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Abstract: Air pollution has considerable effects on the human skin, showing that every single
pollutant has a different toxicological impact on it. The oxidative stress that exceeds the skin’s
antioxidant capacity can lead to oxidative damage and premature skin aging by repeated air pollutant
contact. In this study, according to the generalized protocol available to objectively substantiate
the ‘anti-pollution’ claim, we evaluated several biomarkers after pollutants exposure in Raw 264.7
macro-phages and HaCaT keratinocytes to investigate the possibility of anti-pollution cosmetic
material of fermented extract from Smilax china leaves (FESCL). FESCL decreased pollutants-induced
luciferase activity in a dose-dependent manner, and FESCL significantly inhibited XRE-luciferase
activity at a concentration of 1%. The IC50 value of FESCL showed the same DPPH scavenging
activity at 0.0625% as ascorbic acid, and the maximum DPPH scavenging activity (92.44%) at 1%. The
maximum permissible non-cytotoxic concentrations of FESCL for a Raw 264.7 cell was determined
to be 2%, where PGE2 production of FESCL was inhibited by 78.20%. These results show the
anti-pollution activity of FESCL against the pollutant-stimulated human living skin explants. In
conclusion, we confirmed the anti-pollution potential of FESCL as one of the functional materials in
cosmetic formulation.

Keywords: anti-pollution; anti-inflammation; antioxidant; fermentation; Smilax china leaf;
Lactobacillus spp.

1. Introduction

Exposure to air pollution has been noted as closely associated with increased morbidity
and mortality worldwide. Airborne pollutants are known to penetrate the human body
through multiple routes, including direct inhalation and ingestion, as well as dermal contact,
and also to cause well-documented acute and long-term effects on human health [1]. Air
pollution is composed of a heterogeneous mixture of compounds emitted directly from
pollution sources, including gases, low molecular weight hydrocarbons, persistent organic
pollutants, (e.g., dioxins), heavy metals, (e.g., lead and mercury), and particulate matter
(PM) [1]. Air pollution has considerable effects on the human skin, and it is generally known
that every single pollutant has a different toxicological impact on it. Especially being the
largest organ of the human body, as well as the boundary between the environment and
the organism, the skin unsurprisingly is one of the major targets of air pollutants. Ref. [1]
Even though the skin is equipped with an elaborate antioxidant defense system, including
enzymatic and non-enzymatic, hydrophilic and lipophilic elements, the oxidative stress
that exceeds the skin’s antioxidant capacity, can lead to oxidative damage, premature skin
aging, and eventually skin cancer by repeated air pollutant contact [2].

Recently, many studies reported potential explanations for outdoor air pollutants’
impact on skin damage, focusing their interest, especially on airborne particulate matter
(PM) and the ozone [3–5]. PM consists of mixtures of particles of different sizes and compo-
sitions and is a major concern in the air of densely populated urban areas [6]. According to
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previous studies, PM has been known to induce skin oxidative stress, producing reactive
oxygen species (ROS), and lead to the secretion of pro-inflammatory cytokines (TNF-α,
IL-1β, and IL-8) [7]. Additionally, it was reported that PM could be a relevant risk factor
for the development of atopic dermatitis, a chronic inflammatory skin disease, and even
exacerbate this condition [8–10]. There has been an increasing interest in anti-pollution
products that protect them from various environmental threats.

The genus Smilax belongs to the Liliaceae family and contains 350 species, and it is
known to be widely distributed in the tropical and temperate zones throughout the world,
especially in tropical regions of East Asia and South and North America [11]. Many of
them have been used as medicinal herbs in East Asian countries. For example, Smilax china
is commonly used in traditional Chinese medicine for the treatment of diuretics, rheumatic
arthritics, detoxication, lumbago, gout, tumors, and inflammatory diseases [12]. Recent
pharmacological studies reported that Smilax china exhibited anti-inflammatory activity
in skin cells [13–16] and significant cytotoxicity against several tumor cell lines [17,18].
In Korea, Smilax china L. is called ‘Manggae,’ and its leaves have been used in wrapping
a unique Korean rice cake, called ‘Manggae-dduck’ of Uiryong-gun. This indigenous
‘Manggae’ also showed a notable antioxidant activity, similar to foreign Smilax china leaf
(SCL) [19]. Especially, Li et al. reported that Smilax china had positive effects on skin wound
healing and skin barrier function by accelerating keratinocyte migration [20].

In this study, according to the generalized protocol available to objectively substantiate
the ‘anti-pollution’ claim, several in vitro tests were investigated. In order to investigate the
anti-pollution potential of FESCL as one of the functional materials in the cosmetic formula-
tion, we evaluated several biomarkers after pollutants exposure in Raw 264.7 macrophages
and HaCaT keratinocytes. These two cell lines were used according to the generalized
protocol available to objectively substantiate the ‘anti-pollution’ claim.

2. Materials and Methods
2.1. Materials

The dust PM1648a used in this study is urban particulate matter and was purchased
from the National Institute of Standards and Technology (NIST; Gaithersburg, MD, USA).
It has an average particle size of 5.85 µm. Cadmium chloride (202908), ascorbic acid
(A4544), DPPH (D9132), and dexamethasone (D4902) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). MRS broth was purchased from Difco™. Smilax china leaves (SCL)
were collected in 2019 in Uiryong-gun, Korea.

Human keratinocytes (Human adult low calcium high temperature: HaCaT) cells and
Raw 264.7 cells used in this experiment were presold by the Korean Cell Line Bank, and
DMEM medium containing 1% Penicillin streptomycin (Gibco, Grand Island, NY, USA)
and 10% FBS was used. Incubated in a CO2 incubator adjusted to 37 ◦C, 5% CO2.

2.2. Preparation of Standardized SCL Fermented Extracts

SCL was dried at 30–40 ◦C for 48 h and dried samples were pulverized into a powder
having a particle size of 40 mesh using a stainless steel blender (RT-08; MHK., Seoul,
Republic of Korea). One kg of pulverized SCL was soaked in 5 L of distilled water for 2 h
and then extracted at 100 ◦C for 2 h. The extract was separated from the insoluble part by
filtration with Watman No.1 paper. The extracts were centrifuged at 8000 rpm for 20 min,
and the supernatant was concentrated to 1 L under reduced pressure, then it was kept
at 4 ◦C until use. The 1% (w/v) of freeze-dried Lactobacillus bulgaricus (KCTC13554BP)
and Lactobacillus reuteri (KCTC14022BP), which were pre-cultured in MRS media, were
inoculated in 1 L of SCL concentrated extract. This culture was fermented at 37 ◦C for 16 h
and 10 ◦C for 6 h, sequentially, resulting in preparing the fermented extract of the SCL
sample for this study.

The quantification of quercetin was analyzed by high-performance liquid chromatog-
raphy (HPLC) (Waters 2690; Waters Co., Milford, MA, USA) using a Capcell pak C18 MG
column (Shiseido, Ginza, Japan) (4.6 × 250 mm, 5µm) and a UV detector (Waters 2487;
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Waters Co.). Samples were eluted isocratically with 10% (v/v) acetonitrile containing 0.1%
(v/v) potassium dihydrogen phosphate monobasic at a flow rate of 1 mL/min and detected
at 340 nm. To avoid variations in activity for different preparations, a sufficient extract was
obtained in one batch for use throughout the study. The content of the marker quercetin
in FESCL was quantitated using high-performance liquid chromatography and the total
flavonoid content was analyzed as the quercetin equivalent (QE) mg/g of FESCL. Results in-
dicated that FESCL possessed 25.3 QE mg of quercetin per 1.0 g (Supplementary Figure S1).

2.3. Cytotoxicity Assay

A WST-1 assay was carried for measuring the FESCL cytotoxicity value, about 5 × 105

viable cells were added to each well of a 96-well tissue culture plate with medium containing
10% FBS (fetal bovine serum), 1% Penicillin/Streptomycin (P/S), and incubated overnight
at 37 ◦C to allow cells to attach to wells of the 96-well cell culture plates. The medium was
replaced with fresh serum-free and 1% Penicillin/Streptomycin (P/S). Cell viability was
measured using the EZ-Cytox cell viability assay kit (Itsbio. Seoul, Republic of Korea). The
cells were incubated for 2 h at 37 ◦C in a serum-free medium diluted with 1 kit reagent.
Next, harvested cells resuspended in the media were carefully moved to an empty 96-well
plate, and absorbance was measured using an ELISA at 450 nm. Due to the measure of
the cytotoxicity of FESCL in heavy metals exposure, after overnight incubation of the cell
culture, the medium containing the serum-free and 1% P/S was replaced and treated with
4 µg/mL of cadmium chloride on each culture plate. The treatment of FESCL (0.0625, 0.125,
0.25, 0.5, and 1%) was suspended in cells and maintained for 24 h to confirm the cytotoxic
concentration ranges. The percent cytotoxicity was calculated as follows:

Cell viability(%) =
(OD value o f treatment − OD value o f blank)
(OD value o f control − OD value o f blank)

× 100

(OD: optical density at 450 nm. Control: only cadmium chloride treatment).

2.4. The DPPH Radical Scavenging Activity

The DPPH radical scavenging activity of FESCL was determined according to the
method of You et al. [21]. After diluting FESCL by concentrations of 0.125 mL for each
fermented extract, 0.125 mL of PM1648a were mixed with 0.625 mL of 0.1 mM DPPH in
ethanol at 4 ◦C for 30 min. Then, the absorbance of the sample were measured at 520 nm
by a spectrophotometer (UV-1601; Shimadzu, Kyoto, Japan). Radical scavenging activity
was expressed as a percentage according to the following formula:

DPPH radical scavenging activity(%) =

{
1 −

(
sample
control

)}
× 100

2.5. XRE-Luciferase Activity

To assay the activity of XRE and ARE-containing promoters, cells were transfected
with XRE-luciferase (XRE-Luc) (Stratagene, La Jolla, CA, USA) or ARE-luciferase (ARE-Luc)
reporters (Add gene, MA, USA), and Renilla-luciferase plasmid (1µg) (for normalization)
(Promega, Madison, WI, USA) using the DharmaFECT® Duo transfection reagent (Thermo
Fisher Scientific, Waltham, MA, USA), according to the manufacturers’ protocols [22]. At
24 h post-transfection, FESCL by concentrations and PM1648a were added to the cells for a
48 h treatment. The cells were harvested and luciferase activity was measured using the
Dual Luciferase Assay system (Promega) on a LB953 luminometer (Berthold, Germany).

2.6. Measurement of Prostaglandin E2 (PGE2) Production

The PGE2 concentration in the culture medium was measured by the PGE2 immunoas-
say (ELISA) kit (Enzo Life Sciences, Farmingdale, NY, USA) following the manufacturer’s
protocol. In brief, culture supernatants from the Raw 264.7 cells treated with various
concentrations of FESCL with or without PM1648a (100 µg/mL) for 24 h were placed in
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96-well plates with standard reagents. Wells were incubated with PGE2 conjugate liquid
and monoclonal PGE2 antibody liquid for 24 h at 4 ◦C. After 24 h of incubation, wells were
washed three times with a wash buffer and incubated with a substrate solution for 1 h at
37 ◦C. Then, the reactions were blocked by adding a stop solution reagent in each well. The
optical density was determined using an automated microplate reader at 405 nm.

2.7. Statistical Analysis

All results are expressed as the mean ± standard deviation (SD) of at least three
experiments. Statistical analyses were performed using the Statistical Package for the Social
Sciences (SPSS 20.0) software. A paired t-test for the independent samples was used for the
statistical analysis of the data. Values of * p < 0.05 displayed statistical significance.

3. Results
3.1. Cytotoxicity of FESCL in Heavy Metals Exposure

We investigated the cytotoxic effect of FESCL in a HaCaT cell, and it was observed
to reduce viability in a concentration-dependent manner (Figure 1a). The viability of
a HaCaT cell was not reduced following treatment with 0.125–1% of FESCL, but the
viability was significantly reduced from 2% of FESCL. Based on these results, non-cytotoxic
concentrations of FESCL (0.125, 0.25, and 1%) were used in further experiments. In order
to evaluate the effect of FESCL on skin cells by heavy metals exposure, we measured the
cytotoxicity of the HaCaT cell by treating FESCL in the condition of exposing 4 µg/mL of
cadmium chloride. The viability of the HaCaT cell was significantly (p < 0.05) increased in a
FESCL concentration-dependent manner. Notably, the HaCaT cell showed the highest value
in 0.5% of FESCL treatments (p < 0.05), compared with the not-treated control (Figure 1b).
Taken together, these results indicated that FESCL played potential roles in somewhat
protecting skin cells from damage by toxic heavy metals exposure.
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Figure 1. Inhibitory effect of FESCL cell cytotoxicity induced by treatment of Cadmium chloride
(4 µg/mL) in HaCaT cells. (a) The cell viability of FESCL in HaCaT cells (b) The cell viability of
FESCL in HaCaT cells with treatment of Cadmium chloride (4 µg/mL). The data are presented as the
mean ± SD of three replicates. * p < 0.05 and ** p < 0.01.

3.2. Inhibitory Effect of FESCL on Air Pollutants

Xenobiotic-responsive elements (XREs) are the domains in the promoter region of
some xenobiotic-responsive genes, and these gene expressions can be regulated through
the interaction of the XRE and the dimer-containing aryl hydrocarbon receptor (AHR) [23].
The AHR is induced by polycyclic aromatic hydrocarbons (PAHs), and AHR dimerizes
with ARNT and binds to xenobiotic-response elements which regulate the expression of
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cytochrome P450. The oxidation of xenobiotics is important in dermatitis, and even more
critical in the detoxification of carcinogens [24]. Accordingly, we evaluated the inhibition
effect of FESCL on air pollutant (PM1648a) in the HaCaT cell by an XRE-luciferase activity
(Figure 2). The cells were incubated with various concentrations of FESCL (0.25, 0.5, and
1%) and then exposed to the air pollutant (PM1648a-10 µg/mL). As evident in Figure 2,
it was confirmed that FESCL decreased pollutant-induced luciferase activity in a dose-
dependent manner, and FESCL significantly (p < 0.001) inhibited XRE-luciferase activity at
a concentration of 1%. The results indicated that air pollutant activated the AHR-signaling
pathway, but it appeared that FESCL decreased the activated signaling pathway, hence
reducing intracellular XRE promotor activity due to PM1648a, which seems to be due to
the cell damage defense activity of FESCL by the PM1648a stimulation.
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Figure 2. Luciferase activity of FESCL by the treatment of PM1648a (10 µg/mL) in HaCaT cells. The
data are presented as the mean ± SD of three replicates. *** p < 0.001 vs. the PM1648a treatment
control group.

3.3. Free Radical Scavenging Activity of FESCL on Air Pollutants

First, we tested the DPPH radical scavenging activity for PM1648a with ascorbic acid
known to have high antioxidant activity as a positive control. As a result, it was confirmed
that ascorbic acid exhibited concentration-dependent DPPH radical scavenging activity at a
statistically significant level (p < 0.05). The entire treatment concentration range of ascorbic
acid was from 0.313 to 10 µg/mL, and the IC50 of ascorbic acid was 2.87 µg/mL. Then,
the DPPH scavenging activity on air pollutant (PM1648a) was performed, respectively, to
evaluate the antioxidant activity of FESCL (Figure 3). We also found that FESCL exhibited
concentration-dependent DPPH radical scavenging activity at a statistically significant
level (p < 0.05). The entire treatment concentration range was from 0.015 to 1% of FESCL,
and the IC50 of FESCL was 0.0618 µg/mL, and the highest DPPH scavenging activity was
shown to be 92.44% at 1% concentration of FESCL. This result indicated that FESCL had a
noticeable effect on the scavenging free radical and it had high antioxidant activity.
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Figure 3. The DPPH radical scavenging activity of various concentrations of FESCL in HaCaT
cells by treatment of PM1648a (12.5 µg/mL). All data were reported as the mean ± SD of three
replicates. ** p < 0.01 and *** p < 0.001 vs. the PM1648a treated control group. DPPH; 2,2-diphenyl-1-
picrylhydrazyl.

3.4. Anti-Inflammatory Activity of FESCL on Air Pollutants

The production of prostaglandin E2(PGE2) is a representative inflammatory factor
in immune cells, and the anti-inflammatory effect can be evaluated through the mea-
surement of PGE2 production inhibition activity [25]. Therefore, we measured the PGE2
production inhibition activity of FESCL in Raw cell 264.7. After measuring the cytotoxicity
level of fermented extract from SCL for Raw 264.7 cells, the FESCL inhibitory activity
on PGE2 production in the ones exposed to PM 1648a were evaluated. In addition, for
the comparison of the positive control group, we tested the inhibition activity of PGE2
production of 5µM dexamethasone-treated against the PM1648a stimulation and compared
the anti-inflammatory effect of FESCL with dexamethasone (Figure 4). The non-cytotoxic
concentrations of FESCL for the Raw 264.7 cell were by 2%, and the inhibition rate of PGE2
production of FESCL was significantly (p < 0.05) increased in a concentration-dependent
manner (0.125–2%). In particular, it was confirmed that about 78.20% of the PGE2 produc-
tion inhibited activity in the 2% concentration treatment group compared to the negative
control group. PGE2 levels in the medium were determined, as described in Materials and
Methods. Cell viability by FESCL was also measured by a WST-1 based cell cytotoxicity
assay, and there were non-cytotoxic concentrations of FESCL of 2%.
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Figure 4. PGE2 production inhibition activity of various concentrations of FESCL in Raw cell 264.7
by treatment of PM1648a (100 µg/mL). There were non-cytotoxic concentrations of FESCL by 2%. All
data were reported as the mean ± SD of three replicates. ** p < 0.01 and *** p < 0.001 vs. the PM1648a
treated control group. DMTS, dexamethasone.
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4. Discussion

Cadmium (Cd) is one of the most concerning pollutants possessing high toxicity for
both animals and plants. Cadmium is widely dumped into the environment through
various anthropogenic activities such as mining, smelting, and the use of fertilizers [26].
Cadmium also affects cellular homeostasis and generates damage via complex mechanisms
involving interactions with other metals and oxidative stress induction. Given it is one
of the important pollutants which could damage human skin, we investigated a human
keratinocyte cell line (HaCaT) as a model to study. In lines of experiments, we could
confirm the significant protection activity of FESCL on the Cd exposed keratinocyte. This
result was supported by Shi’s previous report [27], in which Smilax glabra flavonoids extract
could also reduce lead-induced cytotoxicity in HEK-293 cells stimulated with Pb.

As well, Urban PM is considered one of the most hazardous pollutants for human
health [5], and in this study, the anti-pollution effects of FESCL were investigated by measur-
ing antioxidant activity in the PM1648a-exposed HaCaT cells. As shown in Figures 2 and 3,
the XRE-luciferase activity was significantly decreased by the concentration-dependent
of FESCL, and the DPPH scavenging activity was significantly higher than the control
group. Our results showed similar effect to the previous report related to the ethanol
extract of Smilax china, but the FESCL appeared to be more effective compared to the
ethanol extract of Smilax china [19]. According to Seo et al., the ethanol extract of Smi-
lax china (IC50 = 49.93 µg/mL) showed the highest DPPH radical scavenging activity in
four solvents, whereas L-ascorbic acid (33 µg/mL) showed similar results. In contrast, in
our study, the IC50 value of FESCL was much lower than the IC50 value of ascorbic acid
(IC50 = 0.0618 µg/mL). This means that the content of functional bioactive phytochemicals
may be significantly enhanced by microbial fermentation.

Most of the previous studies have reported that Smilax china has bioactivities, such
as anti-inflammatory, antioxidant, anticancer, and antimicrobial activities. However, these
studies were mainly focused on the functionality of bioactive phytochemicals, not by
fermentation extract, but the solvent extract of Smilax china [14–16]. Since the effects of
FESCL on the antioxidant and anti-inflammatory effect had not been investigated yet, our
study has great potential for improving skin health.

Since inflammatory reactions in the skin are a kind of defense reaction for protecting
skin damage caused by physical irritation, chemicals, bacteria, and pollutants such as fine
dust, the inflammatory reaction in the skin-activated macrophages produce inflammatory
mediators such as PGE2, and the inflammatory process could be further deepened [28,29].
We found the anti-inflammatory activity of FESCL by measuring the inhibition activity of
PGE2 production in Raw 264.7 cells. Feng et al. reported that flavonoid-enriched extract
of Smilax china could affect suppressing inflammation in Raw 264.7 macrophages. Thus,
the enhanced anti-inflammation of FESCL may be due to the increased phytochemical-like
flavonoids or the synergetic effects of beneficial fermentation by Lactobacillus.

Smilax china a member of the Smilacaceae family, is widely distributed worldwide in
tropical and temperate regions, especially in East Asia [15,19]. Previously, several studies
have shown that Smilax china has been used in traditional medicine for the treatment of
furunculosis, gout, tumors, and inflammation [12,14,27,30–32]. Recently, many studies
have been discussing the antioxidant and anti-inflammatory effects of Smilax china leaves
which has the presence of a significant amount of polyphenols [28,29,33]. The fermentation
process itself yields beneficial effects through direct microbial action and the production
of metabolites and other complex compounds [34]. During fermentation polyphenol com-
pounds are metabolized and modified by fermenting organisms into other conjugates,
glucosides, and/or related forms [34]. There were reports that fermentation positively
confers organoleptic characteristics, and improves phenolic constituents and antioxidant
activity [28,29]. Notably, FESCL showed high antioxidant and anti-inflammatory activity
through a series of experiments using macrophages and keratinocytes after exposurepol-
lutants. Taken together with findings and reports, the potential of FESCL as a functional
material for cosmetics was expected to rise dramatically in the future.
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5. Conclusions

In this study, we evaluated several biomarkers after pollutant exposure in Raw
264.7 macro-phages and HaCaT keratinocytes to investigate the possibility of anti-pollution
cosmetic material of FESCL. FESCL decreased pollutant-induced luciferase activity in a
dose-dependent manner, and FESCL significantly inhibited XRE-luciferase activity at a
concentration of 1%. The IC50 value of FESCL showed the same DPPH scavenging activity
at 0.0625% as ascorbic acid, and the maximum DPPH scavenging activity (92.44%) at 1%.
The maximum permissible non-cytotoxic concentrations of FESCL for a Raw 264.7 cell was
determined to be 2%, where PGE2 production of FESCL was inhibited by 78.20%. These
results show the anti-pollution activity of FESCL against the pollutant-stimulated human
living skin explants. In conclusion, we confirmed the anti-pollution potential of FESCL as
one of the functional materials in cosmetic formulation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cosmetics9060120/s1, Figure S1: HPLC chromatogram of FESCL
and calibration chromatogram of Quercetin as flavonoid marker.
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