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Abstract: From a commercial viewpoint, mine methane is the most promising object in the field
of reducing emissions of climate-active gases due to circular waste management. Therefore, the
task of this research is to estimate the technogenic reservoirs resources of mine methane when
implementing the circular waste management concept. The novelty of the authors’ approach lies
in reconstructing the response space for the dynamics of methane release from the front and cross
projections: CH4 = ƒ(S; t) and CH4 = ƒ(S; L), respectively. The research established a polynomial
dependence of nonlinear changes in methane concentrations in the mixture extracted by type 4 wells
when a massif is undermined as a result of mining in a full-retreat panel. And the distance from
the face to the start of mining the panel is reduced by 220 m. For this reason, the emission of
mine methane, in case of degasification network disruption in 15 days, can amount to more than
660 thousand m3 only for wells of type no. 4.

Keywords: mine methane; resource recovery; circular waste management; sustainability; gas flow

1. Introduction

Global methane emissions (containing a mine methane proportion in the range of
11–13% [1]) can account for up to 19% of the total emissions of climatically active gases [2].
At the same time, our country’s share in its global emissions, according to rough estimates
obtained from foreign sources, amounted to about 7%, 50% of which was due to mining [3].
Estimating indirect gas emissions is difficult, even when using modern methods. This is
related to the problems of modeling the process of drainage from technogenic methane
reservoirs in dead pits or previously abandoned sublevels of operating mining enterprises.
This fact makes it particularly necessary to switch to sustainable geotechnologies [4–8].
The transition to sustainable development is a necessary measure to mitigate the conse-
quences of global climate change [9–11]. The main measures are considered to be the
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following. The first is increasing the share of renewable energy sources. The second is
improving the system of monitoring the pollutants [12]. The third is the introduction
of low-carbon technologies, including the formation of cadasters and technologies that
reduce greenhouse gas emissions [13,14]. The fourth is digitalization of the power and
extractive industries, and increasing the energy efficiency of production processes [15–17]
involved in the development and implementation of negative emission technologies [18].
In addition, one of the dynamically developing areas in recent years is the introduction
of closed-loop economy elements when improving mining and metallurgical production
(when the resources circulate without the “end of life cycle” [19–21]). Much attention is
paid to this area in EU countries. This study indicates that a set of closed-loop economic
measures can increase the EU’s GDP by 1% by 2030, resulting in 2 million additional jobs.
In England, measures to promote the “circular economy” [22,23] are expected to contribute
to attracting EUR 12 billion of investments and creating 50 thousand new jobs [24]. This is
gradually coming to the forefront in such countries as China [25–27]. To achieve carbon
neutrality by 2060, most authoritative scientists propose introducing a tax on coal resources,
which, on the one hand, can lead to an increase in prices for coal products and, on the other
hand, is an effective way to reduce coal consumption [25]. One of the relatively new ways
to achieve sustainable development based on the greening of mining production is cyclical
economy elements, the so-called cyclical waste management (CWM) [28–30].

Implementing the circular waste management concept for mine methane (converting
waste into energy [30]) implies the need to improve the quality and volume of gas extraction
from technogenic reservoirs, and to generate electricity for its connection to the mine’s
energy system (with the introduction of cogeneration technologies [31]). The relevance of
such studies can hardly be overestimated, and the evidence of the relationship between
increasing the efficiency of underground degassing and reducing technogenic emission
processes (caused by extracting the subsurface minerals) still remains insufficiently studied.

The methane distribution in the mined-out space of coal mines and in rock massifs
has been studied in many works [32], while the main focus has shifted to analytical and
instrumental methods [33]. Study [34] states that a breakthrough is currently required to
predict methane emissions (due to the limitation of the traditional approaches).

One of the most controversial issues is forecasting zones with different filtration chan-
nel parameters of the “methane drainage zone” in a disintegrating metastable solid coal–gas
solution, and their boundaries (angles of complete shifts) [35–37] for real conditions of
reserves mining. The issues of describing the peculiarities of aerogas processes caused by
stopping have been explored quite fully, and were discussed in [38]. The metal release
dynamics, in turn, are subject to a number of mining factors whose cumulative effect is
quite difficult to describe. In a number of domestic scientific research studies [39–42], at-
tempts were made to model the distribution of methane fluxes. In some works [43–45], the
authors consider a three-dimensional formulation of the problem. The numerical methods
that have proven themselves well when considering specific aspects [46,47] cannot always
be successfully applied when dealing with three-dimensional models. At the same time,
the issues of losing a part of the methane resources obtained from the technogenically
disturbed massif, owing to the low efficiency of degassing the mined-out space, have not
been fully studied. In this regard, it follows that the issues of identifying the peculiarities
of the migration of coal mine methane flows into the mined-out space cavity of longwalls
abandoned earlier (accompanied by a subsequent release into the atmosphere), as well as
approaches to their modeling, need to be improved. The scientific idea of the project is
using the regularities of the influence of the spatial-temporal development of the stoping
to determine the nonlinear component of the aerogas mode of the undermined degassing
wells. Analysis of the current state of the issue in the area under consideration allows for the
conclusion that the closest research direction is substantiating the parameters of the three-
dimensional spatial orientation of wells for degassing the undermining coal rock mass. The
well-known formulation of the problem does not take into account the peculiarities of the
nonlinear nature of methane release dynamics (the fourth dimension is t), as well as the
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technogenic disturbance intensity during the spatial-temporal development of the stoping
as a result of mining deep-lying high-gas coalbeds. The conditions of this problem reveal
the fact that at the first stage, it is necessary to reduce the number of space measurements
to one (in our case, this is “S, m” denoting the distance to the start of the full-retreat panel).
The following difficult moment (not fully resolved) is associated with the mechanism of
the impact of the bottom movement on the “space-time” system of a longwall, which is
different from the “space-time” system of the state of each well (or a static system of the
degassing network elements). At this stage, a hypothesis was considered for the partial
stabilization of the longwall influence on the methane concentration dynamics “CH4, %”
through the parameter “L, m” (the distance from the head of each well to the longwall face
at each moment of time).

In view of this, for the first time during a limited consideration of a four-dimensional
spatial-temporal task (i.e., without L in the CH4-t plane), according to the planned approach,
the parameter S was introduced. This allows consideration of the process under study
as a (prescribed implicitly) CH4 function of S (the space axis being a distance from the
beginning of the site “by the analogy with the distance from the beginning of the site to
the longwall position at other times”)-t (measurement time). The next important aspect
remaining is to obtain a theoretical model [48,49] (a process formula or regression having a
specified goodness-of-fit” level), which is still an open fundamental scientific problem in
the case of three-dimensional models (see, for instance, [50,51]).

In this regard, developing measures (based on the methane concentration dynamics in
mixtures extracted by underground boreholes on operating mines) aimed at preventing
the loss of energy resources based on new regularities of the spatial-temporal variabil-
ity of gas flows is an urgent scientific task. The purpose of this research is to estimate
technogenic reservoirs resources of mine methane when implementing the circular waste
management concept.

2. Materials and Methods

Object. The object of the study is a degassable massif during mining the m3 reservoir,
implemented at the AP “Minen.a. A.F. Zasyadko”, which is located in the central part of
the Donetsk-Makeyevsky geological and industrial district in the territory of Donetsk city.
The Shakhtnoye site borders the Oktyabrsky mine in the west and the K. I. Pochenkov
mine in the east. Downdip, the minefield borders the abandoned sublevel of the Kalmius
mine. It was designed by the “Yuzhgiproshakht” Institute in 1948 and commissioned in
1958. The design capacity of the mine is 1.2 million tons of coal. After the introduction of a
new horizon, the mine’s capacity reached 1.8 million tons. The abundance of the methane
released from the working areas, when developing m3 and l1 beds, reaches 90 m3/min.
Ensuring the gas safety of the mining requires capturing and bringing to the surface at least
70 m3/min of methane (200 m3/min of the gas mixture) from each area. The aggregate
bed thickness is 1.37–1.76 m, with an average thickness of 1.53 m. The dip angle is 4–8◦.
The volume weight of the coal in the massif is 1.33 t/m3. The ash content is 8.3–12%,
the humidity is 1–1.21%, the sulfur content is 3.86, the volatile yield is 32.3–33.6%, and
the natural gas content ranges from 22 to 24 m3/ton of the dry ash-free mass. The bed
is dangerous due to spontaneous combustion, coal and gas emissions, bleedings, and
coal dust explosions. The bench is not dangerous in terms of sudden methane breakouts
proceeding from the bottom.

The immediate mine roof over the entire area of the mine section is represented by
argillite, which is also the main roof that is 10.45–16.3 m in thickness. As far as the stability
is concerned, argillite is classified as low-resistant (B3), and in the places where weak
adhesion is present, the stratification is unstable (B2). In the areas bearing pressure and
tectonic disturbances, it is very unstable (B1). The collapse categories of the immediate and
main roofs are A1, A2, and A3. The main bottom of the bed is of medium-stability siltstone
(P2) whose thickness is 3.95–8.2 m.

A map extract of the plan of mining the m3 bed is shown in Figure 1.
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Figure 1. Mountain-geological conditions of the 18th eastern longwall mine on a seam m3: (a)—top
view, a plan of mining operations along seam m3 and stages of panel development (t1 t2, . . .);
(b)—schematic representation of wells (with inclination angles β) drilled at the 133rd and 13st pickets;
A−A—section drawn perpendicular to the roadway and parallel to the face (with boreholes azimuths
φ); B−B—section made perpendicular to the face; No. 1, 2, 3, 4—methane drainage boreholes;
1—seam m3; 2—degasification pipeline; 3—air roadway of the 18th eastern panel; 4—casing; 5—coal
pillar; 6—haulage air roadway of the 17th eastern panel (which has been fully worked out up to this
time); 7—auxiliary construction to protect the roadway; 8—mined-out space (goaf); 9—technogenic
reservoirs of a mine methane inseam under a working zone of the previously mined panel of the
17th eastern longwall; 10—technogenic reservoirs of mine methane in the mined-out space and a
seam under a working zone of the seam m3; 11—18th longwall; 12—goaf 18th eastern longwall;
13—haulage roadway.

Up to eight simultaneously operating vacuum pumps, whose maximum feed was
50 m3/min, were used to degass one longwall, discharging the gas–air mixture through a
pipeline 625 mm in diameter. The drilling pattern in the guiding beds is shown in Figure 2.
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Figure 2. A section B−B indicated in Figure 1 made perpendicular to the working face: 1—coal
seam m3; 2—schematic representation of a shearer loader with rows of teeth on the executive body;
3—flight conveyor; 4—section of a powered support in a longwall; 5—goaf 18th eastern longwall;
6—technogenic reservoirs of mine methane in a mined-out space and a seam under a working zone
of the seam.

The initial data intended for constructing three-dimensional models were taken
from [52]. The data are a set of measurements of the methane concentration on the 18th
eastern longwall of the m3 bed conducted in the PAO “Zasyadko” obtained from [52].

The measurements were carried out as follows. Gas was collected from the wellhead
of all operating boreholes at picket nos. 133, 131, 128, 126, 123, 121, 119, 117, 115, 113, and
111 in the first 6 months of panel operation. From the fitting placed at the wellhead of each
well, samples of the gas–air mixture were taken into rubber chambers of standard sizes,
after which the methane content in them was measured with gas analyzers. The mixture
flow rate (Q, m3/min) at each wellhead was determined (selectively, as it is closely related
to the methane concentration in the mixture) using measuring diaphragms (a standard
method). Monitoring was performed during the repair shift at the maximum frequency
(pauses in measurement times did not exceed 4 days). The readings were taken in three
repetitions using the Dräger X-AM 2500 c device (CatEx 125 PR mining is a stationary sensor
with an error of ±2%) and duplicated on the SHI–12 (discrepancies did not exceed 15% and,
in our opinion, they were conditioned by the high quality of the German instrument). A set
of methane concentration measurements (CH4) obtained from each well made it possible
to assess the nature of the distribution of gas flows throughout the entire local degassing
network at each moment in time when the m3 formation was being mined.

Objective. In this case, the problem of determining the function of the methane
concentration dynamics was considered, which is preset implicitly (in a specific example,
the value of the gas concentration in the mixture extracted by underground degassing
wells). Its change is influenced by the following factors. The first is the space in the
form of a line along which the wells are drilled (S, m). It is conditionally identical to the
distance from the beginning of the sublevel to each wellhead (Sp). There is also the time of
measuring (t, days), the influence factor of a longwall, which does not include the time of
finding the face at the picket marks and the actual value of this picket (SL). This setting
implies a 5-dimensional representation in view of the presence of the response function
itself (methane concentration, CH4) and four factors = f (tp; tL; Sp; SL). If longwall position
factors are replaced by the distance from it to the wellhead (L), this problem can be reduced
to two three-dimensional response spaces, CH4 = ƒ(t; S) and CH4 = ƒ(L; S). As a result, a
response space in the form of a set of the surfaces of the methane concentration dynamics
in the extracted mixture (CH4) can be presented as ƒ(S; t; L). The novelty of the authors’
approach lies in restoring the response space from its front and cross projections. The
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qualitative representation of the projections of two surfaces of the form CH4 = ƒ(S; t) and
CH4 = ƒ(S; L) is the subject of further research.

In addition, the rational B-spline method was used to smooth out noise that is
present in the data. In contrast to machine learning methods or Bayesian classification
models [53–56], deterministic models were used. The obtained response surfaces were
visualized in “gnuplot” software [57,58], analogously with [59].

3. Results

The data obtained from the previous studies [60,61] were presented in the form of
a generalized regression model (Figure 3), in order to compare them with the options
intended for creating two-dimensional models.
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Figure 3. Dynamics of the methane concentration (%) and the net flow rate (methane flow, m3/min)
depending on a face position in an undermined degassing well of type no. 4 (picket no. 133).

The analysis of the generalized trend line allows the conclusion that the methane
release intensifies after the longwall passage, and can transit into an emission component
due to the roof subsidence in the mined-out space. It is difficult to estimate the volume and
the intensity of these processes.

The equation of the polynomial curve under study has the following form (R2 = 0.846):

CH4 = −5E − 09L6 − 3E − 07L5 + 6E − 05L4 + 0.0002L3 − 0.1257L2 + 1.2629L + 96.075 (1)
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In view of the complexity of considering multidimensional tasks, as well as improving
the general methodology used for considering spatial-temporal geoecological problems,
wells of type number 4 (whose angle of elevation and turn = 60◦) were selected for further
research (devoted to using rational cubic, quadratic inhomogeneous B-splines).

In our case, the problem CH4 = ƒ(S; L) was solved based on [62]. The formula of the
response surface has a polynomial form (S = S’ for all S’Î [0, π] and L = L’ for all L’Î [0, π]):

CH4 = 68.3 − 6.6 cos(S) + 12.5 cos(L) + 15.2 cos(2S)− 43.3 cos(S) cos(L) + 30.8 cos(2L) −
23.7 cos(3S) + 21.7 cos(2S) cos(L)− 3.79 cos(S) cos(2L)− 12.59 cos(3L) + 3.69 cos(4S) −

31.28 cos(3S) cos(L) + 17.4 cos(2S) cos(2L)− 14.2 cos(S) cos(3L)− 14.4 cos(4L) −
0.29 cos(5S) + 10.8 cos(4S) cos(L) + 1.1 cos(3S) cos(2L)− 8.0 cos(2S) cos(3L) +

10.5 cos(S) cos(4L)− 4.6 cos(5L) + 4.06 cos(6S)− 12.5 cos(5S) cos(L) −
8.3 cos(4S) cos(2L) + 2.5 cos(3S) cos(3L)− 0.4 cos(2S) cos(4L) + 10.2 cos(S) +

cos(5L)− 0.8 cos(6L)− 3.6 cos(7S) + 6.6 cos(6S) cos(L)− 8.5 cos(5S) cos(2L) −
8.5 cos(4S) cos(3L) + 1.2 cos(3S) cos(4L)− 0.5 cos(2S) cos(5L) + 3.5 cos(S) cos(6L) −

3.8 cos(7L) + 0.4 cos(8S)− 5.8 cos(7S) cos(L)− 4.7 cos(6S) cos(2L) +
6.9 cos(5S) cos(3L) + 7.1 cos(4S) cos(4L)− 6.4 cos(3S) cos(5L) +

5.5 cos(2S) cos(6L)− 3.8 cos(S) cos(7L)− 3.4 cos(8L)− 2.6 cos(9S) +
4.5 cos(8S) cos(L)− 1.2 cos(7S) cos(2L)− 0.2 cos(6S) cos(3L) + 4.4 cos(5S) cos(4L) −
0.8 cos(4S) cos(5L)− 2.3 cos(3S) cos(6L) + 1.0 cos(2S) cos(7L) + 0.6 cos(S) cos(8L) −

3.9 cos(9L) + 1.1 cos(10S)− 3.9 cos(9S) cos(L)− 0.6 cos(8S) cos(2L) +
1.1 cos(7S) cos(3L) + 3.5 cos(6S) cos(4L)− 4.6 cos(5S) cos(5L) +

1.6 cos(4S) cos(6L) + 1.3 cos(3S) cos(7L) + 1.3 cos(2S) cos(8L) + cos(L) +
3.1 cos(S) cos(9L)− 1.8 cos(10L).

(2)

One of the disadvantages of the above Equation (1) is neglecting the time factor,
which is an objective difficulty in considering four-dimensional problems. In view of
this, in a three-dimensional formulation (for the same type of well), the problem was
separately solved in the CH4 formulation, in the form of a response function of the time
of measuring the gas–air mixture state (t) and the beginning of the working area (S). At
this stage, the definition of a maximally approximated regression for a given surface was
not considered because this “transformed projection” of the regression of the response
surface would have a greater approximation error than the primary surface. According to
the authors’ approach, at first, the primary data were smoothed with cubic splines, and
then interpolation algorithms were applied to the smoothed data, after which the final data
were processed in “gnuplot”.

As a result, the obtained surfaces were projected onto the above-mentioned axes and
presented graphically in Figure 4.

In Figure 4, the red rectangle shows the area (and its boundaries for two projections)
of the distribution of gas flows when the local degassing network (all drainage boreholes
of type no. 4 on the 18th panel) failed, and potentially recoverable methane was released
into the atmosphere.

Figure 4 shows two projections of the response surface of the methane release dynamics
depending on the picket number (the distance from the head to the beginning of the
sublevel), the time, and the distance from the longwall. A thickened yellow line that
runs parallel to the S-axis, on the S-L projection and at an angle (close to 45◦) shows the
movement of the stoping face line at each moment of space-time on the S-t projection. In
addition, on the S-t projection, the areas of the curves (isogases are indicated by color),
outlining the projections of local maxima and minima and located below the longwall
position line, determine the methane release dynamics when the longwall is still located in
front of the wellhead points. Accordingly, the points of intersection between the isogases
and longwall movement are the case when the longwall is still in front of the wellhead
points. If the considered area, bounded by the isogas curves, is located above the longwall
movement line (the upper left corner), the wellhead is located in the collapse zone (the
mined-out space).
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Figure 4. A spatial-temporal variability model of the methane concentration for all type no. 4
boreholes; S—distance from the beginning of the panel to an observation point (picket) in an air
roadway of the 18th eastern panel; t—time of measurement; L—distance from a face to pickets where
the boreholes are drilled; CH4—methane content at the wellhead of each no. 4 well (picket nos.
133, 131, 128, 126, 123, 121, 119, 117, 115, 113, 111); a longwall line (marked in yellow) is a path (in
space-time) that characterizes the progress of working a face relative to the beginning of a panel.

On the S-L projection, positive values along the L-axis correspond to the case when the
wells are located in front of the longwall, and negative values are located behind it. Figure 1
(the S-L plane) allows the conclusion that as a result of mining coal with a high-loaded
longwall, an area of conditionally minimal productivity (where the methane concentration
is ≥20%) is formed in the mined-out space at a distance of 20 to 35 m (S ranges from 1330
to 1280 m). After this mark (S ranges from 1280 to 1233 m), a decrease in the distance
from this isogas to the straight line of longwall face movement (from 34–36 to 17 m) is
observed. At the same time, a local maximum for methane release was observed 15–20 m
ahead of the stoping face line (for the positive L zone) when S ranges from 1309 to 1305 m
(relatively the beginning of the area) (CH4 = 90% denotes yellow isogas). Beyond 1300 m,
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a monotonous decrease in the methane release level from 90 to 24–26% up to the mark
S = 1233 m is observed.

Further, (starting from the point S = 1233 m) in the mined-out space, the minimum
productivity area (20% is an orange curve) begins to sharply increase its linear dimensions
when decreasing the distance from the sublevel beginning, reaching a maximum length of
80 m at the point S = 1206 m. Then, after 1200 m, the same sharp drop in its length begins
up to the level of 39–42 m in the area of the mark of 1167 m, after which it does not change
until 1120 m. In the case of the area in front of the longwall, after the S = 1233 m mark,
a nonlinear increase up to 80% in the methane concentration in the discharged mixture
containing air is observed in the area of 1160 m, accompanied by further stabilization of up
to 1120 m.

Figure 4 (t-L plane) suggests that as a result of coal mining, an area of minimal gas
mining productivity (20%) is formed on the 90th day from the start of mining reserves
(S = from 1330 m) in the mined-out space (below the thickened yellow curve of the longwall
movement). Then, until 120–124 days, its profile, which runs parallel to the longwall curve,
remains stable. After that, its distance to the longwall curve begins to gradually decrease
to minimum values in the range of 1250–1246 m from the beginning of the sublevel, or
132–134 days of mining reserves. At the same time, in another area, starting from 126 days
(from 1220 to 1210 m before the start of the sublevel), the distance from the orange curve of
20% to the longwall line begins to increase sharply to maximum values of approximately
1212 m, after which it begins to decrease to a certain constant value. Simultaneously, ahead
of the longwall, a complex pattern of forming the first local maximum can be traced in the
range of 125–140 days when S varies from 1311 to 1292 m, while CH4 = 90%. The second
zone of maximum methane extraction was in the range of 160–180 days and 1290–1330 m
from the beginning of the working area. In addition to the maximum zones, the local
extremum of the response surface (equal to 10 percent or less of the methane concentration)
was in the range of 140–157 days and 1232–1271 m from the beginning of the working area.

We further assumed that at stage 1, methane production in all wells (on average,
four wells of this type were operating simultaneously) approximately corresponded to the
dynamics of picket no. 133, shown in Figure 3. For stage 2 (as can be seen from Figure 4,
the area of maximum productivity for methane concentration is 20–25% more than it is at
stage 1), we have 25% more methane released from the massif. To estimate degassing losses
(emission fluxes) in this zone, we took the average value for the first and second stages.

The boundaries of the duration of existence of the studied zone allow us to con-
clude that the period of minimum degassing productivity took 15 days. After calculating
the area under the methane emission flow curve (see Figure 3), the overall “L” for the
conditions of the first stage Q was established to be 6.8 m3/min for L Î [−40 m; 50 m].
Therefore, for stage 2, Q will be = 8.5 m3/min for all L, and the average productivity loss
per day = 7.65 m3/min (or 11,016 m3/day). The total losses for the first no. 4 well in the
“Lost Productivity Zone” are 165,240 m3, and for all four simultaneously operating wells,
they are 660,900 m3.

4. Discussion

The obtained results of the S-L projection (see the lower projection in Figure 1) indi-
rectly confirm the ideas about the evolution of crack formation density obtained on the
basis of three-dimensional modeling [63]. Proceeding from the results of this research, the
authors assume that the shape of the area discharged from the stressed projection is an
elliptical paraboloid. Hence, after landing the main roof (when the longwall was at the
picket S in the range from 1225 to 1250 m, or from 138 to 143 days of the year), the orange
curve of the isogas equal to 20% of the methane concentration probably runs parallel to the
longwall line at a greater distance from it (if one draws a perpendicular down relatively to
the thickened longwall line.) This means that the formed new crack system, after planting
the main roof, leads to establishing more favorable conditions suitable for draining gas
from the massif.
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In similar cases, analytical studies on the distribution of air and gas flows are most
often used [64] based on known laws of aerodynamics, and/or the actual parameters of
the ventilation network are introduced into the DEM model followed by the subsequent
use of CFD modeling application software packages. For example, in the conditions
of the Daxing mine (Liaoning Province), namely the “Y”-type ventilation scheme, the
degassing parameters of the mined-out space were modeled using FLAC3D and FLUENT
software [65]. The spatial distribution of methane and leaks in the mined-out space is
considered from the perspective of a porous medium model, which may not be confirmed
in practice due to changes occurring in the situational geomechanical conditions in the
working area. Our formation of the model of the real gas flows differs somewhat from the
standard method (CFD modeling based on the continuum model). The upper projection (see
Figure 1) shows the actual distribution of the methane concentration along the ventilating
entry (from which the wells were drilled with a turn to the mined coal massif), which
decreased in size in proportion to the growth of the mined-out space and, consequently,
the main roof span (starting from S = 1346 m). At the same time, it is obvious that replacing
the “time—t” axis with a relative indicator of the distance from the bottom to the head
of each well “L” revealed the fact that after planting the roof, a surge (an increase in the
distance from the zero thickened line) of the orange curve (CH4 = 20%) in the area S = 1202
m was observed. Our results confirm the presence of some inconsistencies when comparing
the actual gas emission data with the model data obtained using, for example, COMSOL
Multiphysics in Figure 6 of source [66]. On it, the blue dots (actual data) lie significantly
higher above the red curve, based on the modeling.

Not without its limitations, but the general nature of the nonlinearities in terms of the
methane concentration distribution, when the main roof span described in this research
increases, is similar to the mechanism of stress changes occurring in the roof and the
surrounding roof rocks, as stated in Figure 18 of source [67]. Unlike similar methods for
assessing degassing productivity and volume of mine methane extraction, the authors’
method allows us to quantify gas losses due to the failure of a local degassing network.
The reasons may be different, but basically it is the failure of wells associated with the
peculiarities of changes in the stress–strain state in the rock mass [68–72].

The pronounced manifestations of the nonlinearity of vertical stresses, due to unequal
deformations in the direction of the interlayer contacts, are shown in Figure 18c (see the
radiant and purple curves). The degree of technogenic fracturing, found in the undermined
rock massif, is assumed to spread unevenly, both along the massif height and in the
direction of the mined-out space growth. Similarly to our studies, alternating-sign surges
were observed in the methane release dynamics and the methane concentration monitored
when analyzing the work on a cross-measure borehole performed at the Cheng Zhuang
coal mine [68].

5. Conclusions

The huge volumes of mine methane overflow into the atmosphere through the mined-
out space of previously abandoned horizons due to conceptual problems of underground
degassing inefficiencies are conditioned by managing the roof of complete collapse.

The conducted research established the fact that when a massif was undermined as
a result of mining in a full-retreat panel, reducing the distance from the beginning of the
panel (increasing the roof span) from 133 to 111 pickets (220 m) in the distance range L
from 50 to −40 m, the methane concentration increased nonlinearly (in type 4 wells) to
maximum values = 90%, which is replaced by a local minimum according to the polynomial
dependence from 90 to 6%. For this reason, the emission of mine methane in the case of
degasification network disruption in 15 days can amount to more than 660 thousand m3,
only for wells of type no. 4.

The authors’ technique, intended for solving spatio-temporal problems, can also be
used to predict the degree of hydrocarbon vapor capture [73], or when modeling bitumen–
oil mixtures [74].
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