i?‘lg electronics mﬁ

Article

MaxAFL: Maximizing Code Coverage with a Gradient-Based
Optimization Technique

Youngjoon Kim ‘© and Jiwon Yoon *

check for

updates
Citation: Kim, Y.; Yoon,]J. MaxAFL:
Maximizing Code Coverage with a
Gradient-Based Optimization Technique.
Electronics 2021, 10, 11. https://dx.
doi.org/10.3390/electronics10010011

Received: 12 November 2020
Accepted: 18 December 2020
Published: 24 December 2020

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional claims
in published maps and institutional

affiliations.

Copyright: (© 2020 by the authors. Li-
censee MDPI, Basel, Switzerland. This
article is an open access article distributed
under the terms and conditions of the
Creative Commons Attribution (CC BY)
license (https:/ / creativecommons.org/
licenses /by /4.0/).

School of Cyber Security, Korea University, Seoul 02841, Korea; acorn421@gmail.com
* Correspondence: jiwon_yoon@korea.ac.kr

Abstract: Evolutionary fuzzers generally work well with typical software programs because of their
simple algorithm. However, there is a limitation that some paths with complex constraints cannot be
tested even after long execution. Fuzzers based on concolic execution have emerged to address this
issue. The concolic execution fuzzers also have limitations in scalability. Recently, the gradient-based
fuzzers that use a gradient to mutate inputs have been introduced. Gradient-based fuzzers can be
applied to real-world programs and achieve high code coverage. However, there is a problem that
the existing gradient-based fuzzers require heavyweight analysis or sufficient learning time. In this
paper, we propose a new type of gradient-based fuzzer, MaxAFL, to overcome the limitations of
existing gradient-based fuzzers. Our approach constructs an objective function through fine-grained
static analysis. After constructing a well-made objective function, we can apply the gradient-based
optimization algorithm. We use a modified gradient-descent algorithm to minimize our objective
function and propose some probabilistic techniques to escape local optimum. We introduce an
adaptive objective function which aims to explore various paths in the program. We implemented
MaxAFL based on the original AFL. MaxAFL achieved increase of code coverage per time compared
with three other fuzzers in six open-source Linux binaries. We also measured cumulative code
coverage per total execution, and MaxAFL outperformed the other fuzzers in this metric. Finally,
MaxAFL can also find more bugs than the other fuzzers.

Keywords: fuzzing; optimization; gradient descent; test automation

1. Introduction

Software vulnerabilities can be a tremendous threat to computer security. Therefore,
many companies and security researchers have tried to find software vulnerabilities both
manually and automatically. Finding vulnerabilities manually requires highly educated
engineers, so various types of automatic methods were developed by researchers. Since
Miller et al. [1] introduced fuzzing, it has become the best technique to find software
vulnerabilities automatically. A fuzzer executes a program repeatedly with generated
inputs to cause abnormal behavior of the software program. However, due to the simple
algorithm, fuzzers had a problem with efficiency. Consequently, many researchers have
tried to increase the efficiency of fuzzing, resulting in various algorithms.

The most representative fuzzing algorithm is an evolutionary fuzzer, which is based
on the evolutionary algorithm, such as AFL [2]. The ultimate goal of fuzzing is to cause
crashes in the Program Under Testing (PUT). However, the occurrence of a crash is very rare.
Therefore, many fuzzers set their goal to maximize cumulative code coverage. Evolutionary
fuzzers compute fitness scores using code coverage and maintain a queue of meaningful
input values based on the fitness score. With the inputs in a queue, they select one input
from the queue and mutate it to explore new paths.

Evolutionary fuzzers perform well in many types of programs, because of their sim-
plicity. However, the biggest problem of evolutionary fuzzers is that they do not care about
the internal logic of the program and structure of inputs. Therefore, almost no evolutionary

Electronics 2021, 10, 11. https:/ /dx.doi.org/10.3390/ electronics10010011 https:/ /www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3131-0215
https://dx.doi.org/10.3390/electronics10010011
https://dx.doi.org/10.3390/electronics10010011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/electronics10010011
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/1/11?type=check_update&version=3

Electronics 2021, 10, 11

2 0f 23

fuzzer can reach hard-to-explore paths in the program. This is crucial in performance
because many software crashes occur in hard-to-explore paths. The evolutionary fuzzers
like AFL [2] use only simple mutation (e.g., bitflipping, arithmetic operation) as a deter-
ministic stage. It is absolutely slow and inefficient because they cannot infer the mutation
direction. Therefore, if the seed input of AFL increases, the deterministic mutation stage of
AFL becomes extremely slow. Some previous works like AFLFast [3] and FairFuzz [4] tried
to mitigate these problems by improving algorithms of AFL, however, they could not solve
the limitations perfectly.

In order to test hard-to-explore branches, several methods have been proposed.
The most common method is the concolic execution which can solve complex path con-
straints using SMT solver. Some fuzzers such as Driller [5] and QSYM [6], used concolic
execution to reach various branches in the fuzzing process. Although concolic execution
has the advantage to examine hard-to-explore paths, there is a serious performance prob-
lem due to a path explosion. This time complexity issue is a critical limitation of concolic
execution fuzzers, so they cannot scale out to real-world programs.

Fuzzers such as Angora [7] and NEUZZ [8] used a gradient-based optimization to
explore paths. To apply a gradient-based optimization algorithm to the fuzzing problem,
Angora created a simple objective function using branch constraints, and NEUZZ mod-
eled the program’s branching behavior using a surrogate neural network. Both fuzzers
outperformed the traditional evolutionary fuzzers. Although gradient-based fuzzers show
superior performance, there are some drawbacks. Angora requires heavyweight static and
dynamic analysis before and during fuzzing. The analysis processes, such as type inference
and taint analysis, need considerable time when applied to large binaries. NEUZZ must
train a deep neural network before applying to fuzzing. If the size of the fuzzing binary is
increased, training time might be also increased drastically. In addition, they do not care
about the problem of local optima, therefore, in many cases, these types of fuzzers cannot
find global optima.

To overcome the above limitations, we present a new fuzzer called MaxAFL. We mod-
ified the deterministic stage of AFL with a new gradient-based mutation algorithm. Firstly,
we calculate Maximum Expectation of Instruction Count (MEIC) to determine the best path
to explore during fuzzing. After calculating MEIC, we generate an objective function that
can be used to maximize cumulative code coverage using MEIC and branch information.
MaxAFL uses a gradient-based optimization to minimize the objective function. While
minimizing the objective function, we can find better inputs for fuzzing. After enough
time of fuzzing, the objective function is modified little by little to focus on a path that
has never been explored. Additionally, in order to solve the problem of local optimum,
we add some randomness in the optimization process through a simple bitflipping and
normal sampling.

We implemented MaxAFL based on AFL 2.56b and LLVM 7.0.1. We compared Max-
AFL with the original AFL [2], AFLFast [3] and FairFuzz [4] on six Linux binaries. We focus
on three different metrics to evaluate performance: code coverage per a constant time, code
coverage per a total execution, and the number of unique crashes. As a result, MaxAFL
showed improved performance compared with the other fuzzers.

Contributions: Our contributions are as follows:

e We calculate MEIC to guide the direction of fuzzing through lightweight static analy-
sis.

o We generate an objective function using MEIC and branch information. In this way,
we can convert the fuzzing problem to an optimization problem, effectively.

e Based on the objective function we created, we use a gradient-based optimization
to find efficient input for fuzzing. In this process, some probabilistic mutations are
introduced to solve the problem of local optima. To explore various paths, MaxAFL
continually updates the objective function.

o We implemented MaxAFL by changing only the deterministic mutation stage of AFL.

Electronics 2021, 10, 11

30f23

e We tested our fuzzer on six Linux binaries and compared the result with AFL, AFLFast,
and FairFuzz. MaxAFL gains code coverage increment per time. It also shows an
improvement of code coverage per total executions. When running MaxAFL in
LAVA-M dataset, we found 47 more bugs compared with the other fuzzers.

2. Background
2.1. Fuzzing

Fuzzing is a software testing technique that finds bugs in programs. It passes various
inputs to the target program to cause abnormal behavior of the program. Since the primary
goal of fuzzing is to find more crashes, the most intuitive performance metric is the number
of crashes found per time. However, the crashes occur very rarely, so most existing fuzzers
are designed to maximize code coverage. Intuitively, increasing the code coverage enables
testing more paths in the program, so we can increase the probability to find crashes. Many
unseen crashes occur in deep code paths, because developers usually do not care about the
codes that are not executed frequently. Consequently, the key of fuzzing algorithms is to
find the input that maximizes the code coverage.

Typical fuzzers can be divided into two categories: mutation-based fuzzer and
generation-based fuzzer. Mutation-based fuzzers generate new inputs by mutating seed
inputs. These fuzzers show various performances depending on the mutation action.
The most common mutation actions are bit-flip, byte-flip, insert dictionary, and so on.
Mutation-based fuzzers are easy to implement and have the advantage that they can be
used generally in various types of binary inputs. However, in the case of programs that
take formatted files as input, mutation-based fuzzers show extremely low performance,
because of parsing errors. Generation-based fuzzers are widely used in fuzzing programs
that use formatted inputs (e.g., PDF, XML, source code, etc.). They analyze and model
the input format, and then generate new test cases based on the model. Generation-based
fuzzers can make structured inputs that may be accepted in the program, so they can
decrease the occurrence of parsing errors. However, they must create a sophisticated model
of input using appropriate algorithms.

Mutation-based fuzzers have been upgraded using various algorithms for a long
time. They have largely developed with three big branches: Evolutionary fuzzer, Concolic
execution fuzzer, Gradient-based fuzzer.

2.1.1. Evolutionary Fuzzer

The most common mutation-based fuzzer is the evolutionary fuzzer. It is based on
an evolutionary algorithm that generates new populations of inputs using seed inputs.
They mutate inputs from the initial seeds and collect interesting inputs which gain high
code coverage or explore new paths. Because they use code coverage to calculate a score
of the newly generated inputs, they are also called coverage-based greybox fuzzers [3].
These fuzzers perform very well on a wide range of targets due to fast execution speeds,
despite the simple random mutation algorithms. The most famous evolutionary fuzzer is
AFL [2]. Mutation stages of AFL consist of two main stages: the deterministic stage and
non-deterministic stage.

In the deterministic stage of AFL, AFL selects various mutation actions in a fixed
order. The mutation actions used in the deterministic stage include bit and byte flipping,
set interesting values (replace bytes with pre-defined interesting values), simple arithmetic
operations, etc. However, these mutation actions can slow down the overall fuzzing process,
because they do not consider the direction of mutation. The number of mutations in the
deterministic stage increases drastically in proportion to the seed input size, because it
mutates almost every byte of the input. Therefore, if there is a large size of seed input,
the deterministic stage of AFL takes a long time.

In the non-deterministic stage (havoc stage) of AFL, various mutation actions are
chosen with equal probability. The mutation actions in the non-deterministic stage are
similar to mutation actions of the deterministic stage, however, they select which byte

Electronics 2021, 10, 11

40f23

to mutate and a parameter of mutation action (e.g., Integer K that is used in arithmetic
addition or subtraction). Moreover, the total number of mutations in the non-deterministic
stage is also determined randomly.

AFL uses minimal dynamic or static binary instrumentation to measure code coverage,
resulting in fast fuzzing speeds. In addition, it offers a variety of internal functions such as
trimming to remove non-critical parts of the input and calibration to precisely analyze the
input. Bohme et al. [3] defined the overall algorithm of the evolutionary fuzzer (coverage-
based greybox fuzzer), including AFL, as described in Algorithm 1.

Algorithm 1 Evolutionary fuzzing (Coverage-based greybox fuzzer) [3]

Require: Seed Corpus S

repeat
$ = CHOOSENEXT(S) // Search Strategy
p = ASSIGNENERGY(s) // Power Schedule

forifrom 1 to p do
s’ = MUTATE_INPUT(s)
if s’ crashes then
add s’ to S,
else if ISINTERESTING(s') then
adds'to S
end if
end for
until timeout reached or abort-signal

Ensure: Crashing Inputs S,

Detailed descriptions of each stage of Algorithm 1 are as follows.

CHOOSENEXT(S) : chooses next seed input s from seed corpus S to mutate.
ASSIGNENERGY(s) : decides how many times to mutate the seed input s.

e MUTATE_INPUT(s) : mutates seed input s using mutation algorithm and generates
new inputs’.

e ISINTERESTING(s') : determines whether newly generated input s’ is significant or not.

2.1.2. Concolic Execution Fuzzer

In the case of hard-to-explore paths, such as Magic-byte checking code, it is almost
impossible to explore these paths with a random mutation. In order to overcome this
limitation, a new type of fuzzer was proposed using concolic execution. Concolic exe-
cution is a mixed technique that performs symbolic execution and concrete execution.
Symbolic execution can solve many constraints on a specific path with the SMT solver.
However, the symbolic execution is horribly inefficient in some cases such as loop code.
Although symbolic execution has problems such as path-explosion and slow execution
speed, the concolic execution mitigates this problem by performing concrete execution
as much as possible and using symbolic execution only when it is necessary. Concolic
execution fuzzers can explore some deep nested branches, but it cannot be scaled out to
real-world programs that have complicated program logic due to path explosion.

2.1.3. Gradient-Based Fuzzer

Although the concolic execution has explored the deep nested branches, there is a
critical limitation that it cannot scale-out to real-world programs. To bypass this limitation,

Electronics 2021, 10, 11

50f23

new fuzzers have recently been introduced using gradient-based optimization. This type of
fuzzer sets up an objective function to solve path constraints and apply the gradient-based
optimization algorithm to minimize or maximize the objective function. While optimizing
an objective function, we can explore the target path with high probability.

2.2. Program Analysis and Code Coverage

In order to test the overall source code, it is necessary to analyze the structure and
behavior of the program. There are many ways to model programs, but the most famous
model is probably the graph model.

2.2.1. Control Flow Graph and Call Graph

The best way to understand the execution flow of programs is to construct the Control
Flow Graph (CFG) and the Call Graph. The CFG is a graph that shows the execution
flow of the program in one function. The basic unit of CFG is the basic block which is a
straight-line code sequence with no branches. Each basic block becomes a node of CFG and
edges represent the execution order between the basic blocks. We can generate the control
flow graph quickly using simple static analysis. The call graph is a graph that shows the
call relations among the internal functions of the program and can be used to determine
the relations between the functions. If a function A calls a function B, the edge from A to B
is added to the call graph. These two graphs are useful in fuzzing because we can know
execution flows very accurately.

2.2.2. Code Coverage

Code coverage is a metric to evaluate how many parts of a program have been tested
in software testing. In general, the higher the code coverage, the better the testing result
because it means that the testing method can execute large part of the program. Code
coverage is used in many software testing techniques, but it is particularly important in
the fuzzing process. The purpose of fuzzing is causing an abnormal behavior (Crash) of
the program, however since such behaviors occur very rarely, code coverage is used for
calculating the efficiency of the fuzzing process. Representatively, the coverage-based
greybox fuzzer, mentioned before, uses code coverage to determine how good the current
input value is.

There are various types of code coverage. Typical code coverages are as follows [9].

Instruction coverage: has each instruction in program been executed?
Line coverage: has each line of code in the program been executed?
Basic block coverage: has each basic block in the program been executed?
Branch coverage: has each branch in the program been executed with both true and
false conditions?
e Condition coverage: has each boolean sub-expression been evaluated both to true and
false?
Edge coverage: has each edge in the CFG of program been executed?
e Function (method) coverage: has each function (or method) in the program been
called?

The code coverages used in most fuzzing researches do not deviate much from the cov-
erage presented above [10]. In this paper, line coverage is mainly used as a coverage metric.

2.3. Gradient-Based Optimization

Methods of mathematical optimization are old methods widely used in various fields
like mathematics, computer science, and economics. The simplest form of an optimization
problem is to find an input x that maximizes or minimizes a given function f. This can be
simply expressed by

minimizef(x) OR maximizef(x)
X€S x€S

Electronics 2021, 10, 11

60f23

where S is the domain of input x (e.g., R" in continuous optimization) and f(x) is an
objective function. Among these, the gradient-based optimization is an algorithm that
finds the direction of optimization by calculating the gradient of the objective function.
The general gradient-based optimization is described in Algorithm 2.

Algorithm 2 Gradient-based optimization for objective function f
1: function GRADOPT(f, S)

2: > f is the objective function with input x

3: > S is the domain of x

4: X < initial start point in S

5: t<0

6: while x; has not converged do

7: pt < direction for searching

8: a; < positive scalar such that f(x; + arpr) < f(x)
9: Xpp1 < Xt T apr
10: t—t+1
11: end while

12: return Xx;, f(xt)

13: end function

2.3.1. Gradient Descent

The gradient descent is the most popular gradient-based optimization algorithm that
uses the first derivative of the objective function to find the optimal value. While finding
the minimum value, the gradient descent changes the input x; in a negative direction of the
gradient at the current point. While finding the maximum value, it modifies the input value
in a positive direction of the gradient. With the multivariate function f(x) and the current
input x¢, the gradient descent repeats the following calculation to find the optimal value.

Xpp1 = X+ aV f(xp) (1)
where « represents a learning rate and the algorithm terminates when x finally converges.

2.3.2. Subgradient Method

Since gradient descent needs the derivative of f(x), f(x) has to be differentiable.
However, in many cases, the objective function f(x) is not differentiable, so we should
use another value for finding the direction. Subgradient can be generally a good solution.
Subgradient generalizes the derivative to convex functions which are not necessarily
differentiable. The rigorous mathematical definition of the subgradient of the function f(x)
is as follows:

subgradient(f, x;) = {g € R" | f(y) > f(x) + 8" (y — x:),Vy € S} ¢)

where S is the domain of f. Figure 1 shows a graphical example of the subgradient of
non-differential function f(x). We can use subgradient as the direction of optimization
instead of a gradient of f(x), in the case of non-differential function. Figure 1 shows
elementary examples of subgradient of arbitrary function f.

Electronics 2021, 10, 11

7 0of 23

Xk

Subgradients at x;

Figure 1. Example of subgradient of an arbitrary function f at x. The blue line is a graph of the
function f and the red lines are possible candidates of subgradient.

2.3.3. Numerical Differentiation

To calculate the gradient used in the gradient-based optimization, there are three types
of methods: automatic method, symbolic method, and numerical methods. Automatic
differentiation and symbolic differentiation can be used when the formula of the objective
function is known. These methods are faster than the numerical methods, but these are used
only in special cases due to rigorous conditions of use. For example, in neural networks,
we can calculate the gradient of loss function using the back-propagation algorithm to train
a neural network, because the structure of the network is known and the loss function is
differentiable [11].

If the objective function is composed of non-differentiable equations, we have to use
the numerical differentiation. This method calculates an estimation of the gradient (or
subgradient) by simply changing the x value little by little and measuring the changes
of function output. Depending on whether we change the value of x in the positive or
negative direction, it is called "forward divided differences” and ‘backward divided differ-
ences’, respectively. The most commonly used numerical gradient value is the 'symmetric
difference’ that is calculated by changing x both in the positive and negative directions.
Symmetric difference is more accurate than one-sided estimations. The expression of
symmetric difference is defined by

fx+h) = flx—h)
2h '

®)

The numerical differentiation is slower than the others in practice, but we can use this
method in general, even if the function is extremely sophisticated.

2.3.4. Gradient Clipping

The gradient clipping is a technique to prevent exploding gradients. It is usually used
in deep neural networks because of exploding and vanishing gradients [11]. This technique
can help the gradient descent process by limiting the range of the gradient. The simple
algorithm of gradient clipping is described in Algorithm 3.

Algorithm 3 Simple gradient clipping

A ad
1. g <« %
2. if ||g|| > c then

cC A
IEIE]

3: g

4. end if

2.3.5. Local Optimum and Global Optimum

One of the problems of gradient-based optimization is getting stuck in a local optimum.
Local optimum means a solution that is optimal within nearby candidates. In contrast,
global optimum means that the solution is optimal among all possible solutions. Of course,

Electronics 2021, 10, 11

8 0f 23

we want to find global optimum, but if we just follow the gradient of the objective function,
it can get stuck in local optimum with high probability.

We can fix this problem using some stochastic methods. Simulated annealing [12,13]
can find global optimum by moving to some neighboring state with an acceptance proba-
bility. Even simple algorithms like random restart [14] can help find a global optimum.

3. Related Work
3.1. Evolutionary Fuzzer

The evolutionary fuzzer is a simple fuzzer based on an evolutionary algorithm. Start-
ing with initial seed inputs, they mutate these seed inputs and keep the input queue with
better inputs to test the program. They have their own fitness function which is used to
prioritize the test cases. Most of these fuzzers use code coverage as a fitness function, so
they are also called coverage-guided fuzzer.

The most famous evolutionary fuzzer is AFL [2]. AFL can efficiently test various
programs with a simple mutation algorithm. Because AFL relies on a simple algorithm
and basic instrumentation, it has great scalability. However, there is an inefficiency in the
deterministic mutation stage, we fixed this problem using the gradient-based mutation.
LibFuzzer [15] of LLVM Framework [16] and Honggfuzz [17] are also good examples of
simple evolutionary fuzzer. AFLGo [18], AFLFast [3], FairFuzz [4], AFLSmart [19] are
AFL-based fuzzers, which improve the fitness function, mutation actions, and power
scheduling algorithm in the original AFL to improve the performance. CollAFL [20] has
led to improved performance by developing a new coverage measurement method.

3.2. Concolic Execution Fuzzer

The symbolic execution analyzes the program by replacing the constraints on a certain
path with symbolic values to search hard-to-explore paths. The path constraints informa-
tion that is obtained in this way can be efficiently solved using the SMT solver like Z3 [21].
KLEE [22] is a representative symbolic execution framework. However, symbolic execution
has poor scalability due to the path explosion problem. Concolic execution mitigates this
issue by mixing the symbolic execution and concrete execution.

The concolic execution fuzzer is a fuzzer that efficiently searches for hard-to-explore
path using the concolic execution engine. SAGE [23,24] and DART [25] applied the con-
colic execution engine to the fuzzer to generate appropriate inputs. Dowser [26] utilized
static and dynamic analysis to minimize the symbolic execution due to the scalability
issue. Diriller [5] limited the symbolic execution only when the fuzzer cannot explore a
certain path, thereby mitigating the path explosion. QSYM [6] introduced dynamic binary
translation that can make the symbolic execution faster and more scalable than before.
DigFuzz [27] categorizes the types of the concolic execution into “demand launch” and
“optimal switch” and proposed a novel strategy called “discriminative dispatch”. By using
the Monte Carlo-based path prioritization algorithm, they increased the efficiency of the
concolic execution. Eclipser [28] proposed a grey-box concolic testing that does not depend
on the SMT solver and only proceeds lightweight instrumentation.

Fuzzers using the concolic execution are being actively studied, but there is no way
to completely solve the fundamental problem, path explosion. In addition, while almost
all concolic execution fuzzers perform path search for a specific path, our approach can
automatically set the search target during the optimization process.

3.3. Gradient-Based Fuzzer

Gradient-based fuzzers use a gradient of an objective function with respect to an input
to mutate input, reasonably. Angora [7] searches paths using taint analysis, type and shape
inference. Angora uses dynamic taint analysis which is a heavy analysis process. However,
in our approach, only simple static analysis in the compile process is necessary. NEUZZ [8]
utilizes a surrogate neural network that simulates the program branch behaviors for fuzzing.
The neural network has to be sufficiently learned to predict the program behavior, and the

Electronics 2021, 10, 11

9 of 23

gradient is efficiently calculated and used in the mutation process. However, NEUZZ has a
limitation that it requires a sufficient learning time. Matryoshaka [29] identified control
flow-dependent statements and taint flow-dependent statements to explore deeply nested
paths. After then, based on the previous information, they solved the path constraints by
using the gradient descent algorithm.

4. Machine Learning-Based Fuzzer

Recently, solving fuzzing problem based on machine learning have been continuously
proposed. The aforementioned NEUZZ [8] is an example of applying a deep neural net-
work for fuzzing. RLFuzz [30], FuzzerGym [31] are examples of applying a reinforcement
learning, which has recently received increased interest, for fuzzing. These two fuzzers
transform the fuzzing problem into a Markov Decision Process (MDP) form by defining a
state, action, and reward and use the DQN algorithm to mutate the inputs. Rajpal et al. [32]
learn the input format of a target program with a neural network to improve the per-
formance of fuzzing. Learn&Fuzz [33] improves fuzzing performance by learning PDF
structure using an LSTM model.

5. Proposed Approach
5.1. Overview

To overcome the limitations of existing fuzzers, we designed a following new approach
which mainly consists of three parts: obtaining Maximum Expectation of Instruction Count
(MEIC) through static analysis, generating the objective function to apply the gradient-
based optimization, and fuzzing to minimize the objective function. The optimization
algorithm consists of gradient descent for efficient path search and probabilistic method to
search for various paths and avoid local optimum. We modify the objective function in
the fuzzing process in order to explore the unexplored paths. Figure 2 shows the entire
architecture of MaxAFL.

Source code Initial Seeds

Compiler Fuzzer
Input
Graph .
Extraction Instrumentation Instrumented
Binary
Run Mutate Input
Using
R
c;:;::e Branch Gradient
behaviour Descent
DAG
Objective
Topological Function
Sorting Generate

Objective
Order of 1 Calculate MEIC . Function
. MEIC info
BB & Functions

Figure 2. Overview of MaxAFL. MaxAFL consists of two main component: Compiler and Fuzzer.

Compiler performs static analysis for calculating MEIC and binary instrumentation. Fuzzer executes
instrumented binary repeatedly using gradient-based mutation.

5.2. Motivating Example

We show a simple example code in Figure 3 to emphasize the effectiveness of our ap-
proach.

In this example, the do_many_things() function consists of a lot of code lines. There-
fore, we need to guide the execution flow to the do_many_things() function during the
fuzzing process. In typical fuzzers like AFL, this path is difficult to explore due to two
reasons. Firstly, at the beginning of fuzzing, we do not know which path is better to
explore a large amount of code. Secondly, the constraints of the path are complicated, so
the random mutation algorithm cannot find an appropriate input to test a certain path.

Electronics 2021, 10, 11

10 of 23

In our example, to test do_many_things() function, we have to pass if statements at line 13
and line 15.

However, in our approach, we can figure out which branch is better at every basic
block, so we can determine which path is better to test. After that, we set up the objective
function to induce execution flow to the targeted path and find new inputs using gradient-
based optimization.

int do_many_things (){
}

int main(int argc, char sxargv){
FILE xin;
char buf[50];

in = fopen(argv[1], "r");
fscanf(in, "%s", buf);

fclose (in);

if (buf[0] <= M’ && buf[l] == 'A’")
{
if (buf[2] > 'X"){
do_many_things ();
}

lelse{
exit (1);
}

}

Figure 3. Motivating example of our approach. do_many_ things() is a user-defined function with
large source code.

5.3. Maximum Expectation of Instruction Count

To generate the input that maximizes code coverage, we infer the importance of every
path by calculating the Maximum Expectation of Instruction Count (MEIC) for each basic
block. MEIC is the maximum number of instructions that can be tested when we execute
a specific basic block. If the control flow is always directed to the basic block which has
bigger MEIC at every branch, simply in the best case, the instruction can be executed as
much as MEIC. The calculated MEIC plays a key role in generating the objective function
for further optimization.

Lightweight static analysis is required to calculate the MEIC. First, we should extract
the program’s call graph and control flow graph to earn knowledge about execution flow.
The MEIC of the current basic block can be calculated using their successor basic blocks and
called functions in the current basic block. Accordingly, we have to figure out the order of
every basic block in the target program. We have to know the calling orders of functions to
determine which functions should be processed. Topological sorting is a useful algorithm
to determine the order of nodes in the graph. Therefore, we execute topological sorting in
the call graph to find the execution order from an entry function to an exit function.

After acquiring the execution order of functions, we can calculate the MEIC of each
basic block by referring to the CFG of function. Since we need to figure out the execution
order among the basic blocks inside the function, we also perform topological sorting
in CFG. Note that topological sorting only works for a directed acyclic graph (DAG).
Therefore, it is necessary to remove the cycles of the CFG caused by a loop before applying
topological sorting. Hence, we obtain the information of loops and remove the backedges
which direct to the previous basic block. In fuzzing, exploring a unique path is more
important, so by removing that backedge, the instructions inside the loop are counted
only once, no matter how many times they are executed. In addition, some programs

Electronics 2021, 10, 11 11 of 23

may use the goto statement, therefore additional cycles can be detected. In this case,
the cycle is detected and removed based on a simple depth-first search (DFS) algorithm.
After removing all cycles, topological sorting is performed in the control flow graph and
acquiring the order of basic blocks is finished. The MEIC can be calculated in order from
the exit nodes to the entry node of CFG. Figure 4 demonstrates the process of calculating
MEIC in one CFG.

If some functions are called in a basic block, we add MEIC of the called function to
MEIC of the basic block. We only consider user-defined functions, because our goal is
maximizing the code coverage of the user program. Since we figured out the calling order
of each function, by calculating MEIC of function in reverse of calling order, we already
know the MEIC of called functions at that time.

Qﬂ 3@ 1

3 : 3 3 aou 10:10

Original CFG DAG Execution CFG with MEIC
rder

Figure 4. Overview process of calculating Maximum Expectation of Instruction Count (MEIC).
The blue number (number at the right side of each node) shows the instruction count of the basic
block and the red number (number at the left side of each node) shows MEIC of the basic block.

Now, we can calculate the MEIC of every basic block using the MEIC of successor
basic blocks and the instruction count of the current basic blocks. Algorithm 4 is a proce-
dure that describes the process of calculating MEIC after applying cycle elimination and
topological sorting.

Algorithm 4 Calculate MEIC of the program
1: function MEICyus;cp10ck(BB)

2: instCntgp < instruction count of BB
3: callgp < called functions in BB
4: if callpp is not empty then
5; for all call € callgg do
6: instCntpp += MEIC yyction (call)
7: end for
8: end if
9: succgp < successors of BB
10: if succpp is not empty then
11: instCntgp += max(MEICpusichiock (b)), where bb € succpp
12: end if
13: return instCntgp

14: end function

15: function MEIC,ction(F)

16: entryp < Entry BasicBlock of Function F
17: return MEICyicpiock (entryr)

18: end function

Electronics 2021, 10, 11

12 of 23

Figure 5 is an example of our process from CFG extraction to MEIC calculation that
is applied to the motivating example in Figure 3. Figure 5a is the original CFG obtained
using the LLVM framework, and the instructions of the program are described in each basic
block. The instruction counts of each basic block can be simply calculated by counting the
number of instructions. The calculated instruction count is represented by a blue number
to the right of each basic block. The instruction which is marked with a green square is
a call instruction that calls user-defined function do_many_things(). This call instruction
should be considered when calculating MEIC later.

Original CFG
of main()
(Full version)

Instruction Original CFG

Count of BB : .
23 (short version)

R\

Loop
backedge
Call instruction to
user-defined function
do_many_things() (a) (b)
Remove
Cycles
CFG S Order no-loop CFG
(284+23) of basic .
with MEIC blocks (DAG version)
284 9 8
(281+3) | bril”
281 7 Reciock] 7 2
(27447) sar BasicBlock 10
b 10 et 32 %53
274
(266+8)
: Calculate 8 Topological 5
b st b MEIC Sort
266 T [¥ 6
(258+8)]
BasicBlock 4 5
i3
br il %
258 T ! 4
(6+2+250)
3
2
1
0
br label
e ot e (e) (c)

Figure 5. The overall process for calculating MEIC of main() function in motivating example.
(a) Original CFG of main() (full version); (b) Original CFG (short version); (c) no-loop CFG (DAG
version); (d) Order of basic blocks; (e) CFG with MEIC.

Electronics 2021, 10, 11

13 of 23

Figure 5b is a short version of CFG without unnecessary instructions for explaining.
As you can see in Figure 5b, there is one backedge created by the for statement in the main()
function. it will be deleted for the next step.

Figure 5c is the CFG without the loop backedge. As mentioned earlier, in order to run
the topological sorting, we should make DAG version of CFG.

Figure 5d is a table that is showing the result of topological sorting. The numbers in
the table are the ids of basic blocks. From the top to the bottom, we can calculate MEIC of
the basic block sequentially.

Finally, Figure 5e is a figure that is shows the MEIC of each basic block and the MEIC
of the main() function. The MEIC of each basic block is described as the red number on
the left side of the basic block. The MEIC of the main() function is defined as the MEIC
of the entry basic block of the function. In the process of calculating the MEIC of basic
block 5, the MEIC of the do_many_things() function must be added to MEIC of basic
block 5, because there is a call instruction to do_many_things() function. In this example,
for convenience, the MEIC of the do_many_things() function is arbitrarily set to 250.

5.4. Objective Function

To convert the fuzzing problem into an optimization problem, we create an objective
function that can be used to maximize code coverage. Intuitively, because our goal is to
maximize code coverage, we can use code coverage as an objective function, but there is
a big problem. The distribution of code coverage in input space X is not continuous and
smooth because it only depends on the execution flow in the program. Even if the input
value x changes, the execution flow can be changed only at certain values, so in most cases,
the gradient might be zero and the function is not continuous. For example, in the program
of Figure 3, when buf[3] is ‘Z’, the numerical gradient of the code coverage with respect to
buf[3] is zero and we cannot find the direction of the mutation.

To overcome this problem, we designed a new objective function to be as continuous
as possible and to have a gradient at every point. In addition, to achieve the fundamental
goal which is maximizing code coverage, the objective function is designed using the
previously calculated MEIC. We always guide the control flow to a basic block with a
higher MEIC at every branch within the program. To derive this branch behavior, we
analyze the CMP instructions of the branch and MEIC of child basic blocks to generate the
objective function.

Firstly, we calculate the branch variable v for every branch instruction. A branch
variable is a variable that determines the control flow of a specific branch. It is defined
as the difference between both variables of CMP instruction. For example, in the case
of the conditional statement on line 15 in Figure 3, the branch variable is calculated as
v = buf[2] —‘X’. In the case of an equal compare instruction (equal and not equal),
the branch variable is defined in the same way.

After calculating the branch variable as above, the branch cost can be computed
based on the MEIC of the next basic blocks and branch variable. Branch cost is based
on simple intuition. If control flow goes to the wrong basic block, we treat it as a loss
like a general loss in machine learning. Of course, if control flow goes to the right basic
block, the cost will be zero. We defined the coefficient of the cost using the difference
between MEIC of successor basic blocks, to prioritize important branches in an objective
function. In addition, the branch variable is not used directly, because the range of the
branch variable is too wide. For example, in the case of integer compare instruction, branch
variable can be an integer between 0 and 2% — 1 in x86 architecture. Of course, in x64
architecture, branch variable varies between 0 and 2% — 1. Furthermore, in the case of
floating-point number comparison, there is no exact range of branch variable. Therefore,
we not only limit the range of branch cost but also make it easier to converge using a
sigmoid function as Equation (4).

4)

Electronics 2021, 10, 11

14 of 23

where {a,b,k} is a set of hyperparameters. The entire algorithm to calculate the branch
cost is described as Algorithm 5.

Note that, through a simple compiler optimization, we made every basic block has
only two child basic blocks. The complete objective function] consists of the sum of branch
costs of all basic blocks that are executed at the current execution.

J(x) =Y BranchCost(bb, x) ®)
bbeBB

Algorithm 5 Calculating branch cost

1: x < current Input of Program
2: BB < current BasicBlock

3: function BRANCHCOST(BB, x)

4: if BB has no conditional branch instruction then
5: return 0

6: end if

7: v < branch variable of BB

8: MEIC,5; < MEIC of left child BasicBlock
9: MEIC;ign < MEIC of right child BasicBlock
10: if Control flow goes to BB which has bigger MEIC then

11: return 0

12: else

13: return (|MEICj,5; — MEIC,jgp|) X 0(0)
14: > o is a sigmoid function

15: end if

16: end function

5.5. Optimization Using Gradient Descent

For the purpose of generating efficient inputs, we minimize the objective function
with the gradient descent algorithm. In this case, an input is divided into bytes and one
byte is treated as one dimension. Therefore, each byte can have an integer value from 0 to
255 during the optimization process and rotates the value when overflow or underflow
occurs (ex. 255 +1=0,0 — 1 =255).

5.5.1. Estimate Subgradient

To perform gradient-based optimization, we need to estimate the gradient of the
objective function | at the current input x. Our objective function is not perfectly continuous
and smooth, so instead of a rigorous gradient, we use the subgradient of the function.
Because our objective function is determined by the branch-behavior inside the program,
we cannot represent it as a precise equation. So, in this case, we have to use a numerical
method to calculate the subgradient. Simply, we obtain a subgradient with respect to input
byte x[i] by calculating symmetric difference as Equation (3).

5.5.2. Mutate Input Using Subgradient

After approximating subgradient of |, we can generate a new input using the subgra-
dient. Subgradient is a direction of mutation, so we only need to determine the learning
rate & in Equation (1). There are plenty of ways to decide a, but we simply fix an initial

Electronics 2021, 10, 11

15 of 23

learning rate and decrease « using a decreasing rate <y like a1 = ¥ X a;.

In the gradient descent process, we treat every byte as one dimension of a real number.
However, bytes of real input must be an integer value between 0 and 255, so we round off
every byte of x to convert input before passing it to the target program.

5.5.3. Gradient Clipping

One of the problems in the gradient descent is that x has changed so much and it
jumps to an unintended position. This problem occurs because the learning rate is set too
big or the search space is shaped like a waterfall and, consequently, the gradient is too big.
However, if the learning rate is set too small, there is a disadvantage that the convergence
time becomes too large which is a critical problem in the fuzzing process. In particular,
in the case of our objective function, there are locations that cause gradient exploding and
spaces that have very small gradients, so it is impossible to decrease the learning rate.
Therefore, we solved this problem using the gradient clipping technique. As we briefly
explained earlier in Algorithm 3, the gradient clipping is a simple method to reduce the
gradient to a certain range when it is larger than a certain threshold. We conducted many
experiments to set the threshold and figured out the best threshold to be 200 based on
empirical evidence.

5.5.4. Termination Criteria

If x converges to local optima, the gradient descent will trivially terminate, because the
goal of the algorithm is achieved. However, in many cases, x cannot converge and move
around the local optima due to some problems. Even if we know that it will converge in
the future, convergence time must be small enough because of fuzzing efficiency. In this
case, we have to decide when to stop our gradient descent algorithm. We defined two
additional termination criteria based on the empirical result: the maximum number of
iteration as 50, minimum norm of gradient vector as 1 x 1073,

5.5.5. Epsilon-Greedy Strategy for Randomness

In a general gradient descent algorithm, x always moves in the direction of the gradient
for fast convergence. However, in fuzzing, random mutations are also important. In fact,
in the case of AFL, despite its only use of various random mutation methods, it shows
quite good performance.

Focusing on this fact, we added some randomness to the gradient descent process.
Since the process of finding the optimal input is important in the early stage of fuzzing,
the randomness process was added after more than 10 iterations were performed. It
is simple to add randomness. A constant € was defined and execute random mutation
without following the gradient with the probability of €. In other words, we execute
the original gradient descent with a probability of 1 — € and perform random mutation
with a probability of €. The simplest bitflipping and normal sampling were used as the
type of random mutation. Bitflipping mutation flips a total of K bits in x where K is a
hyperparameter that we defined. In the case of normal sampling, the following normal
distribution was used which is constructed based on the previous gradients and current x:

k-1

Xer1 ~ N(xg, Y aVf(x)). (6)

i=0

The standard deviation in Equation (6) was based on the intuition that if some bytes
have changed a lot, they can be considered as hot-bytes. Hot-bytes are particular bytes of
the input which can change program execution flow a lot (e.g., File signature bytes of an
input). Therefore, to mutate the hot-bytes a lot, we set a high standard deviation.

Electronics 2021, 10, 11

16 of 23

5.6. Adaptive Objective Function

The most important indicator of fuzzing is cumulative code coverage. Therefore, even
if a specific input shows high code coverage at once, we cannot say our fuzzer is efficient if
only the same path has been searched a lot. Up to now, if we use the objective function we
have defined, we can make a specific input x to test as many codes as possible, but there is
a limit to explore various paths.

To solve this issue, we changed the objective function little by little during the fuzzing
process. In the initial stage of fuzzing, various paths have not been searched yet, so we just
use the original objective function. After a while, we store each branch behavior and give a
penalty to the path that was searched a lot when calculating branch cost at Algorithm 5.
In addition, when it is determined that both left and right paths have been sufficiently
tested, we exclude the corresponding branch cost when calculating the objective function
at Equation (5).

6. Implementation

MaxAFL is basically based on AFL source code and performs static analysis and
binary instrumentation using LLVM Pass [34]. All source codes are based on AFL 2.56b [35]
and LLVM 7.0.1 [16].

First of all, the static analysis processes, such as graph acquisition and the topological
sorting, were implemented using the LLVM framework [16]. LLVM provides an interface
called LLVM Pass [34] to execute user-written code during the compiler optimization
process. We used this interface to implement the analysis procedure.

In addition, we build binary instrumentation for our proposed approach. Because the
branch variables are changed when the input changes, we need to measure them dynami-
cally. Therefore, we also insert user-defined functions to every CMP instruction using the
LLVM Pass. AFL’s basic instrumentation process for code coverage measurement is also
undertaken. Branch variables are calculated in user-defined functions and stored in shared
memory. Next, the objective function is calculated in the main fuzzer.

Eventually, we implement the main fuzzer which is totally based on AFL. We only
modified the deterministic mutation stage of AFL source code, so that all of the great
interfaces and the features of AFL can be also used in MaxAFL.

7. Evaluation

In this chapter, we will evaluate the performance of the MaxAFL. In order to test the
proposed deterministic mutation stage of MaxAFL, we evaluated MaxAFL by comparing
its performance with the original AFL Fuzzer [2], AFLFast [3], and FairFuzz [4]. The reason
why we choose AFLFast and FairFuzz for comparison is that they are also based on the
original AFL. We focused on three main metrics for evaluation: line coverage per time, line
coverage per total executions, number of unique crashes. Our mutation algorithm is aimed
to maximize instruction coverage using MEIC, however instruction coverage is hard to
measure. Therefore, we use line coverage because it is easier to measure and instruction
coverage and line coverage are not significantly different experimentally.

All experiments were conducted in the Ubuntu 18.04 64 bit environment. The hard-
ware used for the experiments consisted of Intel Xeon Gold 5218 CPU with 32 cores (2.30
GHz) and 64 GB RAM. For the fairness of the experiment, only one core was used per one
fuzz test. In addition, in order to increase the reliability of our experiment, the average,
maximum, minimum, and variance values were measured by aggregating the results of
eight independent experiments.

7.1. Test Targets

We selected simple Linux binaries to test our fuzzer, because original AFL is designed
to fuzz Linux binaries. In order to evaluate the generalizability of fuzzer, we prepared
various binaries that receive different types of input. Table 1 demonstrates the list of the
tested programs which is used in our experiment.

Electronics 2021, 10, 11

17 of 23

Table 1. Tested programs. Options are command line options to run program. Size column shows
the size of binaries in bytes. Number of lines is total lines of user-defined code.

Program

Size # of Lines

Library Name Option Input Type
nm 54M 95,828
.. size 5.3 M 94,944
binutils-2.35 [36] strip ELF executable 6.0 M 109,626
objdump -X 85M 134,684
libjpeg-9d [37] djpeg -fast JPEG image 679 K 15,296
libpng-1.6.37 [38] readpng PNG image 800 K 24,202

We prepared seed inputs used in each experiment from the public fuzzing corpus
available at Github. Almost all seed inputs are from 3 different Github pages: Default
testcases of AFL Github [35], fuzzdata [39] of Mozilla security, and fuzzing corpus in
fuzz-test-suite [40]. For a smooth experiment, we used the seed inputs as small files as
possible in the experiments.

To evaluate a bug finding technique, we used LAVA-M [41] dataset which is commonly
used in comparison of fuzzers. LAVA-M is a data set in which hard-to-find bugs are injected
in GNU coreutils [42]. Types of LAVA dataset include LAVA-1 and LAVA-M. Between them,
LAVA-M has injected bugs in 4 binaries (who, uniq, md5sum, base64), and the injected
bugs have their own unique numbers. Therefore, we can check what kind of bug we found.

7.2. Research Questions

In order to evaluate MaxAFL using various viewpoints and metrics, we set three
different research questions. The research questions that we set up are as follows.

¢ RO1. Does MaxAFL perform better than the other fuzzers for a certain period of time?
e RQ2. Is the mutation of MaxAFL more efficient than the other fuzzers?
e RQ3. Can MaxAFL find more bugs than the other fuzzers?

7.3. Experimental Results

Performance evaluation of our proposed approach in this subsection is described and
compared with the other fuzzers given the above three questions.

RQ1. Does MaxAFL perform better than the other fuzzers for a certain period of time?

Firstly, we compared the performance of MaxAFL and the other fuzzers within the
same time. Figure 6 is the result of calculating the average, maximum, and minimum of
the line coverage obtained by 8 individual 12 h of fuzzing experiments. The solid line
is the average of line coverage of each fuzzer, and we filled a background color between
the minimum and maximum line coverage. Table 2 demonstrates the final result of 12 h
fuzzing aiming to provide detailed result.

Table 2. Line coverage after 12 h fuzzing. We described the line coverage of each fuzzer in absolute
number of lines and percentage of a total lines. We also provide variance of final line coverage in
8 independent experiments.

Line Coverage

Program Total Lines AFL AFLFast FairFuzz MaxAFL

Lines % Variance Lines % Variance Lines % Variance Lines % Variance
nm 95,828 5351 5.58% 15,837 5380 5.61% 4049 6597 6.88% 10,774 6348 6.63% 6871
size 95,944 5004 5.27% 21,821 5099 5.37% 11,203 6118 6.44% 35,223 6042 6.36% 1633
strip 109,626 10,687 9.74% 19,305 10,605 9.67% 40,471 11,212 1023% 214,739 12941 11.80% 108,309
objdump-x 134,684 6382 4.73% 19,556 6574 4.88% 10,695 7524 559% 244,732 8305 6.17% 128,285

djpeg -fast 15,296 6058 39.60% 7 7288 47.65% 2,406,795 7764 50.76% 298,215 8740 57.14% 83,439
readpng 24,202 6375 26.34% 13 6357 26.27% 223 6353 26.25% 11 6373 26.34% 79

Electronics 2021, 10, 11

18 of 23

16,000

6000
12000

o0 10000

4000 £ 000
S 0 7 s

2000 4000

1000 2000

R R EEE] I EEEEEEEEIEE]
Time(hour) Time(hour) Time(hour)

(a) nm (b) size (c) strip

8000 8000

4, 6000 & 6000
S 4000

3
3 4000

2000 2000

© 0l 62 03 G 05 06 07 68 00 fo 11 12 0 01 02 03 G 05 G5 07 08 00 fo 11 12 © 01 02 03 0+ G5 G6 07 08 00 D 11 12
Time(hour) Time(hour) Time(hour)

(d) objdump -x (e) djpeg (f) readpng

Figure 6. Line coverage per time. Each solid line is average line coverage of each fuzzer. The back-
ground colors describe the range between the maximum and minimum line coverage.

Out of six test binaries, MaxAFL outperformed the original AFL in five binaries.
MaxAFL showed improved performance compared with AFLFast in all test binaries.
FairFuzz gained more line coverage compared with MaxAFL in just 2 binaries. If we look
at the detailed result, in the case of nm, although the line coverage of FairFuzz was 6597
which is the best performance among the fuzzers, the line coverage of MaxAFL was not
significantly different which is 6348. However, AFL and AFLFast showed 5351 and 5380
line coverage, respectively. In the case of size, it was found that FairFuzz covered just 76
lines more compared with MaxAFL. If we compare the result of MaxAFL with results of
AFL and AFLFast, MaxAFL gained 1000 more line coverage. The result of strip, as shown
in Figure 6¢, showed that the line coverage steadily increased throughout the entire fuzzing
process, and finally, MaxAFL showed the best performance among four fuzzers. In the
case of objdump, which is the largest target among our test targets, the performance is
also improved. Performance improvement in objdump was about 30.13% compared with
the original AFL, which is the biggest improvement in binutils binaries. MaxAFL covered
781 lines more compared with FairFuzz. Djpeg of libjpeg, which receives a JPEG image
as an input file, showed the greatest performance improvement among the test targets.
A total of 3719 lines more were tested compared with the original AFL. Finally, in the case
of readpng that receives a PNG file as an input, it was found that there is little difference in
performance among the tested fuzzers. The performance results were in the order of AFL,
MaxAFL, AFLFast, and FairFuzz. However, the difference of line coverage between AFL
and MaxAFL was just two; this is statistically negligible.

In conclusion, we compared MaxAFL with three other AFL-based fuzzers on six Linux
binaries for 12 h and found that MaxAFL showed the best line coverage metric, on average,
on three binaries. In the other three binaries, MaxAFL showed second performance among
four fuzzers and there was no remarkable performance difference with the fuzzer which
showed the best line coverage.

In 12 h fuzzing on six test targets, MaxAFL showed the best line coverage result on three
binaries and showed the second performance in the other three test targets.

RQ2. Is the mutation of MaxAFL more efficient than the other fuzzers?

Secondly, to check the effectiveness of MaxAFL’s mutation using gradient descent, we
limited the maximum number of executions of fuzzers and compared the performance of
MaxAFL with the other fuzzers: AFL, AFLFast, and FairFuzz. Note that, approximately,
one test target execution means one mutation of the input. Therefore, we can say that
the mutation action of the fuzzer, which shows better performance in this experiment,

Electronics 2021, 10, 11

19 of 23

is more efficient than the others without considering execution speed. Each experiment
was conducted by comparing the line coverage obtained by each fuzzer during 12 million
executions. However, in the case of djpeg, the execution speed was extremely slow, so the
maximum number of execution was limited to 0.7 million rather than 12 million. In this
experiment, a total of eight independent experiments were performed and we aggregated
and analyzed all eight results. The results of line coverage per executions are shown in
Figure 7, and the detailed final results are shown in Table 3.

6000
12000

5000
s000 10,000

B % s

S 2000 3 s

~ 2000 —e— AFL o

o —e— AFL

—a— MaxAFL
—— AFLFast
—a— FairFuzz

—— MaafL o
1000 —— AFLFast

—a— FairFuzz

2000

00M 200M 400M 60M BOM 1000M 1200M 00M 200M 400M 600M 80OM 1000M 1200M 000M 200M 400M 600M 80OM 100OM 1200M
otal Execution fotal Execution fotal Execution

Total E Total E Total E
s000 600
s000
5000
gowo ¥ Baom
3 4000 2 g e
—— AFL 2000 —— AFL
2000 —A— MaxAFL 2000 —— MaxAFL
—— AFLFast 1000 —v— AFLFast
. —a— FairFuzz o . —a— Fairfuzz
0GOM 20M 400M 600M B0OM 1000M 1200 0GM 010M 020M 030M 04M 050M 06M 070M O0OM 200M 40M 600M 8QOM 1000M 1200M
Total Execution otal Execution otal Execution

Figure 7. Each solid line is average line coverage of each fuzzer. The background colors describe the
range between the maximum and minimum line coverage.

Table 3. Line coverage after 12M executions. We described the line coverage of each fuzzer in
absolute number of lines and percentage of a total lines. We also provide variance of final line
coverage in eight independent experiments.

Line Coverage

Program Total Lines AFL AFLFast FairFuzz MaxAFL

Lines % Variance Lines % Variance Lines % Variance Lines % Variance
nm 95,828 5081 5.30% 2265 5052 5.27% 4683 5401 5.63% 83,570 6224 6.50% 13,672
size 95,944 4707 4.96% 2297 4542 4.78% 13,063 5311 5.59% 152,279 5924 6.24% 14,371
strip 109,626 10,255 9.36% 12,197 10,157 9.26% 3362 10,673 9.74% 7317 12,428 11.34% 71,490
objdump -x 134,684 6311 4.69% 14,509 6207 4.61% 1350 6744 5.01% 100,203 8128 6.04% 306,633
djpeg -fast 15,296 6054 39.58% 2 6054 39.58% 8 7715 50.44% 335,283 8251 53.94% 50,274
readpng 24,202 6169 25.49% 9430 6026 24.90% 5710 6310 26.07% 1079 6128 25.32% 30,544

As a result of the experiment of RQ2, MaxAFL showed better performance than that
of RQ1. Out of 6 binaries, MaxAFL showed the best line coverage per program execution
on five binares. In the case of nm, a total line coverage increased by 1143 lines on MaxAFL,
showing a performance improvement of 22.50% compared with AFL. The difference of
line coverage between FairFuzz and MaxAFL is 823 which is meaningful improvement.
Compared with the results of RQ1, it showed that there is more performance improvement.
In the case of size, MaxAFL tested 613 more lines compared with FairFuzz. In RQ1,
FairFuzz outperformed MaxAFL slightly, however, MaxAFL outperformed FairFuzz in
RQ2. Next, in the case of strip, MaxAFL showed 21.19% better performance than AFL
and it is the greatest result among the tested fuzzers. In the case of objdump, the biggest
binary in our tested target, MaxAFL also showed improved performance. AFL, AFLFast
and FairFuzz showed less than 7000 line coverage, however, MaxAFL showed 8128 line
coverage that is outstanding improvement. Djpeg showed a total increase of 2674 line
coverage compared with AFL, which means that the performance of MaxAFL is improved
by about 44.15%. Finally, readpng suffered a —0.66% performance drop compared with
AFL, worse than the result of RQ1. However, it was just a decrease of 41 line coverage.

Electronics 2021, 10, 11

20 of 23

In conclusion, as a result of comparing the performance of MaxAFL and the other
three fuzzers by limiting the maximum number of binary executions, MaxAFL showed the
best results on five binaries. This means that MaxAFL’s mutation process is more efficient
than mutation actions of the other fuzzers. The results of RQ2 are much better than the
results of RQ1, which means that our fuzzer has a performance advantage in terms of
mutation action more than execution speed.

For a total of six binaries, MaxAFL showed performance improvement compared with
the other fuzzers in five binaries during 12 millions of execution.

RQ3. Can MaxAFL find more bugs than the other fuzzers?

To evaluate the important goal of the fuzzer, bug finding ability, we ran our fuzzer
with LAVA-M [41] dataset and compared the results with the other fuzzers. We checked
how many unique bugs were found by fuzzing for 12 h on four bug-injected binaries (who,
uniq, md5sum, and base64). A total of eight repeated experiments were conducted and the
best results were compared. The experimental results are shown in Table 4.

Table 4. Number of unique crashes found by each fuzzer.

Number of Unique Bugs
Program :
AFL AFLFast FairFuzz MaxAFL
who 1 1 1 0
uniq 1 0 0 1
md5sum 0 0 0 0
base64 0 0 3 47

As a result of the experiment, in the case of base64, we found 47 more crashes com-
pared with AFL. We found three crashes unlisted by LAVA author because we could trigger
injected bugs that LAVA authors could not trigger. In the case of other binaries, there were
no significant differences from the other fuzzers. Table 5 shows a list of all bugs found
by MaxAFL.

MaxAFL found 47 more injected crashes in base64 of LAVA-M dataset compared with
the original AFL.

Table 5. List of found bugs by MaxAFL. Each number is unique number that LAVA author defined.

Program Id of Found Bug
who -

uniq 321

md5sum -

1,222,235, 253, 255, 274, 278, 276, 284, 386, 521, 526, 527, 554, 556, 558, 560, 562,
base64 566, 572,573, 576, 582, 583, 584, 774, 776, 778, 780, 782, 784, 786, 788, 790, 792,
798, 804, 805, 806, 813, 815, 817, 831, 832, 841, 842, 843

8. Discussion

As a result of our experiment, MaxAFL showed better results than the other AFL-
based fuzzers, generally. However, in some cases such as readpng in RQ1 and RQ?2, there
was no significant improvement in code coverage compared with the existing fuzzers.
Moreover, in the RQ3 experiment results, MaxAFL could find more bugs than the other
fuzzers in base64, but MaxAFL could not find more bugs in the other binaries. In some

Electronics 2021, 10, 11

21 0f23

cases, even though the performance improvement obviously occurred, the percentage of
the tested source code was low. For example, in the case of nm, the line coverage was
improved by 18.63% compared with the original AFL, but only 6.4% of the entire source
code was tested.

Of course, designing a fuzzer that shows great performance in all cases is almost
impossible. However, the results that are mentioned above are limitations of our approach.
We can guess the reasons for these limitations as follows.

First, the optimization problem which we defined is not perfect and may not work
effectively in some cases. Our objective function is constructed using the heuristic method
and it is not smooth and continuous. Furthermore, the dimension of the variable is the
same as the length of the input, and each element of the variable is also limited to an
integer from 0 to 255. Our approach used the approximation of the subgradient instead
of the accurate gradient. For these reasons, in some binaries, the constraints cannot be
solved effectively by the gradient-based optimization algorithm, and the performance
improvement may not occur.

Second, since the seed inputs are not varied and there may be a code region that cannot
be tested by changing the input, the percentage of the line coverage can be measured low.
Mutation-based fuzzers based on AFL basically generate new input values by modifying
the small bytes of the existing input, so they cannot create completely new types of
input. Therefore, the code coverage may be measured differently depending on how the
initial seed inputs are configured. In addition, if optional arguments (e.g., -x of objdump
command) or environment variables (e.g., SBHOMES$ in Linux) are used in the tested binary,
there are the code areas that cannot be executed by modifying input values. These areas of
source code cannot be tested with our fuzzing method, so absolute line coverage can be
measured low.

To solve these limitations, we will design the optimization problem more precisely in
the future. Based on numerous experiments, we plan to refine the objective function and
the optimization technique that works effectively in most cases through statistical analysis.
We will increase the number of the test binaries and the seed inputs for evaluation, and use
a different dataset for testing bug-finding ability other than LAVA-M.

9. Conclusions

In this paper, we have presented MaxAFL, a novel gradient-based fuzzer based on
AFL. We used a lightweight static analysis to calculate MEIC and generated the objective
function using MEIC and branch variables. After that, we applied the gradient descent
algorithm to generate efficient inputs by minimizing the objective function. We proposed
the simple techniques such as probabilistic mutation during the optimization process and
adaptive objective function which helps to search for various paths. We alternated the
deterministic stage of AFL to improve the efficiency of AFL’s mutation actions. The results
show that MaxAFL outperformed the existing fuzzers in all metrics that we tested: line
coverage per time, line coverage per total execution, number of unique crashes. In future,
we plan to design a more accurate objective function to increase performance. We will also
apply the state of the art gradient-based optimization algorithm to MaxAFL.

Author Contributions: All authors contributed to this work. Conceptualization, Y.K.; methodology,
YXK. and].Y.; software, YK.; validation Y.K. and].Y.; writing—original draft preparation, Y.K;
writing—review and editing, J.Y.; visualization, Y.K. and J.Y.; supervision,].Y.; project administration,
J.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable. No new data were created or analyzed in
this study. Data sharing is not applicable to this article.

Electronics 2021, 10, 11 22 of 23

Acknowledgments: Ji Won Yoon was supported by the Institute for Information and Communica-
tions Technology Promotion (IITP) grant funded by the Korea government (MSIT) (no. 2017-0-00545).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
MEIC Maximum Expectation of Instruction Count

References

1. Miller, B.P; Fredriksen, L.; So, B. An empirical study of the reliability of UNIX utilities. Commun. ACM 1990, 33, 32-44. [CrossRef]

2. Zalewski, M. American Fuzzy Lop. 2017. Available online: http://lcamtuf.coredump.cx/afl (accessed on 23 December 2020).

3. Bohme, M.; Pham, V.T.; Roychoudhury, A. Coverage-based greybox fuzzing as markov chain. IEEE Trans. Softw. Eng. 2017,
45, 489-506. [CrossRef]

4. Lemieux, C; Sen, K. Fairfuzz: A targeted mutation strategy for increasing greybox fuzz testing coverage. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering, Montpellier, France, 3-7 September 2018;
pp- 475-485.

5. Stephens, N.; Grosen,].; Salls, C.; Dutcher, A.; Wang, R.; Corbetta,]J.; Shoshitaishvili, Y.; Kruegel, C.; Vigna, G. Diriller:
Augmenting Fuzzing Through Selective Symbolic Execution. In Proceedings of the NDSS, San Diego, CA, USA, 21-24 February
2016; Volume 16, pp. 1-16.

6. Yun, I; Lee, S.; Xu, M,; Jang, Y.; Kim, T. {QSYM}: A practical concolic execution engine tailored for hybrid fuzzing. In Proceedings
of the 27th {USENIX} Security Symposium ({USENIX} Security 18), Baltimore, MD, USA, 15-17 August 2018; pp. 745-761.

7. Chen, P; Chen, H. Angora: Efficient fuzzing by principled search. In Proceedings of the 2018 IEEE Symposium on Security and
Privacy (SP), San Francisco, CA, USA, 20-24 May 2018; pp. 711-725.

8. She, D,; Pei, K,; Epstein, D.; Yang,].; Ray, B.; Jana, S. NEUZZ: Efficient fuzzing with neural program smoothing. In Proceedings
of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19-23 May 2019; pp. 803-817.

9. Myers, G.J.; Badgett, T.; Thomas, T.M.; Sandler, C. The Art of Software Testing; John Wiley & Sons: Hoboken, NJ, NSA, 2004;
Volume 2.

10. Klees, G.; Ruef, A.; Cooper, B.; Wei, S.; Hicks, M. Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, Toronto, ON, Canada, 15-19 October 2018; pp. 2123-2138.

11. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http:
/ /www.deeplearningbook.org (accessed on 23 December 2020).

12. Van Laarhoven, PJ.; Aarts, E.H. Simulated annealing. In Simulated Annealing: Theory and Applications; Springer: Berlin/Heidelberg,
Germany, 1987; pp. 7-15.

13. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671-680. [CrossRef] [PubMed]

14. Hu, X,; Shonkwiler, R.; Spruill, M.C. Random Restarts in Global Optimization. 2009. Available online: https://smartech.gatech.
edu/bitstream /handle/1853/31310/1192-015.pdf?sequence=1&isAllowed=y (accessed on 23 December 2020).

15. Serebryany, K. libFuzzer—A Library for Coverage-Guided Fuzz Testing. 2015. Available online: https://llvm.org/docs/
LibFuzzer.html (accessed on 23 December 2020).

16. The LLVM Compiler Infrastructure Project. 2020. Available online: https://llvm.org/ (accessed on 23 December 2020).

17. Swiecki, R. Honggfuzz: A General-Purpose, Easy-to-Use Fuzzer with Interesting Analysis Options. Available online: https:
/ /github.com/google/honggfuzz (accessed on 23 December 2020).

18. Bohme, M.; Pham, V.T.; Nguyen, M.D.; Roychoudhury, A. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, Dallas, TX, USA, 30 October-3 November 2017; pp. 2329-2344.

19. Pham, V.T.; Bchme, M.; Santosa, A.E.; Caciulescu, A.R.; Roychoudhury, A. Smart greybox fuzzing. IEEE Trans. Softw. Eng. 2019.
[CrossRef]

20. Gan, S.; Zhang, C.; Qin, X.; Tu, X,; Li, K.; Pei, Z.; Chen, Z. Collafl: Path sensitive fuzzing. In Proceedings of the 2018 IEEE
Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20-24 May 2018; pp. 679-696.

21. De Moura, L.; Bjerner, N. Z3: An efficient SMT solver. In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems; Springer: Berlin/Heidelberg, Germany, 2008; pp. 337-340.

22. Cadar, C.; Dunbar, D.; Engler, D.R. Klee: Unassisted and automatic generation of high-coverage tests for complex systems
programs. In Proceedings of the OSDI'08: 8th USENIX Conference on Operating Systems Design and Implementation, San Diego,
CA, USA, 10-11 December 2008; Volume 8, pp. 209-224.

23. Godefroid, P; Levin, M.Y.; Molnar, D.A. Automated Whitebox Fuzz Testing. In Proceedings of the NDSS, San Diego, CA, USA,
10-13 February 2008; Volume 8, pp. 151-166.

24. Bounimova, E.; Godefroid, P.; Molnar, D. Billions and billions of constraints: Whitebox fuzz testing in production. In Proceedings

of the IEEE 2013 35th International Conference on Software Engineering (ICSE), San Francisco, CA, USA, 18-26 May 2013;
pp- 122-131.

http://dx.doi.org/10.1145/96267.96279
http://lcamtuf. coredump. cx/afl
http://dx.doi.org/10.1109/TSE.2017.2785841
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
https://smartech.gatech.edu/bitstream/handle/1853/31310/1192-015.pdf?sequence=1&isAllowed=y
https://smartech.gatech.edu/bitstream/handle/1853/31310/1192-015.pdf?sequence=1&isAllowed=y
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/
https://github. com/google/honggfuzz
https://github. com/google/honggfuzz
http://dx.doi.org/10.1109/TSE.2019.2941681

Electronics 2021, 10, 11 23 of 23

25.

26.

27.

28.

29.

30.

31.
32.
33.

34.

35.
36.
37.
38.
39.
40.
41.

42.

Godefroid, P; Klarlund, N.; Sen, K. DART: Directed automated random testing. In Proceedings of the 2005 ACM SIGPLAN
conference on Programming Language Design and Implementation, Chicago, IL, USA, 12-15 June 2005; pp. 213-223.

Haller, I; Slowinska, A.; Neugschwandtner, M.; Bos, H. Dowsing for Overflows: A Guided Fuzzer to Find Buffer Boundary
Violations. In Proceedings of the 22nd USENIX Security Symposium (USENIX Security 13), Washington, DC, USA, 14-16 August
2013; pp. 49-64.

Zhao, L.; Duan, Y.; Yin, H.; Xuan, J. Send Hardest Problems My Way: Probabilistic Path Prioritization for Hybrid Fuzzing.
In Proceedings of the NDSS, San Diego, CA, USA, 24-27 February 2019.

Choi, J.; Jang, J.; Han, C.; Cha, S.K. Grey-box concolic testing on binary code. In Proceedings of the 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), Montreal, QC, Canada, 25-31 May 2019; pp. 736-747.

Chen, P; Liu, J.; Chen, H. Matryoshka: Fuzzing deeply nested branches. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, London, UK, 11-15 November 2019; pp. 499-513.

Bottinger, K.; Godefroid, P.; Singh, R. Deep reinforcement fuzzing. In Proceedings of the 2018 IEEE Security and Privacy
Workshops (SPW), San Francisco, CA, USA, 24 May 2018; pp. 116-122.

Drozd, W.; Wagner, M.D. Fuzzergym: A competitive framework for fuzzing and learning. arXiv 2018, arXiv:1807.07490.
Rajpal, M.; Blum, W.; Singh, R. Not all bytes are equal: Neural byte sieve for fuzzing. arXiv 2017, arXiv:1711.04596.

Godefroid, P; Peleg, H.; Singh, R. Learné&fuzz: Machine learning for input fuzzing. In Proceedings of the 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE), Urbana, IL, USA, 30 October—3 November 2017; pp. 50-59.
Writing an LLVM Pass. 2020. Available online: https:/ /llvm.org/docs/Writing AnLLVMPass.html (accessed on 23 December
2020).

Google/AFL. Available online: https://github.com/google/AFL (accessed on 15 August 2020).

GNU Binutils. Available online: https://www.gnu.org/software/binutils/ (accessed on 14 August 2020).

libjpeg. Available online: https://www.ijg.org/ (accessed on 14 August 2020).

libpng. Available online: http:/ /www.libpng.org/pub/png/libpng.html (accessed on 14 August 2020).

MozillaSecurity /Fuzzdata. Available online: https://github.com/MozillaSecurity /fuzzdata (accessed on 15 August 2020).
Google/Fuzzer-Test-Suite. Available online: https://github.com/google/fuzzer-test-suite (accessed on 15 August 2020).
Dolan-Gavitt, B.; Hulin, P; Kirda, E.; Leek, T.; Mambretti, A.; Robertson, W.; Ulrich, E; Whelan, R. Lava: Large-scale automated
vulnerability addition. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22-26 May
2016; pp- 110-121.

GNU Coreutils. Available online: https://www.gnu.org/software/coreutils/ (accessed on 18 August 2020).

https://llvm.org/docs/WritingAnLLVMPass.html
https://github.com/google/AFL
https://www.gnu.org/software/binutils/
https://www.ijg.org/
http://www.libpng.org/pub/png/libpng.html
https://github.com/MozillaSecurity/fuzzdata
https://github.com/google/fuzzer-test-suite
https://www.gnu.org/software/coreutils/

	Introduction
	Background
	Fuzzing
	Evolutionary Fuzzer
	Concolic Execution Fuzzer
	Gradient-Based Fuzzer

	Program Analysis and Code Coverage
	Control Flow Graph and Call Graph
	Code Coverage

	Gradient-Based Optimization
	Gradient Descent
	Subgradient Method
	Numerical Differentiation
	Gradient Clipping
	Local Optimum and Global Optimum

	Related Work
	Evolutionary Fuzzer
	Concolic Execution Fuzzer
	Gradient-Based Fuzzer

	Machine Learning-Based Fuzzer
	Proposed Approach
	Overview
	Motivating Example
	Maximum Expectation of Instruction Count
	Objective Function
	Optimization Using Gradient Descent
	Estimate Subgradient
	Mutate Input Using Subgradient
	Gradient Clipping
	Termination Criteria
	Epsilon-Greedy Strategy for Randomness

	Adaptive Objective Function

	Implementation
	Evaluation
	Test Targets
	Research Questions
	Experimental Results

	Discussion
	Conclusions
	References

