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Abstract: Recent research on the natural resource use of private consumption suggests a sustainable
Material Footprint of 8 tons per capita by 2050 in industrialised countries. We analyse the Material
Footprint in Germany from 2015 to 2020 in order to test whether the Material Footprint decreases
accordingly. We studied the Material Footprint of 113,559 users of an online footprint calculator
and predicted the Material Footprint by seasonally decomposed autoregressive (STL-ARIMA) and
exponential smoothing (STL-ETS) algorithms. We find a relatively stable Material Footprint for private
consumption. The overall Material Footprint decreased by 0.4% per year between 2015 and 2020 on
average. The predictions do not suggest that the Material Footprint of private consumption follows
the reduction path of 3.3% per year that will lead to the sustainable consumption of natural resources.
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1. Introduction

In the majority of industrialised countries, the total material requirements associated with
consumption activities, including unused material extraction or hidden flows (i.e., the Total Material
Consumption—TMC), per capita per year are an average of 40 to 50 tons [1]. The demand for natural
resources affects the world’s ecosystem and places a burden on efforts to counter environmental
pollution and climate change. According to the International Resource Panel [2], global resource
extraction has accelerated over the past two decades and is responsible for nearly 50% of global
greenhouse emissions (GHG) and for over 90% of global biodiversity loss and water stress. In contrast,
Lettenmeier et al. [3,4] advocated a sustainable Material Footprint (i.e., the Total Material Consumption
by private households) of 8 tons per capita per year by 2050. Bringezu [5,6] suggests a target corridor
of 6–12 tons of TMC per capita for 2050. As a consequence, policies on the consumption of natural
resources should target a reduction in the consumption of natural resources by at least 80% or a factor
of five from the present average.

For instance, Germany shows an ambitious record of policies on sustainable consumption and
sustainable resource management. In 2002, Germany published its first sustainability strategy. In 2016,
the German sustainability strategy adopted the framework of the Sustainable Development Goals
(SDGs) [7] introduced by the United Nations in 2015 [8]. Sustainable Development Goal 12 encourages
more sustainable consumption and production by minimising the use of natural resources. Germany
set up a national strategy specifically on natural resource management and resource efficiency in

Resources 2020, 9, 125; doi:10.3390/resources9110125 www.mdpi.com/journal/resources

http://www.mdpi.com/journal/resources
http://www.mdpi.com
http://dx.doi.org/10.3390/resources9110125
http://www.mdpi.com/journal/resources
http://www.mdpi.com/2079-9276/9/11/125?type=check_update&version=2


Resources 2020, 9, 125 2 of 17

2012—the German Resource Efficiency Programme (ProgRess). On a European level, Germany´s
specified strategy is regarded as “pioneering” [9]. Since then, Germany´s government have updated
ProgRess with regard to goals, guidelines and approaches. In this respect, the ProgRess addresses
the goals stated in the German sustainability strategy and strives to implement the SDGs on resource
efficiency [10].

Concerning resource efficiency, Germany aims to double raw material productivity by 2020
relative to 1994. However, the latest available environmental accounting data show an increase in
resource productivity of only 48.8% in 2014 relative to 1994. Since 2010, there has been no increasing
trend suggesting that the country will achieve doubled productivity by 2020 [11].

More recently, in 2019, Germany updated its National Program for Sustainable Consumption and
specifically identified relevant consumer policies. The program concludes that behavioural changes
are necessary in favour of more resource-efficient consumption. However, behavioural change faces
obstacles such as a lack of information, personalised feedback and fear of justification in one’s social
surroundings. The program suggests providing personalised information and feedback via carbon
and resource calculators [12]. In 2007, the German Environmental Agency (UBA) developed a carbon
footprint calculator. However, a Material Footprint calculator was only published online by the
Wuppertal Institute for Environment, Climate and Energy in 2015 (the Material Footprint calculator,
including all questions and items, can be accessed in full at ressourcen-rechner.de/?lang=en). The
Material Footprint calculator by the Wuppertal Institute enables consumers to analyse their resource
use and gives personalised feedback on how to reduce their personal Material Footprint based on
individual results.

Internationally, Germany can be considered a pioneer thanks to their implementation of a national
strategy on resource efficiency in 2012, which, throughout its updates, addresses the reduction in
reduce consumption by private households. Germany´s early implementation of a national strategy
specifying resource efficiency allows us to evaluate whether its strategy effectively reduces the resource
use of private households towards a sustainable level. In this respect, we are able to present findings
from a Material Footprint calculator surveying the resource consumption of private households since
2015 based on the information of its 113,559 users. Against this background, the goal of this paper is to
show the trend of the Material Footprint by private households from 2015 to 2020. In this way, we
aim to show whether the trend of the Material Footprint has reduced in the past five years, ultimately
meeting the goal of a Material Footprint of about eight tons by 2050. Therefore, we develop a prediction
model which allows us to forecast the Material Footprint accurately in the near future.

We start by introducing the data of the footprint calculator and the underlying Material Footprint
calculations in Section 2. Here, we introduce the development of the Material Footprint as an indicator
for resource use. In Section 3, we describe the methods applied to predict the Material Footprint until
2020. Section 4 presents descriptive results of the Material Footprint in the past five years in relation to
the overall Material Footprint, as well as in regard to nutrition, housing, mobility, for consumer goods,
leisure activities and vacations. Section 4 also presents the results of predicting the overall Material
Footprint in relation to nutrition, housing and mobility until 2020. Section 5 discusses the sampling and
methods, summarises the findings and draws conclusions on the effectiveness on consumer policies
addressing sustainable resource management.

2. Materials

2.1. Data

Material Footprint calculations are based on lifecycle material inputs of all goods and services
in private households. The Material Footprint was first introduced by Lettenmeier et al. [13] as the
“ecological rucksack”. In the original sense, and also used in this study, the Material Footprint of
a service is the cradle-to-cradle material input needed to generate a product or service, including
unused extraction or hidden material flows (i.e., the eventual Total Material Consumption of private
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households). The Material Footprint is calculated using life cycle analysis (LCA) linked to the life cycle
inventory (LCI) database ecoinvent from 2015 (see also [14–16], and, for a more extensive description
of the method [17–22]).

The material inputs encompass the natural resources required for raw material extraction, and
the production and use of processed materials, products and services for private consumption.
Natural resources include abiotic and biotic raw materials from used extraction (put to economic use)
and unused extraction (e.g., overburden from mining). By taking unused extraction into account,
the Material Footprint covers the Total Material Consumption of private households for products
or services.

More recently, the term Material Footprint has been used in national environmental accounting as
a consumption-based indicator (including imports) that accounts for the domestic extraction of all
raw materials in terms of raw material equivalents (RME), but not the unused extracted material [23].
For example, Giljum et al. [24] exclude exports and refer to Raw Material Consumption (RMC) as the
Material Footprint (MF) by applying a global, multiregional input–output (IO) model (MRIOT). Lutter
et al. [25] give an overview of approaches to calculate Material Footprints based on IO data.

Other recent studies use aggregated IO tables to derive material intensities (e.g., in terms of
kg/EUR) and national survey expenditure data in order to give a more differentiated picture of the
Material Footprint of private consumption [26–35]. Such approaches imply a direct relation between
the expenditure and resource use of private households. However, higher expenditure may not
necessarily result in higher Material Footprints. Consumers may as well shift consumption to more
expensive high-quality goods with lower material intensity.

Our data differ from the approaches by relying on consumer data collected in a single survey.
The calculation of the Material Footprint in this study is based on the total lifecycle material flow
accounting of the consumption of products and services directly stated by consumers in the survey.
In this way, we do not rely on assumptions on the resource intensities (or carbon intensities) of
expenditure. Buhl [26] highlights that relying on resource intensities based on IO data does not allow
us to attribute specific intensities to commodities, only allowing us to attribute a common, average
resource intensity for mobility expenditure rather than differentiating mobility by air travel, car travel
or mobility by bike (also discussed in [28,29]). Buhl et al. [30] addressed this issue by introducing LCA
data in order to identify disaggregated resource intensities in mobility. However, they acknowledge
that combing expenditure data and resource intensities still assumes a strict proportional relation
between expenditure and resource consumption that may bias results.

In contrast, calculations based on life cycle assessments of survey data rather than on national
material flow accounting in input–output modelling enable researchers to draw a more direct, more
differentiating picture of the Material Footprint of private households in different consumption
categories. This approach does not suffer from aggregated resource use of national flow accounting
(IO data) and does not rely on assumptions of the resource intensity of expenditure data.

We differentiate between six categories of private consumption: (1) nutrition, (2) housing, (3)
mobility, (4) consumer goods, (5) leisure and (6) vacations.

(1) Nutrition includes diets, food waste and all foodstuffs and drinks consumed;
(2) Mobility includes everyday transport such as commuting and leisure activities by car, motorcycle,

bicycle and public mobility;
(3) Construction and housing include the use of energy (electricity and heating) for

household purposes;
(4) Consumer goods include clothes, furniture, household appliances such as refrigerators and

washing machines, and consumer electronics such as TV sets and tablets;
(5) Leisure activities include hobbies such as sports and cultural activities;
(6) Vacations include travel and accommodation.
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In contrast to studies on resource use by private households relying on expenditure data covering
consumption categories according to the Classification of Individual Consumption by Purpose
(COICOP), the survey does not comprise education and health. Buhl et al. [15] compare the findings of
the Material Footprint calculations based on expenditure data and based on data from the footprint
calculator, as presented. They find that education accounts for around 0.3 tons per capita and health
for around 1.4 tons per capita. Both account for around 5% of the overall Material Footprint of private
consumption, resulting in a slightly lower overall Material Footprint. They already highlight that the
most relevant categories are housing, mobility and nutrition.

The Material Footprint calculator also surveys personal and household data of users. The influence
of personal and household features like income on the Material Footprint has already been covered
elsewhere and is thus not the subject of the following analysis (see [14–16]).

After preparing the data and removing invalid and implausible responses, information provided
by 113,559 users between its launch on 25 February 2015 and 19 December 2019 was analysed. The
data consist of pooled information of different users across the years. About 10% of the data were
surveyed in 2015, 15% in 2016, 30% in 2017, 27% in 2018 and 18% in 2019. The footprint calculator was
most popular in 2017 and 2018 and least popular at the start of 2015. Hence, we expect the highest
uncertainty of predictions at the beginning of 2015. About 60% of the users provided additional
socioeconomic information. The varying number of observations between single variables is due to
implausible responses and missing data due to non-response. We excluded the highest one per cent of
observations of the distribution in order to address outliers and implausible responses.

Table 1 provides an overview of the Material Footprints as well as the users´ ages and the share of
female users.

Table 1. Descriptive statistics * of the Material Footprint and selected characteristics of users.

Variable Valid.n Mean sd Min Max

Overall (kg) 113,559 25,710.88 9882.72 2711 74,243

Housing (kg) 113,511 8876.41 4109.29 45 28,638

Mobility (kg) 113,577 6472.45 6332.86 0 39,484

Nutrition (kg) 113,584 5212.58 1364 41 9505

Goods (kg) 113,552 2476.21 1092.74 0 6653

Vacation (kg) 113,549 1642.94 1552.68 0 8790

Leisure (kg) 113,630 534.54 781.95 0 7328

Age (years) 62,917 34.15 14.06 1 88

Female (ref. male) 63,314 0.63 0.48 0 1

* Descriptive statistics include the valid number of observations (valid.n), the mean, the standard deviation (sd), the
minimum (min) and maximum (max).

The application can be used for free; there are no incentives involved, and participation is voluntary.
Accordingly, the quality of the data suffers from self-selection and shows a high share of females and a
low average age of users. According to the latest national census in Germany in 2011, the average age
in Germany was 44 years, while 51% of the population was female [36].

2.2. Weighting

Given the non-representative sample for Germany, we make use of a weighting algorithm
developed for the American National Election Study (AWA). AWA uses an iterative, multiplicative
raking model to identify weights [37]. In the AWA, survey marginals for a given set of variables are
compared to known population marginals for each variable of interest. In a series of steps, the survey
proportions for each variable are compared to known population proportions for the same variables
and adjusted to match those figures.
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Like all weighting procedures, raking is also sensitive to the number and nature of the variables
used for correction. As more variables are introduced, the variance of weights will tend to increase.
Similarly, as raking variables become more discrepant from known population parameters, corrections
to eliminate biases will tend to increase variance, thus affecting the consistency of estimations in further
statistical analyses. In this sense, variable selection for raking is a balancing act between eliminating
bias and minimising variance in the data.

We selected sex and age for raking. Table 1 shows a considerably younger sample and a higher
share of female respondents than the average in Germany. Importantly, the German census provides
reliable and distinct data of the overall population in Germany for sex and age. In this way, we keep
the design effect of weighting as small as possible and the prediction accuracy as high as possible.

Table 2 shows the shares of sex and age groups in the sample and the actual shares according to
the latest national census data in Germany. For instance, females account for 63% in the sample, but
actually only 51% are female in the population. In AWA, each female gets weighted by w1 = 51/63.
We also find that 10% of our sample consists of of age < 18, while 16% are actually age < 18 in the
German population. Hence, w1 is multiplied by w2 = 16/10. This multiplicative procedure continuous
for all wk =

∏k
1 w until the sample margins and population margins do not converge any further.

Table 2. Shares of sex and age groups (in years) in observed, census and weighted data.

Sample Male Female <18 18–25 25–30 30–40 40–50 50–65 65–75 >75

Observed 0.37 0.63 0.10 0.18 0.17 0.25 0.14 0.14 0.02 0.01

Census * 0.49 0.51 0.16 0.08 0.06 0.12 0.17 0.20 0.11 0.09

Weighted 0.49 0.51 0.18 0.09 0.07 0.13 0.18 0.22 0.11 0.03

* Data from the latest national census in Germany in 2011.

Table 2 shows the results of the raking.
After raking the data, the weighted data fit the shares of sex in the census perfectly. The shares of

age groups in the weighted data fit the census data not perfectly, but closely, except the age group > 75.
Eventually, the weighted data give a more representative picture of the Material Footprints.

3. Methods

We use season–trend decomposition using loess (STL) with autoregressive (ARIMA) and
exponential smoothing (ETS) algorithms to predict and forecast the overall Material Footprint as well
as in relation to housing, mobility and nutrition in Germany between 2015 and 2020. STL-ARIMA
and STL-ETS have been successfully applied to predict and forecast energy demand [38,39] or CO2
emissions [40]. We first describe the autoregressive models and exponential smoothing. We then
describe the season–trend decomposition applied to our data. In Section 4, we report the prediction
accuracy of the proposed models.

3.1. ARIMA

In autoregressive modelling, we predict the Material Footprint (y) at time t using a linear
combination of past values of the variable at time t− p.

The term autoregression (AR) indicates that it is a regression of the variable against itself. Moving
Average Models (MA) do not use past values of the forecast variable in a regression, but instead use
unobserved past forecast errors (ε) at time t − q in a regression-like model. If we combine AR and
MA processes, we arrive at Autoregressive Integrated MA models (ARIMA). By differencing, ARIMA
processes become stationary with constant means and equal variance.

An ARIMA process can be written as

yd
t = c + φ1yd

t−1 + · · ·+ φpyd
t−p + θ1εt−1 + · · ·+ θqεt−q + εt (1)
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where c is the intercept, and φ and θ are the predicted coefficients of y and ε, respectively.
For convenience, we introduce a backshift operator B for describing the differencing process.

ydt = (1− B)dyt (2)

Then, a non-seasonal ARIMA process is given by

(1− B)dyt = c + ϕ(B)yt + θ(B)εt (3)

However, we hypothesise that there is a seasonal part to our time series. Therefore, we model an
ARIMA process by multiplying the non-seasonal parts with the seasonal parts of the time series.

(1− Bm)D(1− B)dyt = c + Φ(Bm)ϕ(B)yt + Θ(Bm)θ(B)εt (4)

where m = number of observations per year (i.e., 12 given monthly data), and d is the number of required
differences for the seasonal and D non-seasonal parts, respectively. ϕ(z) and θ(z) are polynomials of
order p and q for the non-seasonal parts and Φ(z) and Θ(z) are polynomials of orders P and Q for the
seasonal parts.

In order to find an optimal model order, that is, values for p, q, d, P, Q, D, we follow the proposed
algorithm by Hyndman and Khandakar [41]. First, we test for seasonality (according to [42]) in order
to test whether we need to introduce a seasonal part to our model. After D is selected, we test for
stationarity and choose d (according to [43]). After we determine the number of differences, we find
the lag values (p, q, P, Q) by minimising the Akaike Information Criterion (AIC):

AIC = 2 log(L) + 2(p + q + P + Q + k) (5)

where k = 1 if c , 0 and 0 otherwise, and L is the maximised likelihood of the model fitted, as described
in (4). However, it is not feasible to fit every potential model and find the one with the lowest AIC.
Therefore, Hyndman and Khandakar [41] propose a stepwise selection algorithm for finding the model
order efficiently. In the first step, we consider 4 initial models to start with and find the one with the
lowest AIC. In a second step, up to 13 variations on the initially selected models are considered in the
search for the model with the lowest AIC. The second step is repeated until no lower AIC can be found.

3.2. ETS

Alternatively, we consider exponential smoothing (ETS). In ETS, predictions (or fits) and forecasts
are computed by weighted averages, where the weights decrease exponentially as observations come
from further in the past ([44]):

ŷt+1|t = αyt + (1− α)ŷt+1|t1 (6)

Predictions at time t + 1 are weighted averages between the most recent observation yt and
the previous predictions ŷt+1|t1 or forecasts ŷT+|1T1 and 0 < α < 1 is the smoothing parameter. In
component form, we substitute the smoothened values at t time or h, forecast as the level of smoothing
lt = ŷt+1|t = ŷt+1|h.

We use simple exponential smoothing with multiplicative errors if seasonal variation is not
constant over time. ETS models with multiplicative errors can be noted by one-step-ahead errors as
relative errors: εt =

yt−ŷt|t−1
ŷt|t−1

.
The multiplicative form of the ETS model is then

yt = lt−1(1 + εt) (7)

or an ETS (M, N, N) in state space notation, where M denotes a multiplicative error; (N, N) denotes the
trend and seasonal component in simple exponential smoothing [43].
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3.3. STL

In order to properly identify trends and seasonality in our data, we decompose the data into
seasonal and trend components using locally weighted regression (loess) smoothing (STL) ([45]). Here,
data Y are decomposed additively into trend (T), season (S) and remainder (R) components at a given
time t.

Yt − St = Tt + Rt (8)

STL can identify any type of seasonality and the seasonal component is allowed to change over
time (in contrast to univariate seasonal ARIMA). ARIMA and ETS, respectively, are then applied to the
seasonally adjusted, i.e., non-seasonal part of the data.

In order to identify the seasonal component, a loess regression is conducted. The seasonal smoothing
is then identified in the qth span by assigning a neighbourhood weight v for each observation xi

vi(x) = ω

(
xi − x
δq(x)

)
(9)

where ω is a tricubic weight function and d is the distance of the farthest xi to x in q of xi to x in q. Thus,
xi closer to x have the larger weights.

The seasonal part of the last year is added to the ARIMA and ETS forecast, ignoring the uncertainty
of the seasonal part underlying the forecast. This is justified, since seasonal components do change
slowly relative to the seasonally adjusted parts.

In order to test the accuracy of the forecast model, we report commonly reported forecast errors:
root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE)
and the mean absolute scaled error (MASE). The scaled error is the forecast error MAE relative to the
MAE for a naïve seasonal forecast on the training data Q.

MASE =
MAE

Q
(10)

The mean absolute error (MAE) is given by

MAE = mean(|εt|) = mean
(∣∣∣yt − ŷt|N

∣∣∣) (11)

for t = N + 1, . . .T, where (y1, . . . , yT) are the test data and (y1, . . . , yN) are the training data. To check
the accuracy of our forecasting method, we estimate the parameters using the training data, and
forecast the next T −N observations. We select the last observed year as test data and forecast the
earlier observed years on the last year´s data. These forecasts can then be compared to the test data
observed.

The scaling statistic Q of the naïve forecast on the training data is defined as the mean absolute
difference between consecutive observations of m seasons and j forecasts ([46]):

Q =
1

N −m

N∑
j=m+1

∣∣∣y j − ŷ j−m
∣∣∣ (12)

Then, we can check whether STL-ARIMA or STL-ETS is more accurate than a naïve seasonal
forecast. MASE is straightforward to interpret. With MASE = 1, the MAE of the seasonal naïve forecast
is equal to MAE of the STL-ARIMA or STL-ETS. With MASE < 1, the STL-ARIMA is more accurate
with a lower forecast error than a naïve forecast.
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4. Results

4.1. Time Series Analyses

In the following, we present a time series analysis of the Material Footprint by private households
in Germany between 2015 and 2019. Figure 1 shows the Material Footprint by consumption category. It
is notable that no relevant change or decrease in the Material Footprint can be observed. The categories
of mobility, housing and nutrition cover more than 80% of the overall Material Footprint. Moreover,
Buhl et al. [15] predict the overall Material Footprint by a linear combination of nutrition, housing and
mobility and are able to explain 91% of the variation in the overall Material Footprint. Respondents
who report higher resource use in nutrition, mobility and housing are likely to report higher Material
Footprints in leisure, vacation or consumer goods as well, and thus a higher Material Footprint overall.Resources 2020, 9, x FOR PEER REVIEW 8 of 17 
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Figure 1. The mean Material Footprint of private households between 2015 and 2019 in Germany.

For a more detailed view of the Material Footprint in the past five years, we disaggregate the
yearly observations into monthly observations. Figure 2 shows the monthly average overall Material
Footprint between 2015 and 2019. Here, we can observe a greater variability between 2015 and 2017
than in the following year until 2019. At the start of the survey, the smaller confidence (at 95%) can be
explained by smaller sample sizes at the beginning that increase the variance in the monthly mean
Material Footprints. In this regard, the decreasing Material Footprints between 2015 and 2017 should
be interpreted cautiously, considering the high variability in reported Material Footprints.

The same accounts for the Material Footprints along the consumption categories (Figure 3)
showing a greater uncertainty in 2015 with decreasing Material Footprints of mobility and increasing
footprints in housing. Figure 3 suggests a slight increase in housing Material Footprint since 2018,
and a drop in the Material Footprint for consumer goods in 2017, while Material Footprints for leisure
activities and vacations increase from 2017 onwards. Overall, the slight increasing and decreasing
trends seem to cancel each other out, such that no relevant decreasing trend for the overall Material
Footprint is observed between 2015 and 2019.
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4.2. STL Predictions

In this section, we show the results of STL predictions of the overall Material Footprint as well
as of housing, nutrition and mobility. We focus on the three major categories housing, nutrition and
mobility since those categories effectively cover 91% of variation in the overall Material Footprint [15].
The predictions are used to forecast the Material Footprints of private consumption in the near future.
Before, we report the prediction accuracy of the prediction models applied. Table 3 shows the forecast
errors RMSE, MAE, MAPE and MASE for STL-ARIMA, STL-ETS for predicting the overall Material
Footprint (MF) as well as in housing, nutrition and mobility.

The forecast MASE of the STL-ARIMA is lower than for a naïve forecast for all Material Footprint
categories analysed, except mobility. The mean absolute percentage error (MAPE) is between 2.6%
and 8.9%. The MAPE is lowest for the overall Material Footprint (2.6%) accordingly, showing the
lowest MASE. The forecast error for the mobility Material Footprint is largest with a slightly more
accurate forecast of the exponential smoothing (8.9%). Hence, we use STL-ARIMA predictions for
the overall, housing and nutrition footprints and STL-ETS predictions for the mobility footprint.
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The MASE suggests that STL algorithms fit better than naïve forecasts with low prediction errors
(MAPE). However, the prediction error in mobility is relatively high. The results should be interpreted
accordingly. On average, the prediction of the Material Footprint in mobility is 8.9% off.

Table 3. Forecast error of the seasonally decomposed autoregressive (STL-ARIMA) and exponential
smoothing (STL-ETS) predictions of the Material Footprint overall and of housing, mobility, nutrition
between 2015 and 2020.

Material Footprint Overall Housing Mobility Nutrition

Model STL-ARIMA STL-ETS STL-ARIMA STL-ETS STL-ARIMA STL-ETS STL-ARIMA STL-ETS

RMSE 849 1366 385 385 719 710 210 216

MAE 686 1215 330 331 607 599 154 161

MAPE 2.6 4.6 3.6 3.6 9.0 8.9 2.8 3.0

MASE 0.51 0.9 0.58 0.58 0.94 0.92 0.6 0.63

The seasonal and trend decomposition of the data allow us to depict the seasonal variation
separately from the trend underlying the data. Figure 4 shows the decomposed time series of the
overall Material Footprint and the remaining error that is not explained by the trend and seasonal
component. The seasonal component shows that lower Material Footprints are recorded in the summer
months. This may occur because respondents report higher Material Footprints in housing during
winter due to higher heating and lower Material Footprints in mobility during summer due to holidays
without commuting. The decomposed time series of the Material Footprint in housing, mobility and
nutrition is presented in the Appendix A.
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Figure 4. Seasonal and trend decomposition of the overall Material Footprint (in kg) in Germany
between 2015 and 2019: ‘data’ gives the monthly observed data; ‘trend’ gives the overall trend; ‘seasonal’
gives the seasonal trend and ‘remainder’ gives the remaining error not explained by an overall or
seasonal trend.

The overall Material Footprint shows a falling trend that increases again in the last year observed.
Furthermore, the seasonal variation that underlies the data occurs repeatedly. The remaining variation
in the data that is not explained by trend and seasonal patterns decreases as time increases.

Figure 5 shows the observed Material Footprints and STL-ARIMA and STL-ETS predictions of the
time series. The graph gives forecasts with confidence bands (85% and 90% level) for one year until
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December 2020 and a smoothing loess prediction of the forecast. The STL models fit the observed data
well and follow the trend of the observed data. The relatively high forecast error does not result in
misleading predictions. The STL-ARIMA prediction and forecast corroborates the findings from the
time series analysis in Section 4.1. We predict no relevant changes in the Material Footprint between
2015 and 2020. The predictions and forecasts do not suggest relevant changes in the Material Footprint,
but a relatively stable continuation of the Material Footprint of private consumption in Germany until
2020. However, there is a decrease in the overall Material Footprint and, more relevantly, the Material
Footprint in relation to mobility. At the same time, we do find increasing Material Footprints for
housing and nutrition.
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As a result, the overall Material Footprint decreased by 2% between 2015 and 2020. Table 4
summarises the yearly changes in absolute and relative terms between 2015 and 2020. The yearly
variability does suggest relevant changes in Material Footprint. For instance, the Material Footprint
of mobility decreased in 2016 by 5.6% and in 2017 by −4.1%. However, on average, the Material
Footprint of mobility decreased by only 2.3%. The Material Footprints of housing increased by 0.9%
and of nutrition by 0.7% between 2015 and 2020. In comparison, an appropriate reduction path in
order to meet a sustainable consumption of natural resources of 8t/cap in 2050 would suggest a (linear)
reduction in the Material Footprint by more than 3.3% per year. Overall, the Material Footprint, on
average, decreased by only 0.4% per year between 2015 and 2020. Consequently, our results show that
the decrease in the Material Footprint in the past 5 years is insufficient and does not meet a sustainable
reduction path.

Table 4. Mean yearly Material Footprints (in kg) overall and of housing, mobility, nutrition and yearly
relative changes (in %) between 2015 and 2020.

Material
Footprint

Overall
(in kg)

Overall
(in %)

Housing
(in kg)

Housing
(in %)

Mobility
(in kg)

Mobility
(in %)

Nutrition
(in kg)

Nutrition
(in %)

2015 26,912 - 8743 - 6963 - 5213 -

2016 27,215 1.12 9310 6.48 6575 −5.60 5421 3.99

2017 25,796 −5.21 8921 −4.18 6304 −4.10 5289 −2.43

2018 26,155 1.39 9213 3.27 6384 1.30 5314 0.47

2019 25,985 −0.65 9253 0.44 6065 −5.00 5351 0.69

2020 26,381 1.53 9094 −1.72 6321 4.20 5397 0.86

5. Discussion and Conclusions

Recent research on the natural resource use of private consumption suggests a sustainable Material
Footprint of 8 tons per capita by 2050. In 2016, Germany published its most recent editions of the
National Program for Sustainable Consumption and German Resource Efficiency Program addressing
consumer policies to reduce the private consumption of natural resources. Against this background, we
analysed the population weighted data from the only Material Footprint calculator in Germany between
2015 and 2020. We analysed 113,559 user profiles and weighted the data according to population
margins in Germany in order to give representative findings.

We found an overall Material Footprint of around 27 tons per capita in 2015 in Germany.
Accordingly, the Material Footprint should follow a linear reduction of more than 3.3% per year in
order to achieve sustainable resource use by 2050.

In order to test whether the Material Footprint of private consumption decreased accordingly
over the past five years, we predict the Material Footprint of private consumption using a decomposed
autoregressive (STL-ARIMA) and exponential smoothing (STL-ETS) algorithms. We showed that the
STL-ARIMA and STL-ETS allows us to predict and forecast the Material Footprint more accurately
than naïve forecasts with low prediction errors, reporting the observed trends reliably. Thus, the
developed prediction models can be used to predict and forecast Material Footprint in upcoming
studies. With more data available, the forecast can expand further into the future. Since our data, thus
far, cover the past five years, we are only able to present a short-term forecast of one year ahead until
the end of 2020. Our data do not allow for long-term forecasts. Rather, further research should focus
on predicting trends in socio-economic features in order to deliver a more differentiated picture of who
shows changes in Material Footprints and in which categories.

Our results for the overall Material Footprint as well as in housing, mobility and nutrition shows
a relatively stable private resource use between 2015 and 2020. Housing, mobility and nutrition are by
far the most important predictors of the material resource use of private households and explain more
than 90% of the Material Footprint of private households.
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We found an overall reduction of 2% in the past five years and an average reduction of 0.4% per
year between 2015 and 2020 in Germany. Our results show that the Material Footprints in mobility
are decreasing; however, they are still increasing for housing and nutrition. In housing, the Material
Footprint increases by 0.9% per year on overage. The Material Footprint in mobility decreases relatively
strongly, by 2.3% per year on average. In nutrition, the Material Footprint increases by 0.7% on average
per year. We do not find that the Material Footprint of private consumption in Germany is following a
sustainable reduction path.

Recent research suggests a sustainable Material Footprint of 8 tons per capita by the year 2050.
This would have required an observed reduction of 3.3% per year. Our results thus suggest a reduction
gap of 2.9 percentage points per year. However, our results show yearly decreases of up to 5.6% in
mobility, suggesting a variability of resource use in private households that may allow us to quickly
shift to sustainable reduction paths.

We conclude that the Material Footprint of private consumption in Germany is not decreasing
sufficiently in order to achieve sustainable reductions.

Based on the study at hand, we suggest that policies on the consumption of natural resources in
Germany should strengthen their efforts to support a decrease in natural resources by (1) identifying
and incorporating reduction goals for the resource use of private consumption in national programs
according to the scientific state of the art and (2) identifying the reduction potentials of different
consumer policies in different consumption categories. In order to enable the monitoring of the
Material Footprint of private consumption for specific policy evaluations, future works on predicting
the Material Footprint of private households should further disaggregate the consumption categories.
For instance, in terms of mobility, the Material Footprint over time could be further differentiated into
mobility by car or public transport (e.g., local and long transport train) or air travel. In terms of housing,
the Material Footprint should be further differentiated by the energy source of heating and electrical
power supply (i.e., fossil fuels, renewable energies). Then, changes in the resource use over time in
different consumption categories may be better linked to specific policies on reducing the resource use
of private consumption, e.g., by supporting modal shifts. Predicting the Material Footprint developed
on the basis of LCA data allows us to further disaggregate consumption categories in more detail for
specific products and services. In this study, we developed a prediction model applicable to LCA data
in order to monitor specific consumer policies addressing the resource use of private consumption
in detail.
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analysis, J.B.; resources, C.L., K.B.; data curation, J.B., S.S.; writing—original draft preparation, J.B.; writing—review
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