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Abstract: Oral malodor, often known as halitosis, is an irritating breath odor that originates in
the mouth and can cause significant psychological and social distress. Chlorhexidine, a powerful
antimicrobial agent effective against bacteria and fungi, has become the standard treatment for
halitosis. However, it has drawbacks including altered taste perception, dry mouth, and more
noticeable dental staining. The use of natural essential oils to avoid these unwanted effects has
proven to be an attractive strategy. This study aims to evaluate the potential of four essential oils
consisting of Ma-kwean fruit (Zanthoxylum limonella, MK), clove bud (Syzygium aromaticum, CV), star
anise fruit (Illicium verum, SA) and cinnamon bark (Cinnamomum aromaticum, CM) for the purpose of
combating bad breath by assessing their antibacterial efficacy against halitosis-associated bacteria
(Streptococcus mutans and Solobacterium moorei). The hydro-distillation process was used to prepare
the essential oils, which were obtained as yellowish to colorless liquids with yields of 6.58 ± 0.81,
12.21 ± 2.98, 4.29 ± 0.15 and 1.26 ± 0.09% for MK, CV, SA and CM, respectively. The terpenoid
compounds terpinene-4-ol (47.04%), limonene (17.19%), sabinene (13.27%) and alpha-terpineol (6.05%)
were found as the main components in MK essential oil, while phenylpropanoids were identified
as the primary components of other essential oils, namely trans-cinnamaldehyde (83.60%), eugenol
(83.59%) and anethol (90.58%) were identified as the primary components of CM, CV and SA essential
oils, respectively. For the antibacterial properties, the minimal inhibitory concentration (MIC) and
minimal bactericidal concentration (MBC) values were investigated. CM essential oil exhibited the
greatest capacity to inhibit growth and eradicate S. mutans, with MIC and MBC values of 0.039%,
followed by CV (MIC of 0.078% and MBC of 0.156%) and MK (MIC and MBC of 0.156%), whereas the
MIC of SA was 1.250% without eradication. Both CM and CV essential oils demonstrated exceptional
efficacy against S. moorei, with MIC and MBC values of 0.019% and 0.033%, respectively. Furthermore,
the inhibition of S. moorei biofilm formation was investigated and we discovered that the lowest
effective concentration necessary to eliminate the S. moorei biofilm was one quarter of the MIC for MK,
CM and CV, while that for SA essential oil was half of the MIC. These encouraging results suggest
that the incorporation of MK, CM and CV essential oils into oral care products could potentially
enhance their efficacy in halitosis treatment.

Keywords: star anise (Illicium verum); cinnamon (Cinnamomum aromaticum); clove (Syzygium aromaticum);
complementary and alternative medicine; halitosis; Ma-kwean (Zanthoxylum limonella); oral malodor;
Solobacterium moorei; Streptococcus mutans

1. Introduction

Halitosis, sometimes known as oral malodor, is the scientific name for an offensive
odor. It is a widespread issue that affects people of all ages and can lead to psychosocial
embarrassment [1]. It can be caused by intra- and extra-oral factors. Low salivary flow,
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mouth breathing and poor oral hygiene are the main intra-oral contributors to halitosis.
This environment is favorable for some bacterial pathogens, allowing them to develop and
spread, potentially leading to oral diseases such as dental caries, gingivitis and periodontal
disease [2]. The extra-oral factors contributing to halitosis are primarily associated with
systemic diseases such as diabetes, gastrointestinal disorders and liver ailments, as well as
the use of certain medications and consumption of specific foods. Approximately 90% of
halitosis cases are related to intra-oral conditions [3].

The oral anaerobic bacteria that are most related to halitosis are Porphyromonas gingi-
valis, Tannerella forsythia, Fusobacterium nucleatum, Prevotella intermedia, Treponema denticola
and Solobacterium moorei [4]. Among these bacteria, S. moorei has been found to have a
stronger correlation with oral malodor than the others by creating volatile sulfur com-
pounds (VSCs) through a mechanism involving β-galactosidase activity and an external
source of proteases [5–7]. The proteolytic anaerobic bacteria produce VSCs by degrading
food proteins into amino acids. Then, sulfur-containing amino acids such as cysteine
and methionine are further processed into hydrogen sulfide (H2S) and methylmercaptan
(CH3SH) by cysteine desulfhydrase and L-methionine-α-deamino-γ-mercaptomethane-
lyase (L-methioninase), respectively [8], as shown in Figure 1. Antibacterial substances
have been considered for halitosis control as they reduce these microorganisms. In addition,
Streptococcus mutans has been found to be the primary cause of human dental caries. The
crucial virulence characteristic of the bacterium is its capacity to produce dental plaques, a
type of biofilm that forms on the surfaces of the teeth, which contributes to dental caries.
Moreover, bad odors can occur due to food debris between the teeth and the decay of the
exfoliated oral epithelial cells, which increases plaque build-up on the teeth and tongue,
escalating the severity of foul breath [9].
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There are four distinct types of halitosis treatments, including mechanical cleaning, the
use of masking agents, the chemical reduction of oral bacteria and the chemical neutraliza-
tion of odorous substances. The most fundamental technique to decrease oral bacteria and
their substrates is mechanical cleaning with toothbrushes or tongue scrapers [10]. Masking
items, such as mouth sprays, mouth rinses and chewing gum, are marketed commercially
and aim to control halitosis with pleasant flavors and scents. This method is not fully
effective in treating halitosis because the underlying cause is not removed. In addition,
masking agents without antibacterial ingredients have a time limit regarding their effi-
cacy [11]. Oral care products with antibacterial activity can reduce oral microbes, and the
chemical neutralization of VSCs, which change volatile gases into non-volatile components,
has been demonstrated to significantly and completely alleviate halitosis [12,13].

Chlorhexidine has long been considered as the most effective remedy for bad breath.
Its strong antibacterial properties have been shown to drastically reduce VSC levels. How-
ever, it has drawbacks such as altered taste perception, dry mouth and increased tooth
staining [14]. Furthermore, it has been reported by the World Health Organization (WHO)
that approximately 80% of the global population incorporates herbal treatments into their
healthcare regimens [15]. The use of natural essential oils, which are complex combinations
of volatile secondary metabolites, has shown promise as a novel approach to avoiding
these unwanted effects. In addition, essential oils have long been incorporated into den-
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tal care products for their ability to reduce bad breath [16]. Numerous research teams
have previously studied the antimicrobial effects of essential oils and their chemical con-
stituents [14,16]. Choi et al. [17] used the disc diffusion method to screen the antimicrobial
properties of 32 essential oils against S. mutans and S. sobrinus, two common oral infection
agents. The results showed that the most of the tested essential oils had positive effects.
Strong inhibition was observed for cinnamon; a sensitive clear zone was provided by cit-
ronella, sweet basil and geranium; and moderate inhibition was observed for ylang-ylang,
cedarwood, lavender, hyssop, niaouli, peppermint, clove bud, sweet marjoram, scotch
pine, black pepper, patchouli, bitter orange, myrrh, tea tree and cajuput tree. The primary
mechanism by which essential oils exhibit antibacterial activity appears to involve the
disruption of the cell membrane. Empirical evidence has shown the antibacterial efficacy of
many essential oils against oral bacteria that produce volatile sulfur compounds (VSCs) [18].
Additionally, a number of advantageous qualities of essential oils in relation to oral malodor
are being taken into account. The aforementioned qualities include anti-inflammatory and
antioxidant properties, which may have an impact on relevant clinical metrics related to
gingival inflammation and dental health status. Furthermore, essential oils exhibit sig-
nificant breath-masking properties, hence augmenting their total efficacy. Consequently,
there has been an increasing inclination towards the utilization of natural essential oils as
complementary and alternative medicine (CAM) [15,16].

Since ancient times, Thailand’s culinary fragrant herbs have also been employed for
the purpose of maintaining dental health. Clove (Syzygium aromaticum, CV), Ma-kwean
(Zanthoxylum limonella, MK), star anise fruit (Illicium verum, SA) and cinnamon (Cinnamomum
aromaticum, CM) are among the most commonly mentioned [11,19–22]. CV essential oil,
derived from the dried flower buds of the clove tree, has been utilized in clinical dentistry for
many centuries. The key constituents include eugenol, caryophyllene and eugenol acetate,
which provide a unique refreshingly clean sensation and have been demonstrated to be antibac-
terial by disrupting the cell membrane of the common oral infection agent S. mutans [23,24].
MK is an aromatic herb that is commonly found in the northern part of Thailand. Its fruit
essential oils are utilized in Thai folk medicine to prevent dental caries and halitosis [25].
Sabinene, terpinene-4-ol and limonene have been identified as the three main components of
MK essential oil, and sabinene was found to be the primary factor that suppressed the growth
of S. mutans in a dose-dependent manner [26]. Terpinen-4-ol also showed antibacterial activity
against S. aureus and good antibiofilm activity [27]. Limonene reduced the amount of biofilm
developed by Streptococcus pyogenes (SF370) [28]. Moreover, MK crude oil had a higher level of
microbial inhibition than the pure substance, indicating a synergistic effect with other compo-
nents in the crude oil [29]. SA essential oil is obtained from dried fruit and anethole considered
as the active component in its essential oil. Although there are many reports about its antimi-
crobial activity against Agrobacterium tumefaciens, Bradyrhizobium japonicum, Bacillus subtilis,
Bacillus megatarium, Bacillus licheniformis, Bacillus cereus, Escherichia coli, Staphylococcus aureus,
Klebsiella pneumoniae, Klebsiella aerogenes, Sarcina lutea and Rhizobium leguminosarum, its effec-
tiveness against oral pathogens has not yet been thoroughly studied [30,31]. CM is also named
Cinnamomum cassia, which is found wild and cultivated in Southeast Asia. Its bark essential oil
has been found to be a powerful tool against S. mutans and S. moorei [18,32]. The cinnamalde-
hyde was found as the major component and was responsible for its antibacterial properties.

To the best of our knowledge, the inhibitory effects of CV, MK and SA crude oils on
the growth and biofilm formation of halitosis-associated bacteria have not been previously
examined. Therefore, this study aims to investigate the antibacterial effects of these essential
oils in comparison to CM against bacteria linked with halitosis: Streptococcus mutans and
Solobacterium moorei.

2. Materials and Methods

The dried plant materials consisted of the whole fruit of MK, bark of CM, bud of CV
and fruit of SA were purchased from Samunpai Tharpajan Co., Ltd. (Bangkok, Thailand).
Agar powder, glucose, Todd Hewitt Broth (THB) and yeast extract were purchased from



Cosmetics 2023, 10, 125 4 of 13

Huankai Microbial Sci & Tech (Guangdong, China). Hemin and Vitamin K1 were purchased
from HR Chemical, (Shandong, China). Anhydrous sodium sulfate and Tween 80 were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Dimethylsulfoxide (DMSO) was
purchased from RCI Labscan (Bangkok, Thailand). Crystal violet and phosphate-buffered
saline (pH 7.2) were purchased from HiMedia Laboratories Pvt. Ltd., (Mumbai, India). The
analytical grade gas mixture (N2:H2:CO2/75:10:15) was prepared by Labgaz (Thailand)
Co., Ltd. (Bangkok, Thailand). S. moorei JCM 10645 was purchased from the RIKEN
Bioresource Research Centre (Japan Collection of Microorganisms, Ibaraki, Japan) and
S. mutans DMST 1877 was purchased from the Department of Medical Sciences (DMST,
Nonthaburi, Thailand).

2.1. Essential Oil Extraction

Each dried plant material (100 g) was extracted by the hydro-distillation method using
a Clevenger-type apparatus for 4 h [33]. The oils were dried over anhydrous sodium
sulfate and filtrated through Whatman No.1 filter paper. The weight of the extracted oils
was recorded and they were sealed before being placed in a light-protected bottle at 4 ◦C
for future analysis. The extraction of each sample was done in triplicate and reported
as the mean value of the percentage yield of essential oil based on the weight of dried
plant material.

Yield (%) = (weight of extracted oil/weight of dried plant) × 100

2.2. Analysis of Essential Oil Composition

The essential oils were analyzed by the Hewlett Packard Model HP6890 with an HP
model 5973 mass-selective detector system (Agilent Technologies, Santa Clara, CA, USA),
via the gas chromatography–mass spectroscopy (GC-MS) technique, following the method
of Gong et al. [34] with some modifications. Briefly, a HP-5MS column (30 m × 0.25 mm (5%
phenyl)-methtylpolyxiloane) with a 0.25 µm film thickness was used (Agilent Technologies,
Santa Clara, CA, USA). A split/splitless injector was heated to 220 ◦C. The oven temperature
was programmed as follows: initial temperature of 60 ◦C for 1 min, increase of 3 ◦C per
minute up to 240 ◦C and held at 240 ◦C for 5 min. Then, 99.999% purity helium gas was
used as a carrier gas at a flow rate of 1 mL/min. The injection volume was 1.0 µL in spitless
mode. For electron ionization, mass spectra were used with ionization energy of 70 eV
and ionization voltages over the range of m/z 29–300. The electron multiplier voltage
was 1150 V. The ion source and quadrupole temperatures were set to 230 ◦C and 150 ◦C,
respectively. The identified components were assigned by matching their mass spectra
with the reference mass spectra via Wiley and the National Institute of Standards and
Technology (NIST) database library. The results were also confirmed by the comparison
of their Kovát retention indices (RI), relative to C8–C20 n-alkanes assayed under the same
conditions. The percentage compositions of individual components were expressed as
percentages of the peak area relative to the total peak area.

2.3. Determination of Antibacterial Activity

The culture conditions were followed the report of Lebel et al. [4] with some modifi-
cations. Briefly, each bacterium was separately grown in THB supplemented with 0.001%
hemin, 0.0001% vitamin K, 0.5% Tween 80, 0.2% yeast extract and 1% glucose, at 37 ◦C,
under anaerobic conditions (N2:H2:CO2/75:10:15) for 24 h before further experiments.

The MIC and MBC were determined by a microplate dilution assay following the
method of Tanabe et al. [7] with some modifications. Briefly, S. moorei JCM 10645 and
S. mutan MST 18777 were subcultured in fresh supplemented THB medium for 24 h. Then,
this was diluted with fresh medium to obtain an optical density at 660 nm (OD660) of 0.1.
An equal volume of 100 µL bacterial suspension and two-fold serial dilution of essential oil
(ranging from 5% to 0.0195%) in the culture medium were added to the 96-well microplate
and incubated at 37 ◦C under anaerobic conditions for 24 h. The bacterial growth was
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monitored by recording the optical density at 660 nm in a UV–visible microplate reader
(MR-1000S Bioplate Reader, Wilmington, DE, USA). A well with no bacteria suspension
was used as the control, and the lowest concentration of essential oil with no bacterial
growth was recorded as the MIC. The MBC value was determined by taking aliquots of
20 µL from all the tubes that showed no visible growth into a supplemented THB agar
plate and incubated for 48 h anaerobic incubation period at 37 ◦C, the lowest concentration
at which no colonies formed indicated the MBC value. The experiments were performed
in triplicate.

2.4. Determination of Antibiofilm Qualities

The method to evaluate biofilm formation followed the methods of Yanti et al. [35].
Briefly, S. moorei broth cultures were adjusted with fresh supplemented THB medium to
obtain an OD660 of 0.1. Then, 100 µL diluted essential oil at concentrations of MIC, 1/2 MIC,
1/4 MIC and 1/8 MIC were added into a 96-well microplate and mixed with 100 µL of
bacterial suspension and then incubated at 37 ◦C under anaerobic conditions for 24 h. After
this, each well of the microplate was washed twice with a phosphate buffer solution that
had a pH of 7.2, and then were allowed to air dry at ambient temperature for 1 h. Then, the
biofilms were stained with 200 µL of 1% crystal violet for 30 min. Excessive staining was
removed by washing with 200 µL deionized water 4 times. Then, 200 µL of DMSO was
added and the absorbance at 590 nm was measured. As a control, 1% DMSO was employed.
All experiments were performed in triplicate and data were presented as means ± standard
deviation. The percentage of biofilm inhibition was calculated with the equation below.

Biofilm inhibition (%) = [(Acontrol − Asample)/Acontrol] × 100

where Acontrol is the absorbance of the control (without essential oil) and Asample is the
absorbance in the presence of the test sample.

2.5. Statistical Analysis

The obtained data were statistically analyzed using SPSS (SPSS Inc., Chicago, IL, USA)
by using a paired sample t-test and one-way analysis of variance (ANOVA). A significant
difference was considered when p < 0.05.

3. Results and Discussion
3.1. Essential Oil Extraction

Following the hydro-distillation technique, the essential oils obtained from MK and
CV exhibited a transparent, yellowish appearance. The CM essential oil was acquired
in the form of a yellowish to reddish brown liquid, whereas the SA essential oil was a
colorless liquid, as depicted in Figure 2. Furthermore, it is worth noting that all essential
oils possessed distinct aromatic properties. The mean percentage yield of the essential
oils was determined by calculating the percentage yield using the weight of dried plant
material (100 g) as the basis. The results for MK fruit, CV bud, SA fruit and CM bark were
6.58 ± 0.81, 12.21 ± 2.98, 4.29 ± 0.15 and 1.26 ± 0.09%, respectively. The results indicated
that CV exhibited the highest yield of essential oil, with MK, SA and CM following in
descending order.

3.2. Analysis of Essential Oil Composition

A GC-MS analysis was conducted to determine the chemical components in each
essential oil, and the results are displayed in Table 1. The phenylpropanoid compounds
eugenol (83.59%) and eugenol acetate (13.78%) were found as major compounds in CV
essential oil. This result corresponded with the previous reports of Alfikri et al. [36], the
concentration of eugenol ranged from 70 to 80% and eugenol acetate was found at 4–15%
depending on the phenological stage of the bud.

Ten compounds were found in MK essential oil, including two monoterpenes (D-limonene
17.19% and E-sabinene 13.27%) and eight oxygenated monoterpenes (terpinene-4-ol 47.04%,
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α-terpineol 6.05%, E-sabinene hydrate 2.52%, Z-sabinene hydrate 4.17%, E-2-menthenol 2.50%,
Z-2-menthenol 4.31%, Z-carveol 1.75% and L-carvone 1.20%). Terpinene-4-ol (47.04%) emerged
as the predominant chemical compound among those that were identified. D-limonene (17.19%),
E-sabinene (13.27%) and α-terpineol (6.05%) were found as minor constituents.
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In the context of the compounds found in SA, it was observed that a significant
proportion of phenylpropanoids, specifically anethol (90.58%), was detected. Additionally,
minor compounds like oxygenated monoterpene (estragole, 2.00%) and monoterpene
(isocarvestrene, 1.71%) were identified. These results corresponded with Matos et al. [37],
who found anethole (88.85%) and estragole (5.10%) as the major component in I. verum
fruit essential oil that was extracted by the steam distillation method.

A phenylpropanoid (E-cinnamaldehyde) was identified in the CM essential oil as the
main constituent with 83.59%, along with a terpene compound (α-pinene 1.18%), two oxy-
genated monoterpene compounds (eucalyptol 3.06% and α-terpineol 1.78%) and three other
phenylpropanoid compounds (cinnamyl acetate 1.17% and Z-cinnamaldehyde 1.00%). These
findings were in agreement with those reported by Deng et al. [38] and Firmino et al. [39],
who found E-cinnamaldehyde in the range of 72.23–82.42%. The minor components were
identified as α-terpineol (1.181%), eucalyptol (3.06%) and α-terpineol (1.78%).

Table 1. Chemical composition analysis of dried MK, CV, SA and CM essential oils by GC-MS.

Compound Molecular
Formula

RI1
a RI2

b Relative Content (%) c

MK CV SA CM

α-2-Pinene d C10H16 938 939 1.181
Camphene d C10H16 950 951 0.860

Benzaldehyde h C7H6O 961 961 0.524
E-Sabinene d C10H16 979 975 13.269 *
β-Myrcene d C10H16 991 992 0.077

α-Phellandrene d C10H16 1007 1007 0.122
3-Carene d C10H16 1012 1012 0.210

p-Cymene d C10H14 1026 1026 0.191
Isocarvestrene d C10H16 1030 1027 1.710

Eucalyptol f C10H18O 1034 1033 3.064
D-Limonene d C10H16 1033 1030 17.189 *

Sabinene hydrate f C10H18O 1079 1075 2.517
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Table 1. Cont.

Compound Molecular
Formula

RI1
a RI2

b Relative Content (%) c

MK CV SA CM

Terpinolene d C10H16 1090 1093 0.119
Linalool f C10H18O 1102 1104 0.224 0.257

E-2-Menthenol f C10H18O 1110 1106 4.173
Norbornane d C10H16 1132 - 4.313

Z-2-Menthenol f C10H18O 1149 1139 2.497
Terpinen-4-ol f C10H18O 1178 1177 47.036 *
α-Terpineol f C10H18O 1196 1190 6.052 * 1.781

Estragole f C10H12O2 1203 1196 2.003
Hydrocinnamyl alcohol h C9H12O 1234 1233 1.000

Z -Carveol f C10H16O 1229 1225 1.752
L-Carvone f C10H14O 1254 - 1.200
Chavicol h C9H10O2 1257 1254 0.404

E-Cinnamaldehyde h C9H8O 1317 1266 82.804 *
Anethol h C10H12O 1284 1283 90.575 *
Eugenol h C10H12O2 1375 1378 83.588 *

Caryophyllene e C15H24 1430 1428 1.933
Cinnamyl acetate h C11H12O2 1456 1445 1.169

Humelene e C15H24 1460 1452 0.272
Eugenol acetate h C12H14O3 1532 1524 13.075 * 0.312

Caryophylleneoxide g C15H24O 1590 1581 0.187
Foeniculin h C14H18O 1683 1684 0.477

Total 99.846 99.998 99.998 99.901

Note: a Retention index values from experiment, b retention indices from literature of Adams Libraries [40], c the
percentage compositions of individual components were expressed as percentages of the peak area relative to
the total peak area, d monoterpene, e sesquiterpene, f oxygenated monoterpenes, g oxygenated sesquiterpene,
h phenylpropanoid, * major component.

3.3. Determination of Antibacterial Activity

S. moorei is a Gram-positive anaerobic bacterium that has been identified as being
uniquely connected with oral malodor. This association is supported by the much greater
incidence of S. moorei in individuals with halitosis compared to control participants [4,6,7].
Moreover, S. mutans is a bacterium that plays a significant role in the development of dental
caries. The pathogenicity of this bacterium may be enhanced as a result of its capacity to
initiate biofilm formation on the tooth surface. Subsequently, the presence of other bacteria
contributes to the development of dental plaques, thus creating a conducive environment
to anaerobic bacterial growth [41]. In this study, S. moorei and S. mutans were used as our
test organisms to determine the antibacterial efficacy (as measured by MIC and MBC) of
the four most frequently mentioned fragrant herbs in traditional Thai oral care: MK, CV,
SA and CM.

The MIC and MBC values of each essential oil against S. moorei and S. mutans are
shown in Table 2. The most powerful inhibition and eradiation of both bacteria were found
in CM essential oil, with the MICs of 0.019% for S. moorei and 0.039% for S. mutans, while
the concentration of 0.039% was found to be the MBC in both S. moorei and S. mutans.
The MIC and MBC of CV essential oil against S. moorei compared favorably to those of
CM essential oil; however, CV essential oil was less effective against S. mutans, with an
MIC of 0.078% and MBC of 0.156%. MK essential oil demonstrated effectiveness against
S. moorei and S. mutans, with higher MIC and MBC values of 0.156% than the CM and
CV essential oils, which indicated its lower ability. However, MK essential oil was more
effective than SA essential oil, which only had the capacity to restrict bacterial growth, with
MIC values ten-times higher on both bacteria at 1.250% and no capacity to eradicate the
bacterium entirely.
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Table 2. The MIC and MBC values of each essential oil against S. moorei and S. mutans.

Essential Oil
S. moorei S. mutans

MIC
(%)

MBC
(%)

MIC
(%)

MBC
(%)

MK 0.156 0.156 0.156 0.156
CV 0.019 0.039 0.078 0.156
SA 1.250 >5.000 1.250 >5.000
CM 0.019 0.039 0.039 0.039

These findings are consistent with prior studies that have demonstrated the superior
efficacy of CM essential oil against S. moorei [4]. Trans-cinnamaldehyde has been identified
as the primary component in the essential oil derived from CM, which is responsible for
its antibacterial activity [39,42]. In a separate study conducted by Alexa et al. [42], CM
essential oil that contained cinnamyl alcohol (88.45%) as a major compound and trans-
cinnamaldehyde (0.39%) as a minor compound failed to exhibit antibacterial properties
against S. mutans. Hence, it is imperative to ensure that the utilization of CM essential oil as
an active element in the therapy of halitosis is accompanied by a substantial concentration
of trans-cinnamaldehyde. Nevertheless, it is crucial to acknowledge that the utilization of
cinnamaldehyde in cosmetic products may elicit allergic responses on human skin. Conse-
quently, it is advisable to limit its concentration to a maximum of 0.05%, as recommended
by the International Fragrance Association (IFRA) [43,44]. Moreover, a considerable num-
ber of reports have emerged regarding oral sensitivities linked to toothpaste formulations
containing cinnamaldehyde at concentrations below the recommended limit set by the
IFRA [43–46]. The incorporation of CM essential oil in oral hygiene products warrants
cautious consideration due to this aspect. Furthermore, the essential oil obtained from CV
showed similar effectiveness against S. moorei, as observed with CM essential oil, which is
reported for the first time in this investigation. The antibacterial activity of CV essential oil
is attributed to eugenol, its primary constituent. It is hypothesized that these qualities are
associated with the rupture of the bacterial cellular membrane [47]. Moreover, it possesses
an added advantage as an analgesic drug owing to its capacity to reduce dental pain [48].
The application of these substances has the ability to induce a thermogenic response upon
contact with the tongue, mediated by the transient receptor potential channel (TRPV3),
which is a calcium-permeable cation channel sensitive to warmth [49]. Nevertheless, the
efficacy of this phenomenon might be constrained among certain individuals who exhibit
intolerance to high temperatures, particularly children, older adults or individuals with
oral conditions, including mouth ulcers and stomatitis. The efficacy of MK essential oil
against the bacterial strains S. moorei and S. mutans was demonstrated by assessing the
MIC and MBC values, which were determined to be 0.156%. The essential oil derived from
MK exhibited a comparatively lower capacity to inhibit and eradicate the growth of the
two bacterial strains in comparison to the essential oils obtained from CM and CV. The
main active ingredients found in MK essential oil, including sabinene, terpinene-4-ol and
limonene, contribute to the refreshing aroma and more enjoyable taste for a wide range
of oral care product consumers than CM essential oil, providing a woody scent [18]. The
essential oil derived from MK showed greater efficacy compared to the essential oil derived
from SA, since it possessed the capacity to restrict bacterial growth without achieving the
complete eradication of the organism. The main constituent responsible for the antibacterial
activity of SA essential oil has been discovered as anethole. Moreover, the combination
of anethole with mupirocin has been found to have enhanced efficacy against methicillin-
resistant Staphylococcus aureus (MRSA) strains that are resistant to mupirocin. The observed
improvement is thought to be caused by the interaction between anethole and the lipids
present in the bacterial cell wall. This contact leads to an increase in the permeability
of hydrophilic antibiotics [50]. Therefore, an opportunity for additional inquiry lies in
exploring the synergistic effect of SA essential oil with another essential oil.
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However, it is important to mention that thyme, eucalyptus and peppermint essential
oils are frequently utilized as active components in mouth rinse solutions in the commercial
sector. The primary factor driving the selection of these essential oils is their odor, despite
their comparatively weaker antibacterial efficacy. The essential oils that are most preferred
among individuals are those that possess invigorating and refreshing scents [18,51–53].
Therefore, the essential oils of MK and CV exhibit promising potential as natural alternatives
for incorporation as active ingredients in oral care products, namely for the purpose of
enhancing their odor-masking capabilities in addition to managing bacterial halitosis.

3.4. Determination of Antibiofilm Qualities

S. moorei is recognized as the predominant bacterial species responsible for the de-
velopment of halitosis via the conversion of sulfur-containing amino acids into VSCs.
Additionally, this bacterium possesses the capability to create biofilms within the oral
cavity. The establishment of these biofilms is hypothesized to represent the primary and
pivotal phase in the ecological progression within the oral cavity, ultimately resulting in
the initiation of halitosis [5]. In a study conducted by Conceição et al. [54], the efficacy of a
mouthwash containing antibiofilm components was assessed in terms of reducing tongue
coating. The results indicated that the antibiofilm agent effectively decreased oral malodor
by inhibiting bacterial colonization through the disruption of their colonization tools.

This study aimed to explore the antibiofilm efficacy of four aromatic herbal essential
oils. The effects of individual essential oils on the development of biofilms by S. moorei
at MIC and sub-MIC levels (1/2, 1/4, 1/8) are summarized in Table 3 and illustrated in
Figure 3. The results of the study indicated that all essential oils exhibited a dose-dependent
capacity to decrease the production of biofilms by S. moorei. At the MIC level, the essential
oils showed considerable inhibition of biofilm formation. The inhibition percentages were
determined to be 90.50 ± 3.65% for CM, 86.78 ± 5.75% for CV, 75.55 ± 2.78% for MK and
82.28 ± 8.28% for SA. These values did not exhibit statistically significant differences. The
results of this study indicate that the essential oils of MK, CV and SA have the potential
to serve as alternative antibiofilm agents to CM essential oil, which demonstrated strong
antibiofilm activity at the MIC level. When we diluted the concentration to half of the
MIC, all essential oils showed a noteworthy capacity to decrease biofilm development
in comparison to the control group. When comparing CM (70.29 ± 4.85%) to CV, there
was no statistically significant difference in terms of biofilm inhibition, as CV exhibited
biofilm inhibition of 64.45 ± 7.73%. However, MK and SA essential oils showed a lesser
ability to prevent biofilm formation compared to CM and CV essential oils, with values of
22.87 ± 3.23% and 12.82 ± 1.88%, respectively.

Table 3. The inhibition effects of essential oils against S. moorei biofilm formation.

Concentration
% Biofilm Formation Inhibition

MK CV SA CM

1/8 of MIC 4.774 ± 3.45% bA 5.44 ± 3.50% bA 5.29 ± 5.10% bA 13.15 ± 10.60% bA

1/4 of MIC 15.15 ± 1.17% aB 27.52 ± 10.90% aA 6.28 ± 3.67% bC 34.12 ± 6.51% aA

1/2 of MIC 22.878 ± 3.23% aB 64.45 ± 7.73% aA 12.82 ± 1.88% aC 70.29 ± 4.85% aA

MIC 75.55 ± 2.78% aA 86.78 ± 5.75% aA 82.28 ± 8.28% aA 90.50 ± 3.65% aA

Control 0.00 ± 8.73% b

The different lowercase letters indicate a significant difference between sample and control, and different capital
letters indicate a significant difference among the samples at the same diluted MIC concentration at p < 0.05.

At a quarter of the MIC level, MK, CV and CM exhibited film reduction activity
in comparison to the control group. Only SA essential oil was determined to be inac-
tive. Furthermore, the essential oil derived from CV exhibited a biofilm inhibition rate
of 34.12 ± 6.51%, which was not significantly different from the biofilm inhibition rate of
CM essential oil (34.12 ± 6.51%). On the other hand, MK essential oil demonstrated a
lower biofilm inhibition capacity, with a rate of 15.15 ± 1.17%. Nevertheless, the capacity
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of all critical components to inhibit biofilm formation was compromised when diluted to
one eighth of their MICs. The present investigation elucidated the potential of CV, MK
and SA essential oils in mitigating biofilm development by S. moorei. The aforementioned
discoveries enhance our understanding of the antibacterial characteristics of essential oils
and their prospective utilization in oral hygiene products.
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4. Conclusions

The yields of MK, CV and SA essential oils were determined to be 6.58 ± 0.81,
12.21 ± 2.98 and 4.29 ± 0.15%, respectively. These values were found to be greater com-
pared to CM (1.26 ± 0.09%), suggesting stronger potential for utilization in commer-
cial products in terms of yield. The primary constituents identified in MK essential oil
were limonene (17.19%), sabinene (13.27%) and terinene-4-ol (47.04%), while CV, SA and
CM essential oils were found to include eugenol (83.59%), anethol (90.58%) and trans-
cinnamaldehyde (82.80%), respectively. The antibacterial activity of CV essential oil was
determined to be similar to that of CM essential oil in terms of its ability to limit the growth
of and eliminate S. moorei, while the essential oils MK and SA had lower effectiveness. The
ability to suppress biofilm development was observed in all essential oils, and this suppres-
sion was found to be dependent on the dosage administered. The researchers observed that
the smallest concentration of the essential oils needed to prevent the formation of S. moorei
biofilms was one quarter of the MIC for MK, CM and CV and half of the MIC for SA. The
findings of our research have confirmed the significant potential of CV, along with the MK
and SA essential oils, as active components to enhance the antibacterial and antibiofilm
abilities of dental care products. To the best of our knowledge, this study represents the first
exploration that compares the antibacterial and antibiofilm properties of CV, MK and SA in
relation to CM essential oil. Clinical trials should be conducted in the future to assess the
halitosis control effectiveness of the essential oils in oral care formulations. Additionally, it
is necessary to assess the acceptance of these formulations among subjects based on taste
and odor in order to validate the findings and provide evidence for the effectiveness of
essential oils in managing halitosis.
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