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Abstract: Polyphenols have general health benefits including anti-photoaging influences to counter
the negative effects of ultra-violet (UV) rays from solar light (via the generation of reactive oxygen
species (ROS) and oxidative stress (OS)), which leads to the stimulation of matrix metalloproteinases
(MMPs) that break down collagen and elastin. The changes in elastin and collagen represent major
factors in dermal aging along with a decrease in skin fibroblast number and function. The purpose of
this study was to determine the influence of a polyphenolic molecule, 4′,7-Isoflavandiol (Equol) at
10 nM on: (1) fibroblast number and function via cell cycle testing (including apoptosis) and collagen
protein expression (types I and III) using long-term (eight-week) 3D human fibroblast cultures by
intracellular fluorescent-activated cell sorting (FACS) analysis, and (2) quantifying elastin gene
expression levels in short-term (four day) cultures using human monolayer fibroblasts by RT-PCR. In
both in vitro testing methods, the presence of phenol red (tissue culture indicator) interfered with
the parameter results. Therefore, all experiments were performed without phenol red. Using FACS
analysis in the long-term 3D cultures exposure to 10 nM of equol for four days significantly increased
the percentage of cycling fibroblasts (rejuvenation) above vehicle control (dimethyl sulfoxide (DMSO))
or 17β-estradiol levels, while apoptosis was not altered by any treatment. In addition, in the long-
term cultures, collagen levels were significantly increased in the equol and 17β-estradiol treatments
above vehicle control values. In short-term cultures, 10 nM of equol or 17β-estradiol significantly
increased elastin gene expression levels above vehicle control values. In summary: (a) phenol red may
interfere with tissue culture parameter results and (b) the polyphenolic equol compound, derived
from plants, may provide protection against photoaging in cosmetic formulations by stimulating
collagen, elastin, and enhancing fibroblast renewal.
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1. Introduction

Polyphenols found in plants have general health benefits, including use in skin care
products [1–3]. This is due to their anti-photoaging influences that counteract the neg-
ative effects of ultra-violet (UV) rays from solar light, which generate reactive oxygen
species (ROS) and oxidative stress (OS) [1–4]. Associated with photoaging is the stimu-
lation of inflammatory agents along with the increase in skin enzymes, namely matrix
metalloproteinases (MMPs) that break down collagen and elastin [2–6]. The changes in
elastin and collagen represent major factors in dermal aging, which are paramount in
how skin properties enhance a youthful appearance. For example, UV exposure in pho-
toaging causes a collagen deficit by shifting homeostasis from production/deposition to
degradation along with degeneration in the elastin fiber network where disorganized and
non-functional deposition of elastin fibers occurs in the upper and middle dermis [6–9].
Additionally, botanicals that have anti-inflammatory and antioxidant properties along
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with maintaining skin fibroblast number and function are also important in slowing down
dermal aging [1–4]. This is not surprising, since plants are rich in antioxidants because
they must survive continual ultraviolet radiation exposure [10,11].

One of the polyphenolic compounds with promising human skin care applications
is the isoflavonoid equol, which is contained in plants and food products such as beans,
cabbage, lettuces, tofu, and animal products such as eggs and cow’s milk, which have
been reviewed elsewhere [4,5]. Equol has powerful antioxidant and anti-inflammatory
properties along with beneficial topical dermal effects that have been reported in in vitro
and clinical studies demonstrating its skin enhancing properties, especially in estrogen-
deficient skin [4,5,12]. Among the studies that have examined equol’s properties, in vitro
testing using cell and tissue culture represents some of the primary investigative techniques
to ascertain further scientific information on this polyphenolic isoflavonoid compound that
has a chemical structural and molecular weight similar to 17β-estradiol, see Figure 1 [5].
In fact, both equol and 17β-estradiol have estrogenic actions, however, equol appears to
act as a selective estrogen receptors modulator (SERM) compared to 17β-estradiol where
equol has a higher affinity for estrogen receptor (ER) beta compared to ER alpha [5].
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Figure 1. Comparison of the chemical structures, molecular formulas, molecular weights and 
CLogP values between 17β-Estradiol and equol. CLogP = the logP value of a compound represent-
ing its partition coefficient and lipophilicity. The purple circles at carbon 3 and 17 for 17β-estradiol 
represent the functional positions, and the green circles at carbon 7 and 4' represent the functional 
position for equol. The equol structure shown above may represent, S-equol, racemic equol or R-
equol. Reproduced with permission from MDPI Journals- Int. J. Mol. Sci. [5]. 
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90-5). All other reagents and materials were purchased from Sigma-Aldrich (St. Louis, 
MO, USA, e.g., 17β-estradiol ≥ 98% CAS # 50-28-2) unless otherwise noted. The equol and 
17β-estradiol test materials were dissolved in 100% dimethyl sulfoxide (DMSO) and then 
diluted to a final concentration of 10 nM racemic equol, 10 nM 17β-estradiol and DMSO 
at 10 nM as the control vehicle treatment. Notably, since it was determined that the phenol 
red tissue indicator interfered with the parameter results, no phenol red dye was added. In the 
reported results in the present study, only the elastin RT-PCR results display the presence or 
absence of phenol red dye for comparison. 

Figure 1. Comparison of the chemical structures, molecular formulas, molecular weights and CLogP values between
17β-Estradiol and equol. CLogP = the logP value of a compound representing its partition coefficient and lipophilicity. The
purple circles at carbon 3 and 17 for 17β-estradiol represent the functional positions, and the green circles at carbon 7 and
4’ represent the functional position for equol. The equol structure shown above may represent, S-equol, racemic equol or
R-equol. Reproduced with permission from MDPI Journals—Int. J. Mol. Sci. [5].

Therefore, the purpose of this study was to determine the influence of a polyphenolic
molecule, 4′,7-Isoflavandiol (Equol) at 10 nM on: (1) fibroblast number and function via cell
cycle testing (including apoptosis) and collagen protein expression (types I and III) using
long-term (eight-week) 3D human fibroblast cultures by intracellular fluorescent-activated
cell sorting (FACS) analysis, and (2) quantifying elastin gene expression levels in short-term
(four days) cultures using human monolayer fibroblasts by RT-PCR.

2. Materials and Methods
2.1. Test Material Stock Solution Preparation

Racemic Equol was purchased from LC Labs. ≥ 99% (Woburn, MA, USA, CAS # 94105-
90-5). All other reagents and materials were purchased from Sigma-Aldrich (St. Louis, MO,
USA, e.g., 17β-estradiol ≥ 98% CAS # 50-28-2) unless otherwise noted. The equol and
17β-estradiol test materials were dissolved in 100% dimethyl sulfoxide (DMSO) and then
diluted to a final concentration of 10 nM racemic equol, 10 nM 17β-estradiol and DMSO at
10 nM as the control vehicle treatment. Notably, since it was determined that the phenol
red tissue indicator interfered with the parameter results, no phenol red dye was added.
In the reported results in the present study, only the elastin RT-PCR results display the
presence or absence of phenol red dye for comparison.

2.2. Monolayer Cell Culture

Primary human dermal fibroblasts from neonatal foreskin were sub-cultured (or the
recorded number of times this was sub-cultured was 10 to 11 times, or in other words,
at a passage of 10 to 11 times) that were cultured in medium, which consisted of Dul-
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becco’s Modified Eagle Medium (DMEM) with 1X non-essential amino acids, 1X antibi-
otic/antimycotic, and 2% bovine calf serum. For experiments conducted without phenol
red, the same medium formulation was used, but no phenol red dye was added. Approx-
imately 5 × 105 cells per 10 cm dish were cultured for 16 to 24 h in a 37 ◦C, humidified
incubator with 5% CO2, then the medium was changed and test materials and vehicle con-
trols were added. Cells were cultured for four days in the presence of test materials 10 nM
racemic equol or 10 nM 17β-estradiol or 10 nM of DMSO that served as the control vehicle.

2.3. Organotypic 3D Dermal Cultures

To produce the organotypic, 3D cultures, dermal fibroblasts were seeded onto nylon
mesh and allowed to grow for approximately eight weeks essentially as described [13,14].
This in vitro model closely mimics the development of the dermis, offering a system for
study with organotypic properties such as the ability to support epidermal differentia-
tion [13,14] and collagen fibrillogenesis [15] (see Figure 2). After 2 weeks, all 3D cultures
were supplemented with 20 µg/mL ascorbate while monolayer cultures were not treated
with ascorbate. Otherwise, all materials and procedures were essentially equivalent be-
tween monolayer and 3D experiments.
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Figure 2. Organotypic 3D dermal model. Phase contrast photomicrograph (100X) of 3D dermal
model after two and four weeks in culture (white arrow: woven nylon scaffold; yellow arrow: dermal
fibroblasts depositing an immature extracellular matrix; gray arrow: extracellular matrix deposited
by dermal fibroblasts). After seeding to nylon scaffolding, dermal fibroblasts were cultured for
approximately eight weeks until a mature dermal extracellular matrix formed; the nylon provides
a meshwork with pores which are conducive to the deposition and maturation of a structurally
complete 3D extracellular matrix. This relatively lengthy timeframe allows for the development and
maturation of a dermal-equivalent with organotypic properties that closely resemble skin [13–15];
therefore, the effects of racemic equol could be tested in an environment that closely resembles the
intact dermis.

2.4. RT-PCR Analysis of Elastin Gene Expression

Duplicate fibroblast cultures in 10 cm dishes were cultured for four days in the pres-
ence of 10 nM equol or 10 nM 17β-estradiol or a vehicle control (10 nM DMSO) and
were then prepared for elastin gene expression analysis by RT-PCR. RNA was isolated
using a commercial kit, RNEasy Mini kit (QIAGEN Inc., Hilden, Germany) according
to the manufacturer’s instructions. First-strand cDNA synthesis using random hexamer
primers and 5 µgs total RNA was performed with a commercial kit, SuperScript III (In-
vitrogen Inc., Carlsbad, CA, USA) according to the manufacturer’s instructions. Control
reactions without the reverse transcriptase enzyme added were performed to ensure am-
plification from mRNA only. PCR amplification was performed for 30 cycles using the
following primers: ELAS-F1: 5′-cggagtgaagcctgggaaagtgccgggtgt-3′, and ELAS-R1: 5′-
caccagggaggactccggctgctccagc-3′, which correspond to a 431 bp fragment of the human
elastin gene (ELN: National Center for Biotechnology Information (NCBI), National Library
of Medicine (NLM), National Institutes of Health (NIH), USA). Equal amounts of cDNA
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and PCR reactions were loaded in each lane, electrophoresed on a 1.8% agarose gel and
visualized by ethidium bromide staining. Stained gels were illuminated with UV light,
imaged with a digital camera, and band density quantified by NIH image analysis software
(Bethesda, MD, USA) via reverse light/dark field contrast.

2.5. Intracellular FACS Analysis and Cell Cycle Determinations

Single-cell suspensions were produced by gentle trypsinization of monolayers, or
extensive digestion in 1 mg/mL collagenase from 3D cultures. A commercial kit was
utilized for the preparation of cells for intracellular detection by flow cytometry (IntraCyte,
Orion BioSolutions, Inc., San Diego, CA, USA) according to the manufacturer’s instructions.
In brief, cells were fixed with formaldehyde, permeabilized with non-ionic detergents, and
non-specific protein binding was blocked. The following primary antibodies were used at
1 to 2 µg/mL: affinity-purified, anti-human collagen type I (Chemicon-Fisher Scientific,
Waltham, MA, USA), affinity-purified anti-human type III collagen (Southern Biotech,
Birmingham, AL, USA), and monoclonal anti-human elastin (Sigma-Aldrich, St. Louis,
MO, USA). Negative controls included irrelevant immunoglobulins from the same species
as each primary antibody and at the same concentration as well as unstained cells, and cells
without primary antibody. Primary antibody binding was detected using affinity-purified,
species-specific, fluorochrome-conjugated secondary antibodies. For cell cycle analysis,
cells were stained with propidium iodide (fluorescent DNA dye) to quantify simultaneous
levels of the cell cycle and apoptotic cell death. Finally, for all intracellular fluorescent-
activated cell sorting (FACS) analysis, a Coulter EPICS Elite cytometer equipped with
488 nm argon laser was used, and between 10,000 and 20,000 cells per file were analyzed
using Coulter ELITE software. At 10,000 to 20,000 cells per file analyzed the parameter
variance of the obtained data was 1 to 2%. All FACS analysis data displayed in the present
study had 20,000 cells per file with a variance of 1% among the treatment groups.

2.6. Statistical Analysis

For comparison between the treatment groups (DMSO vs. racemic equol or 17β-
estradiol and especially the equol versus the 17β-estradiol results) the data were analyzed
using analysis of variance (ANOVA) followed by Tukey’s honestly significant difference
(HSD) post-hoc tests [16]. Treatment groups were compared to the DMSO levels, and a
p value of less than or equal to 0.05 was reported as statistically significant results (p ≤ 0.05).
All results were expressed as mean ± standard error of the mean in all figures, except
the FACS analysis results, which had a variance of 1%, which was too small to display
graphically in print form.

For the 3D long-term culture experiments using human dermal fibroblasts via FACS
analysis of the collagens, cell cycle and apoptosis biomarkers, a binomial regression model
was fitted with PROC GENMOD using SAS (Institute, Cary, NC, USA). The P-values of
pair-wise comparisons were considered significant (all values were p < 0.001) where the
DMSO vehicle served as the controls.

3. Results
3.1. Equol and 17β-Estradiol Stimulated Collagen Types I and III Protein Expression via FACS
Analysis in Long-Term 3D Human Fibroblast Cultures

To examine how equol may influence collagen protein expression, intracellular fluorescent-
activated cell sorting (FACS) analysis was employed in long-term eight weeks 3D human
fibroblast tissue cultures to quantify the percentage of cells among the 20,000 cells tested along
with 17β-estradiol, which served as the natural steroid hormone positive control versus the
DMSO vehicle controls. As shown in Figure 3, exposure to either 10 nM equol or 10 nM
17β-estradiol for four days significantly increased the percentage of cells for collagen types
I and III (extracellular matrix proteins) above that of the DMSO control values (p < 0.001).
Remarkably, the equol treatment also displayed significantly higher levels of the percentage of
cells for collagen proteins compared to the 17β-estradiol values. For example, the equol treated
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cultures had 88.4% of the cells that expressed collagen type I protein compared to 81.5% for the
17β-estradiol group and both were significantly greater when tested against the DMSO level
of 77.1% (see Figure 3). Furthermore, since collagen type III protein is expressed at lower levels
compared to collagen type I, the FACS analysis in long-term tissue cultures was appropriate
to detect any differences among the treatments tested. In fact, the number of cells expressing
the collagen type III in the equol group was 57.2% compared to 47.3% for the 17β-estradiol
treatment and again, both treatment groups displayed significantly greater levels when tested
against the DMSO control value of 40.3%.
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3.2. Equol and 17β-Estradiol Stimulated Elastin Gene Expression via RT-PCR Analysis. Phenol
Red Tissue Indicator Inhibits Gene Expression

To examine how equol may influence elastin gene expression in short-term (four days)
human monolayer fibroblast cultures along with 17β-estradiol, which served as the natural
steroid hormone positive control versus the DMSO vehicle controls, expression levels were
determined by RT-PCR and then quantified by density scanning analysis. As determined
in prior cell/tissue culture experiments, the phenol red tissue indicator interfered with
the results of the test materials. However, for this data set, the presence and absence of
phenol red were tested and displayed in Figure 4. In the presence of phenol red, there were
no differences between the DMSO control versus the racemic equol treatment group for
the levels of the elastin gene product, which were both very low. However, in the absence
of phenol red, the 10 nM racemic equol and 10 nM 17β-estradiol treatments significantly
stimulated elastin gene product levels above DMSO control values by approximately two-
fold (p < 0.05). Thus, equol stimulated elastin levels similar to the natural steroid hormone
17β-estradiol in this experiment, while the presence of the phenol red tissue indicator
apparently interfered with the result.
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3.3. Only Equol Stimulated Human Fibroblast Cell Renewal in Long-Term Tissue Cultures via
FACS Analysis While Apoptosis Was Not Altered Among Any of the Treatments

When the cells were stained with propidium iodide (fluorescent DNA dye) in the
long-term cultures to determine the simultaneous quantification of cell cycle and apoptotic
cell death, only the 10 nM equol treatment significantly increased the percentage of cycling
(pre-division) cells to 19.2% (among the 20,000 cells tested, p < 0.001) compared to 12.1% for
the 10 nM 17β-estradiol group, which was not significantly different when tested against
the 10 nM DMSO control vehicle value of 12.1% (see Figure 5). The significant increase
in fibroblast cell cycle renewal by equol was approximately 58% greater compared to
17β-estradiol or DMSO control levels.
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Cell cycle analysis by intracellular FACS methodology that examined the level of
apoptosis in the long-term human dermal fibroblast cultures did not detect any significant
alterations among the treatment groups where DMSO vehicle controls were at 12.1%, while
the equol group displayed 13.2% and 17β-estradiol was at 12.2% (see Figure 5).

4. Discussion

Plant-derived polyphenolic compounds represent many of the active therapeutic
agents in cosmetics that have been developed and marketed to function as skin protec-
tants against ultra-violet (UV) light, reactive oxygen species (ROS) and oxidative stress
(OS), air pollution, and act as anti-inflammatory, antioxidants, and support anti-aging
claims in topical and oral personal care products [1–5]. This is not surprising since over
10,000 phytochemicals have been identified to date [17]. For example, a few notable
polyphenolic compounds include the stilbene (resveratrol), the flavonoid (quercetin), and
the isoflavonoid (equol), where the use of equol in cosmetics has been relatively recent
compared to other polyphenols. However, beneficial skin properties of equol have been
reported in various in vitro and clinical studies [4,5,12,18] and, in fact, equol was reported
to have significantly greater efficacy compared to astaxanthin for antioxidants, extracellular
matrix integrity, growth factors, and inflammatory biomarkers via human skin gene expres-
sion analysis [19]. Therefore, the purpose of the present study was to confirm and extend
the data base in understanding the skin-related properties of equol by in vitro techniques
and point out the potential challenges associated with cell/tissue culture conditions in
this examination.

For instance, challenges associated with cell/tissue culture were first reported by
Welshons et al. in the late 1980s, where they reported that the phenol red tissue indicator
apparently contained an estrogenic contaminant, which may alter or interfere with experi-
mental results [20]. Later, several journal reports indicated the concern of the estrogenic
action of phenol red and/or that its lipophilic contaminants were a non-issue, suggesting
that this was a “red herring” [21]. In the present in vitro studies it was found that the
phenol red tissue indicator did impact the outcome of the experimental results in either
short-term (four days) or long-term (eight-week) human fibroblast cell/tissue cultures,
where the natural steroid hormone, 17β-estradiol, did not produce the expected results
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as a positive control for estrogenic actions (which were weak, lower than expected or no
different compared to control values). This factor, along with an awareness that bovine
calf serum and especially fetal calf serum contains various steroids that may influence
the outcome of experimental results should be kept in mind, which was published in
the 1970s [22]. Of course, suppliers have published the levels of steroid hormones in calf
serum, which are generally low, but in trouble-shooting poor experimental results these
factors may be investigated if parameter endpoints have estrogenic and hormone sensitive
biochemical and molecular mechanisms in in vitro studies. While in the present study any
interference from the bovine calf serum was ruled out, it was apparent from our several
preliminary in vitro conditions tested that the phenol red tissue indicator did alter the
parameter outcomes, which resulted in conducting the experiments without it.

Collagen is the most abundant protein in the human body, where is it responsible
for structure, stability, and strength, especially within the dermal layers [23,24]. Dermal
collagen (composed mainly of types I and III fibers) has a two-fold action in the skin where:
(a) it first provides the building block components for collagen (and elastin) and, (b) it binds
receptors in dermal fibroblasts to stimulate the synthesis of collagen and elastin as well
as hyaluronic acid [23,24]. In the present study, collagen types I and III were significantly
increased by 10 nM equol along with the positive control, 10 nM 17β-estradiol above
DMSO control values by intracellular fluorescent-activated cell sorting (FACS) analysis
in long-term eight-week cultures (see Figure 3). While collagen type I is easily detected
in short-term cultures due to its abundance, collagen type III is less abundant and more
readily detected in long-term culture because of its slow turnover rate [23,24]. In general,
the present collagen results confirm and extend previous reports on the ability of equol to
stimulate both collagen types via in vitro investigations [4].

Elastin is an essential extracellular matrix (ECM) protein that is paramount for good
dermal health. It forms the elastic fiber network responsible for recoil and elasticity of the
skin, but it also plays a role in tissue repair [4,23,24]. The interconnection between collagen
(with thick fibers) and elastin (with thinner filaments) was thought to have an orientation at
right-angles to each other. While this may still be the case, recent analysis using combined
multiphoton imaging of the human dermis showed that collagen appears as a basket weave-
like structure whereas elastin fibers are interspersed among the bundle fibers, forming a
mess-like structure [25]. Moreover, while other investigators demonstrated the detection
of elastin stimulation in vitro by RT-PCR methods [26], our laboratory had to (previously)
employ long-term (eight-week) fibroblast cultures to quantify changes in elastin levels
with various treatments due to the low abundance of this ECM protein. In the present
study, (see Figure 4), in the absence of the phenol red tissue indicator, 10 nM of equol or
10 nM of 17β-estradiol significantly stimulated elastin levels by approximately two-fold
over DMSO control values in short-term (four day) cultures. However, in the presence of
phenol red it apparently interfered with the parameter outcomes. Thus, the importance of
defining the experimental in vitro culture conditions is highlighted and the present results
confirm and extend previous study findings of the beneficial influence of equol in dermal
proteins [4,5,26].

Fibroblasts are the most abundant cells in the dermis, and play an important role in
the regeneration of the dermis, including wound healing [27]. The feature characteristic of
these cells is the ability to synthesize and remodel the ECM by the production of collagen
type I [27,28]. This explains the high percentage of cells expressing collagen type I levels
regardless of treatment in long-term cultures in the present study. While the differences in
papillary and reticular fibroblasts has been reviewed [29], in culture the functional activities
of the papillary fibroblasts are higher for proliferation and synthetic activities compared
to reticular fibroblasts [27,30]. In the present study, when the long-term human fibroblast
cultures were used to examine the cycle cell and apoptosis characteristics via FACS analy-
sis, only the 10 nM equol treatment enhanced fibroblast renewal by approximately 58%
compared to 10 nM 17β-estradiol or the DMSO control. The dye staining of DNA allowed
the simultaneous differentiation of cells into the G0/G1, S phase, and G2/M, as well as
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the identification of which cells were apoptotic [31]. The enhancement of fibroblast rejuve-
nation may explain, in part, the increase in collagen types I and III levels with the 10 nM
equol treatment in the long-term fibroblast cultures. However, this potential correlation
was not examined in the present study or in previous investigations. Although, the effect
of antioxidants on fibroblast replicative lifespan (RLS) in vitro has been reported recently,
and were found to extend the RLS of fibroblasts [32]. It is intriguing to speculate that the
powerful antioxidant properties of equol may have contributed to the enhanced fibroblast
renewal results in the present study. As noted, there were no significant differences in
the levels of apoptotic cells among the treatments at just above 10%. Finally, telomere
shortening apparently limits the cellular doubling capacity, at least in human cells and
a clinical study examining topical equol administration showed a significant increase in
telomere length, skin texture, smoothness, firmness, and elasticity [18], which may also
support the anti-aging effects of equol, especially in estrogen-deficient skin, as reported in
another clinical study [12]. Notably, both clinical studies examining equol’s topical effects
on dermal parameters were performed independently of our (Lephart) laboratory.

5. Conclusions

Human dermal fibroblasts provide a useful tool to study ECM protein and gene expres-
sion parameters along with predicting age since the skin is the conspicuous mirror of good
dermal health [33,34]. In addition, estrogens are known to enhance skin characteristics and
polyphenolic compounds derived from plants that have similar chemical structural and
molecular weight properties to 17β-estradiol, where many of these natural compounds
are now used in cosmetic formulations due to their selective estrogen receptor modulator
(SERM) activities [12,34,35], especially in skin photoaging [4,5,12]. Equol is such a polyphe-
nolic compound, with many beneficial skin properties that are described in the present
study such as increasing collagen, elastin, and fibroblast renewal via in vitro experimental
analysis. However, caution and awareness of in vitro cell/tissue culture conditions should
be exercised in planning, trouble shooting, and analyzing results in order to reveal the
actual significance of investigational studies with hormone sensitive endpoints.
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