 29

Algorithm 4 One-sided Jacobi rotation

Require: A ∈ Rn×n symmetric

B← A ∈ Rn×n

Repeat

for i = 1 : n− 1 do

for j = i + 1 : n do

Compute the rotations coefficients s, c such that bii 0

0 bjj

 =

 aii aij

aji ajj

 c s

−s c

 (10)

if off(A) < ε, where off(A) =
√

∑i 6=j a2
ij and ε is a small multiple of the unit

round-off then

STOP

end if

end for

end for

2.5. Divide and Conquer Algorithm

For a square symmetric matrix A a relationship between singular values and eingen-
values, as well as between singular vectors and eigenvectors exists. Indeed, as A can be
diagonalized we can write

A = QΛQT = A sign(Λ)|Λ|QT (11)

where Λ is the eigenvalue diagonal matrix and Q is a unitary matrix (orthogonal in real
case). Since we can always assume that the elements of |Λ| are in decreasing order, then
to the diagonalization (11) corresponds an SVD such that U = Q sign(Λ), Σ = |Λ| and
VT = QT . In words the singular values are the absolute values of eigenvalues and the
singular vectors are the eigenvectors (same norm and direction, but not necessary the same
versus). For a non symmetric matrix the singular values and the singular vectors are not
directly related to the eigenvalues and eigenvectors, instead there is a strict relationship
with eigenvalues and eigenvectors of the symmetric matrices AT A ∈ RM×M and AAT ∈
RN×N . In fact it can be easily shown that

AT A = VΣ2VT

AAT = UΣ2UT (12)

where A is decomposed as A = UΣVT . From (12) it results that the singular values
of A are eigenvalues of the matrices AT A and AAT (except those equal to zero for the
latter). Additionally the right and left singular vectors are the eigenvectors of AT A and
AAT respectively, which can differ for a sign (note that the matrix A can be correctly
reconstructed provided the correct sign is known). Therefore, on the basis of previous
considerations, the singular value decomposition reduces to the eigenvalue problem of a
symmetric matrix. In general, the methods for solving such a problem are iterative methods
that include two stages:

(i) in the first stage the matrix A is transformed to a matrix B whose structure makes
the computation of the eigenvalues and eigenvectors easier. A typical choice, that is
assumed here, is a tridiagonal form.

Electronics 2021, 10, 34 8 of 29

(ii) in the second stage an iterative method is applied to determine the eigenvalues and
eigenvectors.

With reference to the second stage the divide and conquer algorithm aims at reducing
a complex problem to a singular one [33]. The algorithm is intended to be applied to a
tridiagonal and symmetric matrix T of dimension N × N.

The pseudo-code of the algorithm is reported in Algorithm 5.

Algorithm 5 Divide and conquer

Require: T ∈ Rn×n tridiagonal symmetric

Divide T as T =

 T1 0

0 T2

+ ρuuT

for i = 1, 2 do

Compute Λi, Qi eigenvalues/vectors of Ti as follows:

if Ti suitably small then

Compute eigenvalues/vectors directly

else

Apply recursively divide and conquer algorithm to Ti

end if

end for

Use factorized T1, T2 to compute D + ρvvT , where

D =

 Λ1 0

0 Λ2

, v =

 QT
1 0

0 QT
2

u (13)

Compute eigenvalues Λ by solving the secular equation D + ρvvT = QΛQT through

Li’s algorithm

Compute eigenvectors as

 Q1 0

0 Q2

Q

3. Experimental Results

The five algorithms described in the previous section have been implemented both in
MATLAB on a desktop computer and on a Cortex-M4F microcontroller.

The algorithms have been tested with several matrices A ∈ Rm×n. To ensure that the
algorithms worked in the most general cases, several sets of matrices of increasing size have
been chosen, each set with a different row/column ratio. Considering the limited memory
of the microcontroller, three sets of matrices have been tested, with a ratio of m/n = 1, 4

3
and 2, respectively. Further increasing the ratio would have caused the matrices to not fit
into the limited memory of the microcontroller without significantly reducing their rank
(memory occupation must take into account not only the input and output matrices, but
also the intermediate matrices and vectors needed by the various algorithms). Indeed,
preference has been given to maintaining comparable ranks between the set of matrices.
The low amount of RAM memory also limits the absolute size of matrices, so smaller
matrices have been used for the experiments on the microcontroller, with respect to the
tests in MATLAB.

Electronics 2021, 10, 34 9 of 29

The biggest matrix A has been randomly generated, and all the other matrices used
are the top-left portion of the full matrix A.

For algorithms requiring a symmetric matrix, the input matrix is converted to a sym-
metric form as follows. First it is converted to bidiagonal form by applying Algorithm A1,
then, being B the upper triangular portion of the bidiagonal matrix, the SVD algorithm
is applied to BBT . In such a way the singular values of the original matrix are the square
roots of eigenvalues of the latter tridiagonal matrix.

3.1. MATLAB Implementation

The algorithms have initially been implemented in MATLAB to test their correctness,
on 6-core, 12-thread Intel i7 CPU with 32 GB RAM (Intel, Santa Clara, CA, USA).

Figure 1 shows, as a matter of comparison, the timings of the various algorithms as
implemented in MATLAB, as functions of the number of columns n for a set of matrices
having m/n = 4

3 . Table 1 reports the accuracy of a sample of the same tests, with the
algorithms implemented in MATLAB with respect to the MATLAB built-in SVD function.
The errors reported are computed as the average of relative errors between the singular
value matching pairs, as computed by MATLAB built-in function and the given routines.

As you can see, all the algorithms, with the exception of Demmel–Kahan, ensure
the same accuracy of the MATLAB built-in SVD function. This could be expected, as
the Demmel–Kahan algorithm was specifically designed to deal well with very small
singular values, while the random-generated matrices we employed in our experiments
have singular values close to unity.

1

10

100

1000

10,000

100,000

1,000,000

 20 40 60 80 100 120 140 160

ti
m

e
 (

m
s
)

columns

Golub-Reinsch
Demmel-Kahan
Jacobi Rotation

One Sided Jacobi Rotation
Divide-Conquer

Figure 1. Timings of singular value decomposition (SVD) algorithms implemented in MATLAB for matrices A ∈ Rm×n

with m/n = 4
3 .

Electronics 2021, 10, 34 10 of 29

Table 1. Average errors of SVD algorithms implemented in MATLAB vs. MATLAB built-in.

Size Golub-Reinsch Demmel-Kahan Jacobi Rot. One-Sided J. Divide-Conquer

32 × 24 0 2.0 × 10−8 0 0 0
48 × 36 0 2.7 × 10−8 0 0 0
96 × 72 0 5.4 × 10−8 0 0 0

128 × 96 0 7.9 × 10−8 0 0 0
160 × 120 0 8.6 × 10−8 0 0 0
200 × 150 0 1.9 × 10−7 0 0 0

3.2. Cortex-M4F Implementation

Cortex-M4F implementations of the different algorithms were tested on a STM32F429ZI
microcontroller from STMicroelectronics, Geneva, Switzerland, (https://www.st.com/en/
microcontrollers-microprocessors/stm32f429zi.html), mounted on an 32F429IDISCOVERY
evaluation board (https://www.st.com/en/evaluation-tools/32f429idiscovery.html).

The STM32F429ZI microcontroller is based on an ARM 32-bit Cortex-M4F [60] CPU
clocked at 180 MHz, with 2 MB of flash memory for code and read-only data, and 256 KB
of RAM. In addition it has several hardware peripherals that are not relevant to this work.

A main feature of the Cortex-M4F core is the presence of a 32-bit hardware floating-
point unit (FPU), as implied by the additional “F” in its name. An FPU is essential for
any kind of heavy computational work in the floating-point domain, as is the case for the
experiments on SVD performed in this article. The Cortex-M4F FPU is limited to 32 bits
(https://developer.arm.com/docs/ddi0439/latest/floating-point-unit/about-the-fpu), so
the algorithms have been implemented using single-precision (32 bits) values. Implement-
ing this kind of algorithms on a CPU with no FPU, or with larger precision than that
managed by the hardware, would require the use of software floating-point mathematical
libraries, that would be prohibitive in an already resource-constrained system.

The algorithms were implemented in C language. No particular development envi-
ronment was used, the code was compiled with the GCC software suite for ARM on a
GNU-Linux machine, using a custom makefile and with the aid of the STM32F4xx Standard
Peripherals Drivers (STMicroelectronics, Geneva, Switzerland), a set of libraries provided
by ST for their specific microcontrollers and encompassing all aspects of hardware man-
agement, from low-level initialization to use of hardware peripherals. The firmware is of
the “bare-metal” kind, so no real-time operating system (RTOS) or other middlewares have
been added.

The hardware system requested no particular design besides what was already pro-
vided by the 32F429IDISCOVERY board (STMicroelectronics, Geneva, Switzerland). The
device has been clocked at its maximum speed of 180 MHz. The board also integrates all
the hardware needed for programming and debugging the microcontroller, namely the
ST-LINK/V2 interface (STMicroelectronics, Geneva, Switzerland), offering USB connec-
tivity with the computer. On the computer side, communication with such interface has
been established by using OpenOCD (http://openocd.org), a free software for debugging
and programming of ARM and other systems. OpenOCD finally acts as a server for GDB,
the standard debugger from the GCC suite, used when needed to transfer the code to the
device and examine its memory for the results of the tests.

Regarding input and output, read-only data for the program, like the bigger matrix
from which smaller ones are generated, or the reference vectors of singular values to
compute the accuracy, are stored in the program memory (flash memory) that is more
abundant than RAM. Once the program is run for a series of tests, the numerical outputs
can be examined through the debugger, by interrupting the program in convenient points.
The timing of the single routines is computed by the software itself, using the SysTick timer
built in the Cortex-M core.

https://www.st.com/en/microcontrollers-microprocessors/stm32f429zi.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f429zi.html
https://www.st.com/en/evaluation-tools/32f429idiscovery.html
https://developer.arm.com/docs/ddi0439/latest/floating-point-unit/about-the-fpu
http://openocd.org

Electronics 2021, 10, 34 11 of 29

Besides the optimizations performed by the compiler, special care has been exercised
in trying to optimize the critical mathematical routines, while keeping a low usage of
program memory and needed RAM, in order to speed up the computation as much as
possible while fitting in the constrained resources of the system.

A first optimization comes from choosing the best arrangement of data in memory.
Bidimensional matrices can be stored in RAM (which is a linear array of bytes) in two
different ways: row-major or column-major order, that is storing data sequentially by row
or column respectively (see Figure 2). The former one is the most common way in the C
language or anywhere the mathematical convention of having the row as the first index is
followed. This has a much more crucial impact in CPUs with cache memory, where cache
is filled with sequential data from RAM, and so it gives a huge speed boost in accessing
sequential data with respect to sparse ones. As said, a microcontroller has no cache memory,
so this is not directly the case; nevertheless a non-negligible advantage exists in accessing
data sequentially, due to the load/store assembly instructions with auto-increment, that is
instructions that read or write data from memory and increment the address register in a
single execution cycle.

(a) (b)

Figure 2. Matrix stored in memory in (a) row-major order and (b) column-major order.

As a quantitative example of the effect of row-major or column-major data storing, we
can consider the one-sided Jacobi rotation algorithm, that differs from the other ones for
accessing the input matrix exclusively by column. Table 2 shows the different timings of the
algorithm for the biggest set of matrices, both in absolute times and in percentage of speed
increase. As said, the increase in speed is minimal, even if appreciable. The last column
shows the time needed to transpose the matrix, in the case it is stored in the opposite way,
which is approximately one order of magnitude less than the time improvement obtained.
Moreover, often the input matrix to SVD is generated from previous computations, and so
it can be generated already in the more convenient order.

Table 2. Timing differences for one-sided Jacobi rotation with respect to data arrangement in memory.

Matrix Size Row-Major Column-Major Speed Increase Transposition

48× 24 19.6 ms 19.1 ms 2.6% 0.07 ms
72× 36 73.1 ms 71.9 ms 1.7% 0.15 ms
96× 48 192 ms 189.7 ms 1.2% 0.25 ms

120× 60 370.6 ms 366.8 ms 1% 0.39 ms
144× 72 634 ms 628.6 ms 0.9% 0.55 ms

Besides accessing data in the convenient order, that results in a modest speed incre-
ment, and lacking hardware resources to be further exploited, other optimizations must
be necessarily obtained by reducing the unneeded computations as much as possible. A
significant example is matrix multiplication, one of the most computationally expensive

Electronics 2021, 10, 34 12 of 29

operations in matrix algebra. Generally speaking, if C = A · B, the generic element of C is
given by

ci,j =
n

∑
k=1

ai,kbk,j (14)

where n is the number of columns of A. Computing all the elements of C in this way
requires a triple nested loop which is very computationally expensive, especially for large
matrices.

The number of operations performed for a matrix multiplication can be reduced by
observing the properties of the specific matrices. For example a recurrent operation in the
exposed algorithms requires the multiplication of a square matrix by its transpose, like
C = A · A′. In this case (14) becomes

ci,j =
n

∑
k=1

ai,kaj,k. (15)

First we can notice that in the inner loop A is always traversed by row, so we can
have the advantage of reading data always in the most convenient order if the matrix is
stored in row-major order. Most importantly it can easily be seen that A · A′ is a symmetric
matrix, so we can actually compute approximately half of its elements, sensibly reducing
the number of operations (Figure 3).

A A' C
Figure 3. Matrix product of A · A′. Green = cells used in computation, blue = cells to be computed, grey = duplicated cells.

A further reduction of the number of operations is possible in the case of C = A · A′
where A is an upper-diagonal matrix, another common case in the given algorithms. Given
that ai,j 6= 0 only for j = i or j = i + 1, from (15) follows that ci,j 6= 0 only for j = i− 1, i or
i + 1 (indeed the resulting matrix is tridiagonal) and that the only non-zero terms in the
sum are those for which ai,k and aj,k are both non-zero . The resulting formula is:

ci,j =

ai,iaj,i + ai,i+1aj,i+1, j = i
ai,i+1aj,i+1, j = i + 1
ai,iaj,i, j = i− 1
0, otherwise

(16)

where the (i + 1)th element may not exist. Being also symmetric, the reduction of the
previous case also applies (Figure 4).

Electronics 2021, 10, 34 13 of 29

A A' C
Figure 4. Matrix product of A · A′, with A upper-diagonal. Green = cells used in computation, blue = cells to be computed,
grey = duplicated cells.

Another special example is the multiplication of a matrix by a Givens matrix, in the
form of (A14), to perform a Givens rotation. Let us call G the Givens matrix to avoid
confusion with indices, and let’s limit for simplicity to the case of left multiplication, as
in C = G · A. If we initially set C = A, it is clear from the definition of G that only rows p
and q of C are affected by the multiplication. Moreover, only elements p and q of a given
column of A are used in the computation (Figure 5). So the only elements of C that need to
be updated are those at rows p and q, and their values are:

cp,j = gp,pap,j + gp,qaq,j, cq,j = gq,pap,j + gq,qaq,j (17)

for every column j. A similar formula holds for right-side multiplication.

G A C
Figure 5. Matrix product for Givens rotation. Green = cells used in computation, blue = cells to be computed.

The complexity of the previous computations, corresponding to matrix products for
different special cases of input matrices, can be compared in terms of number of scalar
multiplications with respect to the size of input matrices. Results are shown in Table 3,
together with the code size of the specific software routines.

Table 3. Number of scalar multiplications in matrix products for different types of n × n input
matrices.

Matrix Product Scalar Products Code Size (Bytes)

C = A · B, generic n3 148
C = A · A′ n3/2 + n2/2 210

C = A · A′, A upper-diagonal 3n− 1 304
C = G · A, Givens rotation 4n 108

Electronics 2021, 10, 34 14 of 29

The impact of such optimizations on computation speed can be measured, in particular
those from (15) and (16) and from the property of symmetry (Givens rotation is never
actually implemented as a matrix multiplication, since its matrix is expressly constructed
to only modify a few elements in the result). Table 4 shows the speed increase for the
set of biggest matrices when using two algorithms where these optimizations are mostly
relevant.

Table 4. Speed increase from optimized matrix multiplication algorithms.

Matrix Size Golub-Reinsch Demmel-Kahan

48× 24 21% 16%
72× 36 18% 16%
96× 48 36% 23%

120× 60 44% 16%
144× 72 18% 16%

Besides trying to optimize mathematical routines, it is important to avoid the prob-
lems arising from the limited power and precision of the microcontroller’s FPU. In case
of operations that can be carried out in different ways, choosing the right procedure
can make a substantial difference. For example the assembly multiplication instruc-
tion (VMUL.F32) takes 1 clock cycle to execute, while the division (VDIV.F32) takes
14 cycles (https://developer.arm.com/docs/ddi0439/b/floating-point-unit/fpu-functiona
l-description/fpu-instruction-set). In some cases the compiler can automatically substitute
an expensive operation with a cheaper one during the optimization phase of compilation,
for example when dividing by a constant.

Another problem arising from the limits of the FPU is the loss of precision in certain
operations in the 32-bit domain. For example a recurring problem in the given algorithms
is computing 1/

√
1 + x2. This kind of operation causes the loss of many significant bits

in the original value of x when x � 1. It must be verified experimentally when this is
tolerable and when not. In some cases the loss of precision causes a worsening of the
final accuracy by an order of magnitude. A possible solution is switching temporarily to
64-bit precision, then converting back to single precision when the sensitive computation
is done. Of course this sensibly increases the execution time, using software libraries
instead of the hardware FPU. A better solution is applying the logarithm to the value
to be computed, performing intermediate computations in the logarithm domain and
finally applying exponentiation. In this case log (1/

√
1 + x2) = −0.5 log (1 + x2), which

can take advantage of a special function in the C mathematical library, called “log1pf”, that
is optimized to compute log (1 + x) with high accuracy even if the value of x is near zero.
Tests show that using logarithm and exponentiation software libraries while remaining
in the 32-bit domain is faster and gives similar or better results than computing the root
square in software in double precision.

Figure 6 shows the timings of the full SVD algorithms implemented on the microcon-
troller for the three sets of matrices of different row/column ratio, with respect to the total
matrix size (m× n). The same results are also reported in Table 5, but with the three matrix
sets listed separately.

From the experimental results it can be seen that the time of the algorithms is roughly
dependent on the total matrix size, but with irregularities suggesting that other factors, like
the matrix rank, affect the total time.

On a comparative basis, as you can see the one-sided Jacobi rotation algorithm gives
the lowest execution time, compared to the others.

Table 6 reports the accuracy of the specific tests, implemented on the microcontroller,
with respect to the MATLAB built-in SVD function. As in Section 3.1, the errors reported are
computed as the average of relative errors of matching pairs of singular values, as computed

https://developer.arm.com/docs/ddi0439/b/floating-point-unit/fpu-functional-description/fpu-instruction-set
https://developer.arm.com/docs/ddi0439/b/floating-point-unit/fpu-functional-description/fpu-instruction-set

Electronics 2021, 10, 34 15 of 29

by MATLAB built-in function and the given routines. As you can see, the accuracy of
Cortex-M4F implementation is significantly lower than the equivalent MATLAB code; this
is due to the lower precision (32 bits) of the Cortex-M4F hardware floating-point unit. In
this case, both the one-sided Jacobi rotation and divide and conquer algorithms achieve a
better accuracy than the others.

Finally, Table 7 reports the energy consumption of the tests relative to one matrix set,
measured by sampling the voltage and current with an INA226 from Texas Instruments
(https://www.ti.com/product/INA226). The INA226 is a current and voltage monitor
with I²C interface, with a maximum gain error of 0.1%, maximum input offset of 10 µV and
16-bit resolution. A 0.1 Ω shunt resistor has been used in series with the microcontroller
power supply, and the data have been acquired through an external single-board computer.

As you can see, the results are coherent with execution times. As a matter of compari-
son, Figure 7 shows side-by-side the current consumption of the five algorithms for one of
the matrices. The one-sided Jacobi rotation algorithm, besides being faster, clearly has the
lowest average current consumption. It is worth noting that the other algorithms exhibit the
same pattern at the beginning, corresponding to the Householder’s bidiagonalization step.
This step has therefore a significant relevance, both in time and energy, for the algorithms
that need it.

 0

 1000

 2000

 3000

 4000

 5000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 11,000

ti
m

e
 (

m
s
)

total matrix size

Golub-Reinsch
Demmel-Kahan
Jacobi Rotation

One Sided Jacobi Rotation
Divide-Conquer

Figure 6. Timings of SVD algorithms on Cortex-M4F with respect to total matrix size m× n.

https://www.ti.com/product/INA226

Electronics 2021, 10, 34 16 of 29

Table 5. Timings of SVD algorithms on Cortex-M4F.

Size Golub-
Reinsch

Demmel-
Kahan Jacobi Rot. One-Sided

J.
Divide-

Conquer

24 × 24 17 ms 22 ms 28 ms 13 ms 18 ms
36 × 36 78 ms 133 ms 112 ms 45 ms 76 ms
48 × 48 229 ms 441 ms 310 ms 114 ms 223 ms
60 × 60 681 ms 1100 ms 693 ms 218 ms 523 ms
72 × 72 1092 ms 1232 ms 1396 ms 408 ms 1061 ms
32 × 24 28 ms 34 ms 39 ms 16 ms 29 ms
48 × 36 130 ms 186 ms 164 ms 57 ms 127 ms
64 × 48 388 ms 463 ms 482 ms 131 ms 381 ms
80 × 60 939 ms 1272 ms 1100 ms 252 ms 906 ms
96 × 72 2963 ms 2878 ms 2182 ms 430 ms 1847 ms
48 × 24 58 ms 64 ms 69 ms 19 ms 58 ms
72 × 36 283 ms 299 ms 316 ms 72 ms 279 ms
96 × 48 1115 ms 1434 ms 970 ms 190 ms 870 ms
120 × 60 2429 ms 2280 ms 2299 ms 367 ms 2103 ms
144 × 72 4427 ms 4669 ms 4672 ms 628 ms 4336 ms

Table 6. Average errors of SVD algorithms on Cortex-M4F vs. MATLAB built-in.

Size Golub-
Reinsch

Demmel-
Kahan Jacobi Rot. One-Sided

J.
Divide-

Conquer

24 × 24 3.8 × 10−7 7.8 × 10−7 1.0 × 10−6 1.9 × 10−7 2.2 × 10−6

36 × 36 4.8 × 10−7 2.3 × 10−6 1.7 × 10−6 3.5 × 10−7 7.0 × 10−6

48 × 48 4.7 × 10−7 7.1 × 10−6 3.0 × 10−6 2.4 × 10−7 6.6 × 10−6

60 × 60 5.3 × 10−7 4.8 × 10−6 7.3 × 10−7 3.0 × 10−7 4.3 × 10−6

72 × 72 4.6 × 10−7 2.6 × 10−6 1.7 × 10−6 3.4 × 10−7 4.7 × 10−6

32 × 24 2.7 × 10−7 5.7 × 10−7 2.2 × 10−7 1.7 × 10−7 2.9 × 10−7

48 × 36 3.6 × 10−7 2.4 × 10−6 4.0 × 10−7 1.7 × 10−7 2.6 × 10−7

64 × 48 2.9 × 10−7 2.7 × 10−6 2.9 × 10−7 1.7 × 10−7 1.9 × 10−7

80 × 60 4.1 × 10−7 5.9 × 10−6 5.4 × 10−7 2.4 × 10−7 4.0 × 10−7

96 × 72 1.6 × 10−6 6.5 × 10−6 6.0 × 10−7 2.7 × 10−7 3.5 × 10−7

48 × 24 3.0 × 10−7 1.7 × 10−6 1.6 × 10−7 1.7 × 10−7 9.5 × 10−8

72 × 36 2.7 × 10−7 6.5 × 10−7 3.7 × 10−7 1.5 × 10−7 1.4 × 10−7

96 × 48 1.0 × 10−6 8.7 × 10−6 4.1 × 10−7 1.8 × 10−7 1.5 × 10−7

120 × 60 5.9 × 10−7 3.9 × 10−6 4.8 × 10−7 2.0 × 10−7 1.5 × 10−7

144 × 72 4.8 × 10−7 5.3 × 10−6 5.8 × 10−7 3.1 × 10−7 1.3 × 10−7

Table 7. Energy consumption of SVD algorithms on Cortex-M4F.

Size Golub-
Reinsch

Demmel-
Kahan Jacobi Rot. One-Sided

J.
Divide-

Conquer

32 × 24 5.7 mJ 7.1 mJ 10.9 mJ 1.2 mJ 5.8 mJ
48 × 36 26.7 mJ 30.6 mJ 38.3 mJ 9.0 mJ 26.1 mJ
64 × 48 79.7 mJ 87.8 mJ 113.6 mJ 26.5 mJ 78.8 mJ
80 × 60 193.5 mJ 217.5 mJ 250.7 mJ 50.9 mJ 187.2 mJ
96 × 72 594.6 mJ 1150.9 mJ 487.8 mJ 86.7 mJ 382.1 mJ

Electronics 2021, 10, 34 17 of 29

 0.06

 0.065

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0 5 10 15 20 25 30

c
u
rr

e
n
t
(A

)

time (s)

Golub-Reinsch
Demmel-Kahan
Jacobi Rotation

One Sided Jacobi Rotation
Divide-Conquer

Figure 7. Current consumption of SVD algorithms on Cortex-M4F for the 96× 72 matrix, low-pass filtered.

4. Application: Kalman Filtering of Inertial System Data

As a practical application to an embedded system, and as a proof of the advantage
of implementing the SVD on this class of systems, we will show how SVD can be used to
improve the numerical accuracy of Kalman filtering applied to an inertial measurement
unit (IMU). Sensors included in an IMU are typically accelerometers and gyroscopes. Data
from such sensors, with proper filtering and data-fusion techniques, allow the computation
of the spatial orientation of a moving body (its attitude), namely the relative angles of the
body with respect to the spatial axes.

Accelerometers have the problem of high-frequency noise added to the signal, together
with additional acceleration terms when a force is applied to the body. Gyroscopes measure
the angular rate of change around each axis, that must be integrated to get angular positions;
this leads to a sensible drift in the resulting data, because gyroscopes are affected by a bias
in the measurement that is non-constant and unpredictable, resulting in a drift increasing
with time.

Kalman filter [61] is a common technique used to estimate the state of such a system
(namely the current angles along the chosen axes) given a set of discrete measurements
over time that are subject to statistical noise. To that end, the system dynamics must be
written in form of space-state equations:

xt = Axt−1 + But−1 + wt−1 (18)

yt = Cxt + vt (19)

where xt is the unknown system state vector to be estimated, vector ut is the control
input to the system and yt is the measurement vector. w and v are additive noise on
process and measurement data respectively, both assumed to be zero-mean Gaussian
processes: wt ∼ N (0, Qt), vt ∼ N (0, Rt). Initial state condition x0 is also a random
variable: x0 ∼ N (0, Π0).

It is shown in [22] that traditional Kalman filter implementations, like square-root
algorithms based on the Cholesky decomposition, are effective with well-conditioned
problems but may fail if equations are ill-conditioned, due to roundoff errors, as those
algorithms rely on matrix inversion in several places. On the other hand [22] shows how
an SVD-based Kalman filter variant works much better in ill-conditioned cases.

In the IMU example, a case of ill-conditioned problem is when multiple sets of the same
measurements are available. To better show a practical case, we report results obtained with

Electronics 2021, 10, 34 18 of 29

an X-NUCLEO-IKS01A2 (https://www.st.com/en/ecosystems/x-nucleo-iks01a2.html)
board, a sensor board from ST equipped, among others, with a gyroscope-accelerometer
combined sensor and a magnetometer-accelerometer one. The board can be used with a
microcontroller unit, in our case we used a NUCLEO-F411RE (https://www.st.com/en/ev
aluation-tools/nucleo-f411re.html), with a Cortex-M4F-based microcontroller similar to
the one used in the previous experiments.

For this hardware system the firmware has been developed using the STM32CubeIDE
development platform, version 1.4.0. An additional software package, X-CUBE-MEMS1,
has been installed in the IDE through its integrated software package manager. This
package supports the communication with the specific sensors in the X-NUCLEO-IKS01A2
inertial system. In this case the microcontroller (STM32F411RE) is clocked at 84 MHz.
Like in the previous experiment, the firmware is “bare-metal”, with no RTOS or other
middlewares added. Communication with the board for programming and debugging is
entirely managed by the IDE in this case.

Having two accelerometers available, it is convenient to use both data to get a better
estimate of the state, given the noisy nature of the device. Mathematically, matrices in
Equations (18) and (19) can be expressed as:

A =

1 −∆t 0 0
0 1 0 0
0 0 1 −∆t
0 0 0 1

 B =

∆t 0
0 0
0 ∆t
0 0

 C =

1 0 0 0
0 0 1 0

1 + δ 0 0 0
0 0 1 + δ 0

 (20)

and variables as:

x =

φ̂

b̂φ

θ̂

b̂θ

 u =

[
φ̇G
θ̇G

]
y =

φ̂A1
θ̂A1
φ̂A2
θ̂A2

 (21)

Here the system state includes the estimated roll and pitch angles (φ̂, θ̂) along x
and y axes respectively and the estimated gyroscope bias on both angles (b̂φ, b̂θ); sys-
tem inputs include angular rates from gyroscope (φ̇G, θ̇G); ∆t is the period of acquired
data; system measurements are given by estimated angles from both accelerometer data
(φ̂A1, θ̂A1, φ̂A2, θ̂A2).

The δ factor accounts for the fact that the two series of accelerometer data are very
similar numerically, leading to an ill-formed problem: the matrix is now nearly singular,
due to redundancy of system measurement variables. As shown in [22], we can expect that
resolution of Kalman filter equations by means of conventional algorithms will suffer from
roundoff errors when δ becomes small enough to be comparable to machine precision. We
can also expect that the SVD-based algorithm will work better in such cases.

The firmware on the board has been used to export a batch of measurements (gyro-
scope, accelerometer 1, accelerometer 2) to the computer, so that the data could be examined
in Matlab in a reproducible way. The data have a duration of about 90 s, with a ∆t of 10 ms,
and have been obtained by moving the device through a set of reference positions, namely
0, 90 and −90 degrees on the three axes.

Then the Kalman filter has been computed in Matlab with both algorithms (conven-
tional and SVD-based), repeating the experiment for various decreasing values of δ, until
approaching values comparable to machine precision.

Finally the accuracy of the estimated state has been evaluated by computing the mean
absolute error (in degrees) with respect to the reference intervals of known orientations, for
all the different values of δ.

Table 8 shows that the two algorithms give very similar results down to a certain value
of δ, but at lower values the conventional algorithm fails (“NaN” means Not-a-Number, an
error condition indicating an invalid numeric value). The SVD-based algorithm, conversely,

https://www.st.com/en/ecosystems/x-nucleo-iks01a2.html
https://www.st.com/en/evaluation-tools/nucleo-f411re.html
https://www.st.com/en/evaluation-tools/nucleo-f411re.html

Electronics 2021, 10, 34 19 of 29

keeps working with neglectable difference for other two orders of magnitude of δ, starting
to degrade at a much lower value.

Table 8. Matlab: mean absolute errors (φ, θ) of estimated angles (degrees).

Algorithm δ = 10−8 δ = 10−9 δ = 10−10 δ = 10−11 δ = 10−12

Conventional 1.7337 1.1066 1.7337 1.1066 NaN NaN NaN NaN NaN NaN
SVD-based 1.7337 1.1066 1.7337 1.1066 1.7357 1.1065 1.7113 1.3738 23.6834 27.0080

To perform a similar experiment with the limited capabilities of an embedded system,
the same algorithms for the Kalman filter have been implemented in a C program on
the same set of off-line data, using the custom SVD algorithms discussed in the previous
sections and with floating-point numbers in single precision (32 bit), that is the same
precision of the floating-point hardware of the Cortex-M4F architecture. To just focus on
the difference between conventional and SVD-based Kalman filter, we used one only SVD
algorithm, namely the One-Sided Jacobi, that proved to be the best one under several
criteria (Section 3). The other algorithms have shown to give similar results.

Preliminary tests have shown that with limited numeric precision, as in this case, the
conventional Kalman algorithm is much more sensible to variations of initial conditions.
Actually, the difference between the two Kalman implementations is evident even in
the single accelerometer case, by varying the relative values of the covariance matrices
involved.

As a clarifying example, a series of tests is shown with fixed values Π0 = I4 and
Q = I4, data from a single accelerometer and varying values of R. Results are shown
in Table 9, which highlights a trend similar to the Matlab case: the two algorithms are
very similar for some cases, but the SVD-based one works uniformly on a wider range of
parameters.

Table 9. Single precision C code: mean absolute errors (φ, θ) of estimated angles (degrees).

Algorithm R = I2 R = 0.8I2 R = 0.6I2 R = 0.4I2 R = 0.2I2

Conventional 2.7197 1.3642 2.7191 1.3820 2.7124 1.4480 NaN NaN NaN NaN
SVD-based 2.7186 1.3477 2.7173 1.3494 2.7159 1.3516 2.7143 1.3543 2.7124 1.3580

About the actual performances on a Cortex-M4F microcontroller, the matrices involved
in the SVD-based Kalman algorithm are much smaller than the ones in Table 5, having a
maximum size of 8x4 in the case of double accelerometer. An extrapolation of the results in
Table 5 leads to an estimate of fractions of millisecond, so the computation of Kalman filter
using the SVD-based variant should be possible in real time in most applications.

5. Conclusions

This paper presents a comparative study of five of the most common SVD algorithms,
namely Golub–Reinsch, Demmel–Kahan, Jacobi rotation, one-sided Jacobi rotation, divide
and conquer. The aim of this comparative study is to find the most suitable algorithm
for an embedded system. The chosen algorithms have been investigated starting from a
theoretical perspective giving a detailed mathematical description, which provides crucial
hints for the practical implementations. The algorithms have been initially written in
MATLAB to verify their correctness, then implemented on a Cortex-M4F microcontroller
to achieve optimized results for low-resource embedded systems. The comparison of the
Cortex-M4F implementations shows that the one-sided Jacobi rotation outperforms the
other algorithms in terms of speed, accuracy and energy consumption. Moreover the
divide and conquer algorithm shows similar accuracy results. Finally the SVD has been
applied to an example case, showing that it can improve the accuracy of algorithms where
the data are ill-conditioned, while traditional implementations may fail.

Electronics 2021, 10, 34 20 of 29

Author Contributions: Conceptualization, M.A., G.B., L.F., L.M. and C.T.; investigation, M.A., L.F.,
L.M. and C.T.; methodology, M.A., G.B., L.F., L.M. and C.T.; project administration, P.C. and C.T.;
software, M.A., G.B., L.F. and L.M.; supervision, P.C. and C.T.; validation, M.A., G.B. and L.M.;
visualization, M.A. and L.F.; writing—original draft, M.A., L.F., L.M. and C.T.; writing—review and
editing, M.A., G.B., P.C., L.F., L.M. and C.T. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Matrix Algebra Operations

Appendix A.1. Householder Transformation

It is based on an (n× n) symmetric matrix of the form

U = I − 2
uuT

uTu
(A1)

where u is the Householder vector. A matrix of this kind is also called a Householder
reflection, due to the following specific geometry property. A given vector x can always be
represented as

x = αu + w, α ∈ R (A2)

where w is orthogonal to u. By applying the transformation U to x one gets the vector

Ux = (I − 2
uuT

uTu
)(αu + w) = −αu + w , (A3)

representing the reflected vector of x with respect to the hyperplane spanned by w. Thanks
to this property the Householder transformation can be used to zero selected components
of a vector. To show this let us choose u such that

u = x± ‖x‖e1 (A4)

where e1 = (1, 0, . . . , 0)T , and ‖·‖ is the Euclidean norm of a vector. By applying the
transformation U so obtained to x, then it results

Ux = ∓‖x‖e1 (A5)

meaning that all the components of x but the first one are zeroed. A common choice
to avoid errors when x1 ≈ ‖x‖ is to pose u = x + sign(x1)‖x‖e1. The method can be
generalized to the k-th component as follows. For the generic index k ∈ {1, . . . , n}, let us
define

uk = [0, . . . , 0, xk ± s, xk+1, . . . , xn]
T (A6)

where s =
√

x2
k + . . . + x2

n. The resulting Householder matrix Uk when applied to x gives

Uk x = [x1, x2, . . . , xk−1,∓s, 0, . . . , 0]T , (A7)

that is Uk leaves the first k− 1 components unchanged, changes the k-th component and
zeroes all the residual n− k components. It can be easily shown that Uk has the block form

Uk =

[
Ik−1 0

0 Û

]
(A8)

Electronics 2021, 10, 34 21 of 29

where Û acts only on the last n− k + 1 components of x by zeroing them all but the k-th
component. Similarly, the transformation

xTV = xT(I − 2
vTv
vvT) , (A9)

where v is a row vector, acts on the row vector xT by zeroing some of its components. A
useful property of U is that it is not necessary for the matrix to be explicitly derived, indeed
the transformation

Ux = (I − 2
uuT

uTu
)x = x− 2

uTx
uTu

u (A10)

can be written in terms of u alone.
A mathematical description of the algorithm is shown in Algorithm A1.

Algorithm A1 Householder bidiagonalization

Require: A ∈ Rm×n

for k = 1, . . . , n− 1 do

• Determine Householder matrix Uk such that

Uk x = [x1, x2, . . . , xk−1,∓s, 0, . . . , 0]T

A← Uk A

if k < n− 1 then

• Determine Householder matrix Vk such that

xT Vk = [x1, x2, . . . , xk,∓s, 0, . . . , 0]

A← A Vk

end if

end for

Appendix A.2. Householder’s Bidiagonalization

Given the matrix A ∈ Rn×m (n > m) the bidiagonal form

A = UBVT , U ∈ Rn×n, V ∈ Rm×m (A11)

with

B =

[
B̂
0

]
∈ Rn×m,

B̂ =

ψ1 φ1 0 · · · 0
0 ψ2 φ2
...

.
ψm−1 φm−1

0 ψm

 ∈ Rm×m, (A12)

exists. The matrix B can be obtained from A by the successive orthogonal transformation

B = Um · · ·U1 A V1 · · ·Vm−2 (A13)

where Uk, Vk are Householder’s matrices. In particular for the k-th step:

(i) an Householder matrix Uk can be defined for zeroing all the last n− k components of
the k-th column of B;

Electronics 2021, 10, 34 22 of 29

(ii) an Householder matrix Vk can be defined for zeroing all the m− k− 1 components of
the k-th row of B.

At the end of the process the diagonalization (A11) is achieved with U = Um · · ·U1, V =
V1 · · ·Vm−2. The computational cost of this process is about O(n3).

Appendix A.3. Jacobi Rotation

Householder transformation is useful for zeroing a number of components of a vector.
However when it is necessary to zero elements more selectively, Jacobi (or Givens) rotation
is able to zero a selected component of a vector. It is based on the Jacobi matrix, also called
Givens matrix, denoted by J(p, q, θ), of the form

J(p, q, θ) =

1 · · · 0 · · · 0 · · · 0
...
0 · · · c · · · s · · · 0 p
...
0 · · · −s · · · c · · · 0 q
...
0 · · · 0 · · · 0 · · · 1

p q

(A14)

where c = cos θ and s = sin θ. Premultiplication of a vector by J(p, q, θ)T corresponds to
a counterclockwise rotation of θ in the (p, q) plane, that zeroes the q components of the
resulting vector y. Indeed, if x ∈ Rn and

y = J(p, q, θ)Tx , (A15)

then

yj =

cxp − sxq, j = p
sxp + cxq, j = q
xj, j 6= p, q

. (A16)

From (A16) it is clear that yq can be forced to zero by setting

c =
xp√

x2
p + x2

q

, s =
−xq√
x2

p + x2
q

. (A17)

The Jacobi matrix, when applied as a similarity transformation to a symmetric ma-
trix A,

B = J(p, q, θ)T A J(p, q, θ) , (A18)

rotates rows and columns p and q of A through the angle θ so that the (p, q) and (q, p)
entries are zeroed.

Appendix A.4. QR Factorization

This factorization is a fundamental step in QR iteration algorithms. The QR factoriza-
tion of an (m× n) matrix A is given by

A = QR (A19)

where Q ∈ Rm×m is orthogonal and R ∈ Rm×n is upper triangular. Having derived the
properties of Householder transformation, it is straightforward to show that the upper
triangular matrix R can be obtained by successive transformations

Hn Hn−1 . . . H1 A = R (A20)

Electronics 2021, 10, 34 23 of 29

where H1, H2, . . . , Hn are Householder matrices, and so by setting Q = H1 . . . Hn we obtain
A = QR.

Appendix A.5. QR Iteration

This algorithm is based on the QR factorization and the “power method”. Assuming
A ∈ Rn×n is a symmetric matrix then, by the symmetric Schur decomposition, there exists
a real orthogonal Q such that

QT AQ = diag(λ1, . . . , λn) (A21)

with λ1 ≥ λ2 ≥ . . . ≥ λn. Given a vector q(0) ∈ Rn, such that ‖q(0)‖ = 1, the power
method produces a sequence of vectors q(k) as follows:

for k = 1, 2, . . . do

z(k) = A q(k−1)

q(k) = z(k)/‖z(k)‖

λ(k) = [q(k)]T A q(k)

end for

(A22)

The power method states that if q(0) 6= 0 and λ1 > λ2 ≥ . . . ≥ λn then q(k) converges
to an eigenvector and λ(k) to the corresponding eigenvalue.

This method can be generalized to solve the eigenvalue problem of a symmetric matrix.
To this end let us consider an (n× n) matrix Q0 with orthonormal columns and a sequence
of matrices {Qk} generated as follows:

for k = 1, 2, . . . do

Zk = A Qk−1

Qk Rk = Zk (QR factorization)

end for

(A23)

where the QR factorization is applied at each step to obtain the matrices Qk and Rk, then
(A23) defines the so-called orthogonal iteration. It can be shown [62] that the matrices Tk
defined by

Tk = QT
k A Qk (A24)

are converging to a diagonal form whose values {λ(k)
1 , . . . , λ

(k)
n } converge to {λ1, . . . , λn}.

From definition of Tk−1 we have

Tk−1 = QT
k−1 A Qk−1 = QT

k−1(A Qk−1) = QT
k−1(QkRk) (A25)

where the QR factorization of A Qk−1 has been applied. Similarly, using (A23) and orthog-
onality of Qk−1, one gets

Tk = QT
k AQk = (QT

k AQk−1)(QT
k−1Qk) = Rk(QT

k−1Qk) . (A26)

Defining Uk = QT
k−1Qk the algorithm (A23) can be rewritten as

Electronics 2021, 10, 34 24 of 29

T0 = UT
0 AU0

for k = 1, 2, . . . do

UkRk = Tk−1 (QR factorization)

Tk = RkUk

end for

(A27)

where U0 ∈ Rn×n is orthogonal. Since Tk = RkUk = UT
k (UkRk)Uk = UT

k Tk−1Uk, it follows
by induction that

Tk = (U0U1 . . . Uk)
T A (U0U1 . . . Uk) (A28)

and Tk converges to the diagonal form (A21). The iteration (A27) establishes the so-called
QR iteration algorithm for symmetric matrices.

The main limitation of QR algorithm is that it is only valid for symmetric matrices,
such as AT A, thus the method cannot be directly applied to the matrix A.

Appendix A.6. Implicit QR Method with Shift

The symmetric QR algorithm (A27) can be made more efficient in two ways:

(i) by choosing U0 such that U0 A U0 = T0 is tridiagonal. In this way all Tk in (A27)
are tridiagonal and this reduces the complexity of the algorithm to O(n2); once the
Householder’s algorithm is applied to the matrix A giving the bidiagonal matrix B̂,
the tridiagonal form T0 can be easily obtained as T0 = B̂T B̂.

(ii) by introducing a shift in the iteration of (A27): with this change the convergence to
diagonal form proceeds at a cubic rate. This result is based on the following facts:

(a) if s ∈ R and T − sI = QR is the shifted version of T then T+ = RQ + sI is also
tridiagonal;

(b) if s is an eigenvalue of T, s ∈ λ(T), the last column of T+ equals s en = s(0 . . . 1)T ,
that is T+(n, n) = s.

With regard to the second point the algorithm (A27) modifies to the following

T = B̂T B̂ (tridiagonal)

for k = 0, 1, . . . do

Determine real shift µ

UR = T − µI (QR factorization)

T = RU + µI

end for

(A29)

where µ is a good approximate eigenvalue and

T =

a1 b1 · · · 0
b1 a2 · · · 0

.
bn−1

bn−1 an

 . (A30)

An effective choice is to shift by the eigenvalue of[
an−1 bn−1
bn−1 an

]
(A31)

Electronics 2021, 10, 34 25 of 29

known as the Wilkinson shift and given by

µ = an + d− sign(d)
√

d2 + b2
n−1, d = (an−1 − an)/2 . (A32)

If µ is a good approximation of the eigenvalue s, then the term bn−1 will be smaller
after a QR step with shift µ. It has been shown [63] that with this shift strategy, (A28) is
cubically convergent.

A pseudo-code of the algorithm in shown in Algorithm A2.

Algorithm A2 QR iteration with shift

Require: A ∈ Rm×n

Apply Algorithm A1 to obtain bidiagonal B̂

T = B̂T B̂ tridiagonal

for k = 1, . . . do

• Select B22(2× 2): block matrix at the right bottom of B̂T B̂

• Compute eigenvalues λ1, λ2 of B22

• Determine shift µ = min(λ1, λ2)

T = µT = UR (QR factorization)

T = RU + µI

end for

It is possible to execute the transition to T = RU + µI without explicitly forming
the matrix T − µI, thus giving the implicit shift version [62]. This is achieved by a Given
rotation matrix in which c = cos(θ) and s = sin(θ) are such that[

c s
−s c

]T [a1 − µ
b1

]
=

[
x
0

]
. (A33)

However if we set J1 = J(1, 2, θ) we have

T ← JT
1 TJ1 =

x x + 0 · · · 0

x x x
...

+ x x 0
. . .

x x
0 · · · · · · 0 x x

. (A34)

where the two nonzero elements “+” out of the tridiagonals appears. To “chase” these
unwanted elements, we can apply rotations J2, . . . , Jn−1 of the form Ji = J(i, i + 1, θi), i =
2, . . . , n− 1, such that if z = J1 J2 . . . Jn−1 then ZTTZ is tridiagonal. In such a way, it can be
shown that the tridiagonal matrix produced by this implicit shift technique is the same as
the tridiagonal matrix obtained by the explicit method.

A description of implicit QR method with shift is reported in Algorithm A3, while the
pseudo-code for Golub–Reinsch algorithm is described in Algorithm 1.

Electronics 2021, 10, 34 26 of 29

Algorithm A3 QR iteration with implicit shift

Require: A ∈ Rm×n

Apply Algorithm A1 to obtain bidiagonal B̂

T = B̂T B̂ tridiagonal

Compute the eigenvalue µ of

 Tm−1,m−1 Tm−1,m

Tm,m−1 Tm,m

that is closer to Tm,m.

Choose the Givens matrix J1 = J(1, 2, θ) such that

JT
1

 a1 − µ

b1

 =

 x

0

T = JT

1 TJ1

for k = 2, . . . , m− 1 do

Jk = J(k, k + 1, θk)

Z = J1 J2 . . . Jk

T = ZTTZ

end for

Appendix A.7. QR Iteration with Zero-Shift

This algorithm is a variation of the QR standard method with shift, called implicit
zero-shift QR algorithm, since it corresponds to the standard algorithm when σ = 0, which
computes all the singular values of a bidiagonal matrix, with guaranteed high relative
accuracy.

To show the algorithm, let us take σ = 0 and refer to a 4 × 4 matrix example.
From (A26) one gets tan θ1 = −b12/b11 so that the result of the first rotation is

B(1) = BJ1 =

b(1)11 0
b(1)21 b(1)22 b23

b33 b34
b44

 . (A35)

We see that (1, 2) entry is zero and, as it will propagate through the rest of the
algorithm, this is the key of its effectiveness. After the rotation by J2 we have

B(2) = J2BJ1 =

b(2)11 b(2)12 b(2)13

0 b(2)22 b(2)23
b33 b34

b44

 (A36)

where [
b(2)12 b(2)13

b(2)22 b(2)23

]
=

[
sin θ2b(1)22 sin θ2b23

cos θ2b(1)22 cos θ2b23

]
(A37)

Electronics 2021, 10, 34 27 of 29

is a rank one matrix. Postmultiplication by J3 to zero out the (1, 3) entry will also zero out
the (2, 3) entry:

B(3) = J2BJ1 J3 =

b(2)11 b(3)12 0

0 b(3)22 0
b(3)32 b(3)33 b34

b44

 . (A38)

Rotation by J4 just repeats the situation: the submatrix of J4 J2BJ1 J3 consisting of row
2 and 3 and columns 3 and 4 is rank one, and rotation by J5 zeroes out the (3, 4) entry as
well as the (2, 4) entry. This engine repeats itself for the length of the matrix. Thus at each
step of zero-shift algorithm a transformation is applied which takes f and g as input and
returns r, cs = cos θ and sn = sin θ such that[

cs sn
−sn cs

] [
f
g

]
=

[
r
0

]
. (A39)

References
1. MacDuffee, C.C. The Theory of Matrices; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 5.
2. Autonne, L. Sur les groupes linéaires, réels et orthogonaux. Bull. Soc. Math. Fr. 1902, 30, 121–134. [CrossRef]
3. Eckart, C.; Young, G. A principal axis transformation for non-Hermitian matrices. Bull. Am. Math. Soc. 1939, 45, 118–121.

[CrossRef]
4. Yücelbaş, Ş.; Yücelbaş, C.; Tezel, G.; Özşen, S.; Yosunkaya, Ş. Automatic sleep staging based on SVD, VMD, HHT and

morphological features of single-lead ECG signal. Expert Syst. Appl. 2018, 102, 193–206. [CrossRef]
5. Sreeja, S.; Sahay, R.R.; Samanta, D.; Mitra, P. Removal of eye blink artifacts from EEG signals using sparsity. IEEE J. Biomed. Health

Inform. 2017, 22, 1362–1372. [CrossRef]
6. Mukhopadhyay, S.K.; Ahmad, M.O.; Swamy, M. SVD and ASCII Character Encoding-Based Compression of Multiple Biosignals

for Remote Healthcare Systems. IEEE Trans. Biomed. Circuits Syst. 2017, 12, 137–150. [CrossRef]
7. Biagetti, G.; Crippa, P.; Falaschetti, L.; Orcioni, S.; Turchetti, C. Reduced complexity algorithm for heart rate monitoring from

PPG signals using automatic activity intensity classifier. Biomed. Signal Process. Control. 2019, 52, 293–301. [CrossRef]
8. Biagetti, G.; Crippa, P.; Falaschetti, L.; Orcioni, S.; Turchetti, C. Human activity recognition using accelerometer and photo-

plethysmographic signals. In International Conference on Intelligent Decision Technologies; Springer International Publishing: Cham,
Switzerland, 2017; pp. 53–62.

9. Biagetti, G.; Crippa, P.; Falaschetti, L.; Orcioni, S.; Turchetti, C. An efficient technique for real-time human activity classification
using accelerometer data. In International Conference on Intelligent Decision Technologies; Springer International Publishing: Cham,
Switzerland, 2016; pp. 425–434.

10. Bacà, A.; Biagetti, G.; Camilletti, M.; Crippa, P.; Falaschetti, L.; Orcioni, S.; Rossini, L.; Tonelli, D.; Turchetti, C. CARMA: A robust
motion artifact reduction algorithm for heart rate monitoring from PPG signals. In Proceedings of the 2015 23rd European Signal
Processing Conference (EUSIPCO), Nice, France, 31 August–4 September 2015; pp. 2646–2650.

11. Yang, G.; Zeng, R.; Dong, A.; Yan, X.; Tan, Z.; Liu, Y. Research and Application of 3D Face Modeling Algorithm Based on ICP
Accurate Alignment. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2018.

12. Zear, A.; Singh, A.K.; Kumar, P. A proposed secure multiple watermarking technique based on DWT, DCT and SVD for
application in medicine. Multimed. Tools Appl. 2018, 77, 4863–4882. [CrossRef]

13. Turajlic, E.; Begović, A.; Škaljo, N. Application of Artificial Neural Network for Image Noise Level Estimation in the SVD domain.
Electronics 2019, 8, 163. [CrossRef]

14. Liu, Z.; Dickson, K.; McCanny, J.V. Application-specific instruction set processor for SoC implementation of modern signal
processing algorithms. IEEE Trans. Circuits Syst. Regul. Pap. 2005, 52, 755–765.

15. Jena, J.J.; Patro, M.; Girish, G. A SVD Based Pattern Matching Approach for Color Image Retrieval. In Proceedings of the 2018
Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31
March 2018; pp. 1771–1776.

16. Guo, Q.; Zhang, C.; Zhang, Y.; Liu, H. An efficient SVD-based method for image denoising. IEEE Trans. Circuits Syst. Video
Technol. 2015, 26, 868–880. [CrossRef]

17. Chung, K.L.; Yang, W.N.; Huang, Y.H.; Wu, S.T.; Hsu, Y.C. On SVD-based watermarking algorithm. Appl. Math. Comput. 2007,
188, 54–57. [CrossRef]

18. Chang, C.C.; Tsai, P.; Lin, C.C. SVD-based digital image watermarking scheme. Pattern Recognit. Lett. 2005, 26, 1577–1586.
[CrossRef]

19. Baranger, J.; Arnal, B.; Perren, F.; Baud, O.; Tanter, M.; Demené, C. Adaptive spatiotemporal SVD clutter filtering for ultrafast
Doppler imaging using similarity of spatial singular vectors. IEEE Trans. Med. Imaging 2018, 37, 1574–1586. [CrossRef] [PubMed]

http://dx.doi.org/10.24033/bsmf.665
http://dx.doi.org/10.1090/S0002-9904-1939-06910-3
http://dx.doi.org/10.1016/j.eswa.2018.02.034
http://dx.doi.org/10.1109/JBHI.2017.2771783
http://dx.doi.org/10.1109/TBCAS.2017.2760298
http://dx.doi.org/10.1016/j.bspc.2019.04.026
http://dx.doi.org/10.1007/s11042-016-3862-8
http://dx.doi.org/10.3390/electronics8020163
http://dx.doi.org/10.1109/TCSVT.2015.2416631
http://dx.doi.org/10.1016/j.amc.2006.09.117
http://dx.doi.org/10.1016/j.patrec.2005.01.004
http://dx.doi.org/10.1109/TMI.2018.2789499
http://www.ncbi.nlm.nih.gov/pubmed/29969408

Electronics 2021, 10, 34 28 of 29

20. Tsyganova, J.V.; Kulikova, M.V. SVD-based Kalman filter derivative computation. IEEE Trans. Autom. Control. 2017, 62, 4869–4875.
[CrossRef]

21. Kulikova, M.V. Hyperbolic SVD-based Kalman filtering for Chandrasekhar recursion. IET Control Theory Appl. 2019, 13,
1525–1531. [CrossRef]

22. Kulikova, M.V.; Tsyganova, J.V. Improved discrete-time Kalman filtering within singular value decomposition. IET Control Theory
Appl. 2017, 11, 2412–2418. [CrossRef]

23. Liu, F.; Du, R.; Cheng, Y.; Sun, Z. LP-W-`∞-SVD Algorithm for Direction-of-Arrival Estimation. IEEE Sens. J. 2016, 17, 428–433.
[CrossRef]

24. Cheng, Y.; Zhu, J.; Lin, X. An enhanced incremental SVD algorithm for change point detection in dynamic networks. IEEE Access
2018, 6, 75442–75451. [CrossRef]

25. Kanhe, A.; Aghila, G. A DCT–SVD-Based Speech Steganography in Voiced Frames. Circuits Syst. Signal Process. 2018,
37, 5049–5068. [CrossRef]

26. Hsu, Y.W.; Huang, S.S.; Perng, J.W. Application of multisensor fusion to develop a personal location and 3D mapping system.
Optik 2018, 172, 328–339. [CrossRef]

27. Deng, T.B. Design of complex-coefficient variable digital filters using successive vector-array decomposition. IEEE Trans. Circuits
Syst. I Regul. Pap. 2005, 52, 932–942. [CrossRef]

28. Hogben, L. Handbook of Linear Algebra; Chapman & Hall/CRC: Boca Raton, FL, USA, 2006.
29. Golub, G.H.; Reinsch, C. Singular value decomposition and least squares solutions. Numer. Math. 1970, 14, 403–420. [CrossRef]
30. Demmel, J.; Kahan, W. Accurate Singular Values of Bidiagonal Matrices. SIAM J. Sci. Stat. Comput. 1990, 11, 873–912. [CrossRef]
31. Forsythe, G.E.; Henrici, P. The cyclic Jacobi method for computing the principal values of a complex matrix. Trans. Am. Math. Soc.

1960, 94, 1–23. [CrossRef]
32. Kaiser, H.F. The JK Method: A Procedure for Finding the Eigenvectors and Eigenvalues of a Real Symmetric Matrix. Comput. J.

1972, 15, 271–273. [CrossRef]
33. Gu, M.; Eisenstat, S.C. A Divide-and-Conquer Algorithm for the Bidiagonal SVD. SIAM J. Matrix Anal. Appl. 1995, 16, 79–92.

[CrossRef]
34. Stewart, G.W. On the early history of the singular value decomposition. SIAM Rev. 1993, 35, 551–566. [CrossRef]
35. Cline, A.K.; Dhillon, I.S. Computation of the Singular Value Decomposition. In Handbook of Linear Algebra; Chapman & Hall/CRC:

Boca Raton, FL, USA, 2006.
36. Wu, C.; Tsai, P. An SVD Processor Based on Golub–Reinsch Algorithm for MIMO Precoding With Adjustable Precision. IEEE

Trans. Circuits Syst. I Regul. Pap. 2019, 66, 2572–2583. [CrossRef]
37. Willink, T.J. Efficient adaptive SVD algorithm for MIMO applications. IEEE Trans. Signal Process. 2008, 56, 615–622. [CrossRef]
38. Zhang, A.; Xia, D. Tensor SVD: Statistical and computational limits. IEEE Trans. Inf. Theory 2018, 64, 7311–7338. [CrossRef]
39. Kaloorazi, M.F.; de Lamare, R.C. Subspace-Orbit randomized decomposition for low-rank matrix approximations. IEEE Trans.

Signal Process. 2018, 66, 4409–4424. [CrossRef]
40. Yang, Y.; Rao, J. Robust and Efficient Harmonics Denoising in Large Dataset Based on Random SVD and Soft Thresholding. IEEE

Access 2019, 7, 77607–77617. [CrossRef]
41. Fontenla-Romero, O.; Pérez-Sánchez, B.; Guijarro-Berdiñas, B. LANN-SVD: A non-iterative SVD-based learning algorithm for

one-layer neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 3900–3905. [PubMed]
42. Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation.

IEEE Trans. Signal Process. 2006, 54, 4311–4322. [CrossRef]
43. Kviatkovsky, I.; Gabel, M.; Rivlin, E.; Shimshoni, I. On the Equivalence of the LC-KSVD and the D-KSVD Algorithms. IEEE Trans.

Pattern Anal. Mach. Intell. 2016, 39, 411–416. [CrossRef]
44. Eksioglu, E.M.; Bayir, O. K-SVD meets transform learning: Transform K-SVD. IEEE Signal Process. Lett. 2014, 21, 347–351.

[CrossRef]
45. Dumitrescu, B.; Irofti, P. Regularized K-SVD. IEEE Signal Process. Lett. 2017, 24, 309–313. [CrossRef]
46. Raja, H.; Bajwa, W.U. Cloud K-SVD: A collaborative dictionary learning algorithm for big, distributed data. IEEE Trans. Signal

Process. 2015, 64, 173–188. [CrossRef]
47. Lei, Y.; Fang, Y.; Zhang, L. A Weighted K-SVD-Based Double Sparse Representations Approach for Wireless Channels Using the

Modified Takenaka-Malmquist Basis. IEEE Access 2018, 6, 54331–54342. [CrossRef]
48. Huang, K.J.; Chang, J.C.; Feng, C.W.; Fang, W.C. A parallel VLSI architecture of singular value decomposition processor for

real-time multi-channel EEG system. In Proceedings of the 2013 IEEE International Symposium on Consumer Electronics (ISCE),
Hsinchu, Taiwan, 3–6 June 2013; pp. 21–22.

49. Fang, W.; Chang, J.; Huang, K.; Feng, C.; Chou, C. An efficient VLSI implementation of SVD processor of on-line recursive ICA
for real-time EEG system. In Proceedings of the 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings,
Lausanne, Switzerland, 22–24 October 2014; pp. 73–76.

50. Yang, C.H.; Chou, C.W.; Hsu, C.S.; Chen, C.E. A systolic array based GTD processor with a parallel algorithm. IEEE Trans.
Circuits Syst. I Regul. Pap. 2015, 62, 1099–1108. [CrossRef]

51. Hwang, Y.T.; Chen, W.D.; Hong, C.R. A low complexity geometric mean decomposition computing scheme and its high
throughput VLSI implementation. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 61, 1170–1182. [CrossRef]

http://dx.doi.org/10.1109/TAC.2017.2694350
http://dx.doi.org/10.1049/iet-cta.2018.5864
http://dx.doi.org/10.1049/iet-cta.2016.1282
http://dx.doi.org/10.1109/JSEN.2016.2627549
http://dx.doi.org/10.1109/ACCESS.2018.2883647
http://dx.doi.org/10.1007/s00034-018-0805-9
http://dx.doi.org/10.1016/j.ijleo.2018.07.029
http://dx.doi.org/10.1109/TCSI.2005.846220
http://dx.doi.org/10.1007/BF02163027
http://dx.doi.org/10.1137/0911052
http://dx.doi.org/10.1090/S0002-9947-1960-0109825-2
http://dx.doi.org/10.1093/comjnl/15.3.271
http://dx.doi.org/10.1137/S0895479892242232
http://dx.doi.org/10.1137/1035134
http://dx.doi.org/10.1109/TCSI.2019.2899211
http://dx.doi.org/10.1109/TSP.2007.907806
http://dx.doi.org/10.1109/TIT.2018.2841377
http://dx.doi.org/10.1109/TSP.2018.2853137
http://dx.doi.org/10.1109/ACCESS.2019.2921579
http://www.ncbi.nlm.nih.gov/pubmed/28880195
http://dx.doi.org/10.1109/TSP.2006.881199
http://dx.doi.org/10.1109/TPAMI.2016.2545661
http://dx.doi.org/10.1109/LSP.2014.2303076
http://dx.doi.org/10.1109/LSP.2017.2657605
http://dx.doi.org/10.1109/TSP.2015.2472372
http://dx.doi.org/10.1109/ACCESS.2018.2869845
http://dx.doi.org/10.1109/TCSI.2015.2388831
http://dx.doi.org/10.1109/TCSI.2013.2285893

Electronics 2021, 10, 34 29 of 29

52. Guenther, D.; Leupers, R.; Ascheid, G. A scalable, multimode SVD precoding ASIC based on the cyclic Jacobi method. IEEE
Trans. Circuits Syst. I Regul. Pap. 2016, 63, 1283–1294. [CrossRef]

53. Bravo, I.; Vázquez, C.; Gardel, A.; Lazaro, J.L.; Palomar, E. High level synthesis FPGA implementation of the Jacobi algorithm to
solve the eigen problem. Math. Probl. Eng. 2015, 2015. [CrossRef]

54. Wang, Y.; Lee, J.; Ding, Y.; Li, P. A Scalable FPGA Engine for Parallel Acceleration of Singular Value Decomposition. In Proceedings
of the 2020 21st International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, 25–26 March 2020;
pp. 370–376.

55. Tian, M.; Sima, M.; McGuire, M. Behavioral Implementation of SVD on FPGA. In Proceedings of the 2018 IEEE International
Symposium on Signal Processing and Information Technology (ISSPIT), Louisville, KY, USA, 6–8 December 2018; pp. 495–500.

56. Mansoori, M.A.; Casu, M.R. High Level Design of a Flexible PCA Hardware Accelerator Using a New Block-Streaming Method.
Electronics 2020, 9, 449. [CrossRef]

57. Lahabar, S.; Narayanan, P. Singular value decomposition on GPU using CUDA. In Proceedings of the 2009 IEEE International
Symposium on Parallel & Distributed Processing, Rome, Italy, 23–29 May 2009; pp. 1–10.

58. Athi, M.V.; Zekavat, S.R.; Struthers, A.A. Real-time signal processing of massive sensor arrays via a parallel fast converging svd
algorithm: Latency, throughput, and resource analysis. IEEE Sens. J. 2016, 16, 2519–2526. [CrossRef]

59. Yang, W.; Liu, Z. Accelerating Householder bidiagonalization with ARM NEON technology. In Proceedings of the 2012 Asia
Pacific Signal and Information Processing Association Annual Summit and Conference, Hollywood, CA, USA, 3–6 December
2012; pp. 1–4.

60. ARM. Cortex™-M4 Devices Generic User Guide. 2011. Available online: https://developer.arm.com/docs/dui0553/b (accessed
on 2 November 2020).

61. Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 1960, 82, 35–45. [CrossRef]
62. Golub, G.H.; Van Loan, C.F. Matrix Computations; Johns Hopkins: Baltimore, MD, USA, 1983.
63. Wilkinson, J. Global convergene of tridiagonal QR algorithm with origin shifts. Linear Algebra Appl. 1968, 1, 409–420. [CrossRef]

http://dx.doi.org/10.1109/TCSI.2016.2561904
http://dx.doi.org/10.1155/2015/870569
http://dx.doi.org/10.3390/electronics9030449
http://dx.doi.org/10.1109/JSEN.2016.2517040
https://developer.arm.com/docs/dui0553/b
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1016/0024-3795(68)90017-7

	Introduction
	Algorithms for the Singular Value Decomposition
	Golub–Reinsch Algorithm
	Demmel–Kahan Algorithm
	Jacobi Rotation Algorithm
	One-Sided Jacobi Rotation Algorithm
	Divide and Conquer Algorithm

	Experimental Results
	MATLAB Implementation
	Cortex-M4F Implementation

	Application: Kalman Filtering of Inertial System Data
	Conclusions
	Matrix Algebra Operations
	Householder Transformation
	Householder's Bidiagonalization
	Jacobi Rotation
	QR Factorization
	QR Iteration
	Implicit QR Method with Shift
	QR Iteration with Zero-Shift

	References

