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Abstract: Digital soil maps are paramount for supporting environmental process analysis, planning
for the conservation of ecosystems, and sustainable agriculture. The availability of dense time series of
surface reflectance data provides valuable information for digital soil mapping (DSM). A detailed soil
survey, along with a stack of Landsat 8 SR data and a rainfall time series, were analyzed to evaluate
the influence of soil on the temporal patterns of vegetation greenness, assessed using the normalized
difference vegetation index (NDVI). Based on these relationships, imagery depicting land surface
phenology (LSP) metrics and other soil-forming factors proxies were evaluated as environmental
covariates for DSM. The random forest algorithm was applied as a predictive model to relate soils and
environmental covariates. The study focused on four soils typical of tropical conditions under pasture
cover. Soil parent material and topography covariates were found to be similarly important to LSP
metrics, especially those LSP images related to the seasonal availability of water to plants, registering
significant contributions to the random forest model. Stronger effects of rainfall seasonality on LSP
were observed for the Red Latosol (Ferralsol). The results of this study demonstrate that the addition
of temporal variability of vegetation greenness can be used to assess soil subsurface processes and
assist in DSM.

Keywords: vegetation greenness; NDVI; random forest; land surface phenology

1. Introduction

A range of complex factors, such as soil-forming factor interaction and pedogenic
processes, determines soil distribution across geographical regions. Digital maps in raster
format currently represent soil-forming factors coined as environmental covariates [1]. The
digital soil mapping (DSM) framework quantitatively integrates relationships between
climate, vegetation patterns, and a geomorphological setting at the landscape level into
a soil map [1,2]. A remarkable convergence of several geospatial information toward
DSM has occurred, primarily due to the fast evolution of remote sensing products and
increasing information on web-based platforms for easy access to an extensive catalog in
a ready-to-use format. Historically, the most applied environmental covariates consist of
a raster format representing the space of the current information rather them temporal
variations [3,4] (Wadoux et al., 2021; Coelho et al., 2021). Since several geospatial data could
be surrogates for soil-forming factors, new environmental covariates should be adequately
evaluated and interpreted with caution when applied with machine learning algorithms to
ensure their real meaningfulness concerning soil prediction [3].
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Historically, pedologists have recorded and observed vegetation pattern information
to support the spatial prediction of soil types on different scales [5]. Such soil–vegetation
correlation is possible since spatial and temporal dynamics of vegetation serve as indicators
of the interaction between soil conditions and climate regimes. Organisms and vegetation
are dynamic soil-forming factors, and their relationship with climate and soil properties
is vital, particularly with regard to factors that constrain plant growth and vigor, such as
water availability and fertility [6,7].

Soil moisture regimes have been intensely monitored in developed countries, furnish-
ing support for soil classification systems [8]. Conversely, the lack of country-based soil
and climate monitoring on a detailed scale led pedologists to classify native vegetation
with the purpose of soil mapping. In this case, plant deciduousness is the primary basis
for making inferences about soil-hydric regimes [9]. However, native vegetation remnants
for inferences have been increasingly scarce. Thus, there is an avenue to be explored by
applying satellite-based vegetation indexes to increase the accuracy of information. In turn,
soil information could aid vegetation index interpretations.

Reliable detection and mapping of plant dynamics can be achieved through remote
sensing of vegetation greenness. This is because the spectral features of plants are closely
tied to their biomass, yield, health, and vigor, making them a valuable metric for assessing
greenness. The normalized difference vegetation index—NDVI—is the most commonly
used index [10–12]. With the increasing availability of remote sensing and cloud-computing
technology, continuous collections of satellite imagery can be used to add a temporal
dimension to studies using spectral vegetation indexes [13,14]. Research on using temporal
variability of vegetation indices in DSM has taken various approaches, including single-
season analysis based on wet versus dry conditions [15] and analysis of time series of dense
vegetation indexes [16,17].

The acquisition of satellite-based temporal vegetation indexes allows studies of sea-
sonal patterns in plant phenophases, called land surface phenology (LSP) [10]. Considering
a local-scale analysis, soil–landscape conditions drive plant changes in their coloring and
leaf fall [18] (Caparros-Santiago et al., 2021), and climate drives the cycles of plants through-
out the season [19] (Wolkovich et al., 2012). The rhythm of different phenological events has
been considered a critical biological indicator [18] (Caparros-Santiago et al., 2021). Once
related with soil types, LSP imagery can provide a valuable environmental covariate to
enhance DSM. By utilizing LSP imagery related to vegetation growing seasons (such as
season start and end, integrated NDVI, and seasonal amplitudes), information depicting
the climate-driven cycles of vegetation greenness can be synthesized [20]. Despite the
demonstrated feasibility of using LSP metrics for DSM predictive models for soil properties,
such as organic carbon, sand, and calcium content [21,22], the impact of soil taxonomic class
and its interaction with rainfall seasonality has been overlooked, particularly in tropical
regions where data scarcity poses a challenge for detailed mapping.

This study aims to evaluate the use of LSP metrics for DSM as an effective environmen-
tal covariate, combined with relief and soil parent material proxies. The hypothesis tested
is that the temporal variability of vegetation greenness is influenced by the interaction of
soil and rainfall seasonality, producing a temporal signature that can be captured through
remote observation to enhance DSM.

2. Materials and Methods
2.1. Study Area and Soil Survey

A comprehensive study of the soil in an area of 314 hectares located on the Campus
of the Federal University of Lavras, Minas Gerais state, Brazil, was conducted. The soil
sampling was carried out in a regularly spaced grid, with approximately 130 m of nearest
neighbor distance between each sample [23] (Figure 1). The soils were sampled and
described according to standard procedures outlined in an earlier paper [24], and chemical
and physical analyses were carried out according to a previous study [25]. The soils were
then classified according to the Brazilian soil classification system [24].
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Figure 1. Study area, land cover, and survey locations at Federal University of Lavras, Southern
Minas Gerais state, Brazil. Topographic contours represent 10 m intervals.

The climate of the region is classified as Cwb, which is a humid tropical climate with a
dry winter and temperate summer, according to Köppen’s classification criteria [26]. The
vegetation cover in the area is a mosaic of pasture, native forest, forest plantation, and
agriculture, as determined by data from the MapBiomas project (https://mapbiomas.org/
(accessed on 5 January 2020)). It was also found that there has been no significant change
in land cover between the years 2012 and 2019 [27].

Overall, the study provides a detailed analysis of the soil in the area, which will be
beneficial for future research and development projects on the Campus of the Federal
University of Lavras.

2.2. Vegetation Greenness Time Series and Land Surface Phenology

We searched the Google Earth Engine database for all 168 scenes captured by the
Landsat 8 OLI sensor between 19 April 2013 and 12 August 2020, using path 218 and row
75, for surface reflectance imagery. Unfortunately, 17 scenes were unavailable. The image
collection has already undergone atmospheric correction and orthorectification, making it
better suited for temporal analysis. We then cropped the selected collection to the study
area for pasture land cover only. Finally, we calculated the NDVI proxy for vegetation
greenness and scaled it using Equation (1):

NDVI =
NIR − R
NIR + R

× 104 (1)

where NIR is near-infrared surface reflectance (band 5) and R is red surface reflectance
(band 4). The factor of 104 was applied for more efficient use of memory. Image cropping
and NDVI calculation were performed in the raster package [28] in the R platform [29].

The LSP metrics were obtained using the TIMESAT algorithm [30], which was specifi-
cally designed for extracting seasonal parameters from optical remote sensing vegetation
indices. TIMESAT uses seasonal models such as asymmetric Gaussian functions, double
logistic, and the Savitzky–Golay filter. The process of selecting and fitting the seasonal
models was iterative and involved visual interpretation and reference checks with NDVI

https://mapbiomas.org/
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literature values [20,30]. To accomplish this, the temporal stack of NDVI images derived
from Landsat 8 imagery was analyzed using TIMESAT.

The primary source of noise in the temporal signal of NDVI is caused by the occurrence
of clouds and shadows, generating a negatively biased noise [31]. To address this, a
weighted least-squares approach was implemented in TIMESAT. This involved assigning
higher weights to high NDVI values in the time series to construct an upper envelope of
data, which was used to fit the seasonal model [20,30]. In cases where Landsat 8 scenes
were completely cloud-covered or had unavailable dates, they were treated as “no data”
and excluded from input into TIMESAT.

Thirteen different LSP maps were obtained for each season: season start time, season
end time, season length, NDVI base level, season mid-time, largest NDVI value for the
fitted function, seasonal amplitude, rate of increase at the beginning of the season, rate of
decrease at the end of the season, large seasonal integral, small seasonal integral, NDVI
value for the start of the season, and NDVI value for the end of the season [20,30].

2.3. Additional Soil Environmental Covariates: Topography and Parent Material

Considering the scale of analysis and the most important drivers of soil formation,
maps depicting topography and soil parent material were also evaluated. SAGA-GIS [32]
was used to derive terrain attributes commonly used in DSM applications based on a
5 m resolution DEM (digital elevation model), which was interpolated by the ANUDEM
method from topographic contours of 1 m of vertical distance [33]. Besides DEM, the
following terrain attributes were also calculated: slope, diffuse insolation, direct insolation,
saga wetness index (SWI), stream power index (SPI), topographic position index (TPI),
multiresolution valley bottom flatness (MRVBF), and multiresolution ridge top flatness
index (MRRTF).

Despite the lack of a detailed geological map for the study region, we were able to
generate soil parent material proxies using proximal sensor data and knowledge of soil–
geology relationships. Silva et al. [34] and Curi et al. [23] interpreted magnetic susceptibility
from B and C soil horizons of the same area to generate spatial information about soil parent
material. Magnetic susceptibility was measured using a Barrington MS2B magnetometer
(Bartington Instruments Co., Ltd., Oxford, UK) at low frequency. We resampled all soil
covariates to match the spatial resolution of the Landsat 8 data (30 m).

In addition to magnetic susceptibility, soil texture, obtained by the pipette method [35],
and soil organic matter, determined by wet oxidation [25], were also obtained from
Curi et al. [23] and were used to support additional analyses.

2.4. Digital Soil Mapping

After harmonizing and gathering the environmental covariates, the complete frame-
work of DSM was established, as displayed in Equation (2):

Soil classes = f (LSP metrics, topography, parent material) +
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(2)

Climate and organisms were considered spatial constants due to the scale of this study.
Thus, the soil classes were spatially associated (f) with environmental covariates through a
random forest algorithm [30,31]. Random forest [36,37] is currently one of the most applied
machine learning algorithms in soil science due to its remarkable performance of bootstrap-
ping and bagging features to reveal patterns in complex soil spatial association [38–40].
This non-parametric data-driven model has obtained accurate soil predictions even when
based on many environmental covariates [41]. Random forest parameterization followed
the approach proposed by Hengl et al. [38]: mtry = 5 (an approximate integer of the square
root of the number of covariates, i.e., 30) and ntrees = 500 (number of trees sufficient to fit
a model) [37]. To ensure adequate sample size, only soil classes with at least six records
or samples under pasture vegetation cover were analyzed. These included Haplic Cam-
bisol, Red Latosol, Red-Yellow Latosol, and Red-Yellow Argisol (soils classified according
to Santos et al. [24]). According to Soil Survey Staff [42], those soil types correspond to
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Typic Dystrudept, Rhodic Hapludox, Typic Hapludox, and Typic Hapludult, respectively.
Additionally, according to the World Reference Base for Soil Resources [43] (IUSS Working
Group WRB, 2015), those soils respectively correspond to Cambisol, Ferralsol, and Acrisol.

The accuracy (
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) associated with the spatial prediction model was assessed using
repeated 5-fold cross-validation allowing the calculation of global accuracy and the kappa
index [44] statistical metrics.

Random forest is referred as a “black box” model [45] because it is difficult to under-
stand how model inputs and environmental covariates are combined to make the final
prediction. To improve the interpretability of the models and uncover patterns, the rank of
variable importance was obtained by the mean decrease in classification accuracy calculated
globally and for each soil taxonomic class [36]. Permuting the environmental covariate
values that might increase the prediction error could be interpreted as a score of importance.
A higher score indicated a more critical environmental covariate due to its significant effect
on the prediction.

2.5. Rainfall Seasonality

A time series of rainfall was built from daily precipitation data from the 83687 BDMEP—
INMET station, available at http://www.portal.inmet.gov.br (accessed on 10 January 2020).
The daily data were combined to match the temporal resolution and dates of the NDVI time
series, meaning that daily rainfall data were accumulated over 16-day periods (Figure 2).
Using TIMESAT, an analysis of the rainfall time series allowed for the identification of seven
seasons. Consequently, the initial image collection was filtered to match these periods.

Figure 2. Time series of aggregated 16-days rainfall for the study area (date format: year-month-day).

Finally, Spearman’s rank correlation analysis was performed between the most im-
portant LSP covariate ranked from random forest importance scores and the accumulated
seasonal rainfall at each soil class based on median values.

3. Results
3.1. Soil Charachterization

According to the findings from the soil field campaign [23], the most commonly
observed soil types are Haplic Cambisol, Red-Yellow Argisol, Red-Yellow Latosol, and
Red Latosol. More information on the soil’s properties can be found in Figures 3 and 4.
The primary soil parent material, with the exception of Red Latosol which is derived from
gabbro, is composed of granite-gneiss—a metamorphic rock that contains alternating bands
of mafic and felsic minerals. Soils such as Haplic Cambisol, Red-Yellow Argisol, and
Red-Yellow Latosol were formed from this material. Gabbro, on the other hand, is less
resistant to weathering due to its higher felsic mineral content [46]. Consequently, soils
formed from gabbro, like the Red Latosol, tend to be thicker and more clayey than others.

http://www.portal.inmet.gov.br
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Figure 3. Boxplots of soil organic matter (SOM) content by soil taxonomic class and soil horizon. RYL:
Red-Yellow Latosol, RYA: Red-Yellow Argisol, RL: Red Latosol, HC: Haplic Cambisol.

Figure 4. Soil texture class distribution (dots) and center confidence regions (90% confidence) around
centroids (squares) by soil horizon for each taxonomic class. Data points of A horizon in blue and B
horizon in red. RYA: Red-Yellow Argisol, HC: Haplic Cambisol RYL: Red-Yellow Latosol, RL: Red
Latosol. Cl: clay, SiCl: silty clay, SaCl: sandy clay, ClLo: clay loam, SiClLo: silty clay loam, SaClLo:
sandy clay loam, Lo: loam, SiLo: silty loam, SaLo: sandy loam, Si: silt, LoSa: loamy sand, Sa: sand.
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Although the origin of soil material can influence the soil formation, other factors
and processes also play a role in determining soil characteristics. This can be demon-
strated by looking at a chronosequence, which is a sequence of soils ordered by age, from
younger to older. For example, in the chronosequence Haplic Cambisol → Red-Yellow
Argisol → Red-Yellow Latosol and Red Latosol, the following physical and hydraulic char-
acteristics were observed by Gonçalves et al. [47]: an increase in soil thickness, an increase
in soil water storage capacity, a shift in B horizon structure from blocky to granular, an
increase in permeability, a decrease in bulk density, and an increase in clay content. As for
soil organic matter, the overall trend is that its concentration decreases with depth, with
similar mean values among soils. However, some samples of Red-Yellow Argisol and Red
Latosol have higher organic matter contents, as shown by the points in the boxplots.

3.2. Accuracy Assessment of DSM Predictive Models

DSM predictive model presented a median global accuracy of 61.1% and a kappa
value of 0.43, considered a fair level of agreement [48]. The error rate appeared to be
proportional to the occurrence frequency of the analyzed soil classes. The dominant soil
classes, such as Red Latosol (12.1%) and Red-Yellow Latosol (25.2%), had a lower error
rate compared to the less frequent classes, such as Red-Yellow Argisol (47.3%) and Haplic
Cambisol (87.3%). Figure 5 shows the soil map with only the pasture vegetation cover
(164.74 ha) and the spatial distribution of the analyzed soils. The geographical distribution
showed a predominance of Red Latosol (83.95 ha, representing 50.96% of the area), followed
by Red-Yellow Latosol (58.55 ha, 35.54%), Red-Yellow Argisol (12.16 ha, 7.38%), and Haplic
Cambisol (10.09 ha, 6.12%).

Figure 5. Digital soil map under pasture cover at Federal University of Lavras, Minas Gerais state,
Brazil. RYL: Red-Yellow Latosol, RYA: Red-Yellow Argisol, RL: Red Latosol, HC: Haplic Cambisol.
Blank areas within the perimeter of the study area are vegetation types dissimilar to pasture.

3.3. Covariates Importance for DSM

The results of the DSM evaluation of environmental covariates are displayed in
Figure 6, showing the variable importance rank. The maps of the most important en-
vironmental covariates can be found in Figure 7. The LSP metrics, notably LI—NDVI
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and the base NDVI value of the seasons 2014–2015 and 2015–2016, were found to be as
important as the covariates that depict parent material (magnetic susceptibility) and to-
pography (CNBL). LI—NDVI is calculated by integrating the function spanning from the
beginning to the end of each season using an asymmetric Gaussian function [30] and has
been successfully associated with seasonal vegetation productivity [6,17,49]. The base level,
which is defined as the averaged fitted minimum value of NDVI, has been reported as
an efficient DSM covariate [21] and reflects the soil condition in which vegetation cycles
are driven.

Figure 6. Random forest variable importance of the covariates assessed for the digital soil map. MS_B:
Magnetic susceptibility of B horizons, CNBL: channel network base level, SPI: stream power index,
SWI: saga wetness index, TPI: topographic position index, MRVBF: multiresolution valley bottom
flatness, SOS_t: time for the start of the season, EOS_t: time for the end of the season, LOS_t: length
of the season, BV_NDVI: base level value, TMS_t: time for the middle of the season, MV_NDVI:
maximum value for the fitted function during the season, Amp_NDVI: seasonal amplitude, LeftD:
rate of increase at the beginning of the season (left derivative), RightD: rate of decrease at the end
of the season (absolute value of right derivative), LI_NDVI: large seasonal integral, SI_NDVI: small
seasonal integral, SOS_NDVI: value for the start of the season, EOS_NDVI: value for the end of
the season.

Figure 7. Cont.
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Figure 7. Random forest most important covariate maps: MS: Magnetic susceptibility of B horizons,
CNBL: channel network base level, LI_NDVI: large seasonal integral, BV_NDVI: base level value.
Black spots in LI and BV maps (below zero values) indicate insufficient data to fit a seasonal function.

3.4. Relationships between Rainfall and Vegetation Greenness for Each Soil Type

A correlation analysis was performed using Spearman’s rank correlation to investigate
the relationship between median LI—NDVI values (which were identified as the most
important LSP metric by random forest) and the accumulated seasonal rainfall. The
analysis revealed that the soil type with the strongest correlation was RL, with a correlation
coefficient of 0.7 and a p-value of less than 0.05 (Table 1). This suggests that there is a strong
relationship between the pasture greenness over RL soil and the seasonal rainfall.

Table 1. Spearman’s rank correlation (Rho) between seasonal rainfall and large integrated NDVI for
each soil class.

Soil Type Rho p-Value

Red-Yellow Latosol 0.4 0.05
Red-Yellow Argisol 0.5 0.03

Red Latosol 0.7 0.02
Haplic Cambisol 0.4 0.04

Figure 8 presents the complete time series of vegetation greenness based on the
large integrated NDVI for each soil class. The vegetation response seems to depend on
the accumulated rainfall in the previous season; a yearly scale can also be observed. It
was observed that dissimilar median large integrated NDVI values responses to rainfall
seasonality were present among all soil types, which reinforces the potential of such
information as an environmental covariate in contrasting soils.

Figure 8. Rainfall seasonality (grey bars) and its relation with large integrated NDVI (lines) for
each soil taxonomic class. RYL: Red-Yellow Latosol, RYA: Red-Yellow Argisol, RL: Red Latosol,
HC: Haplic Cambisol.
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The Red-Yellow Argisol soil type presented higher values of large integrated NDVI in
the seasons of 2013–2014, 2015–2016, and 2019–2020. This fact is thought to be related to
increasing clay content in the B horizon and the blocky structure due to the pedogenetic
process (illuvial clay accumulation). This fact along with higher SOM might increase the
water-holding capacity even during dry seasons.

It is noteworthy that the Haplic Cambisols, the youngest and shallowest soil, exhibited
low stability concerning vegetation responses. It reached the highest values of large
integrated NDVI in the season 2016–2017 due to rainfall accumulation in the previous
season and the lowest values in the next driest season (2017–2018), despite having high
topsoil SOM content, which would increase the water-holding capacity of the soil.

The Red Latosol was the soil type more correlated with rainfall seasonality despite
having high clay content. Latosols with oxidic mineralogy present a granular structure
in the B horizon [46], and this structure is responsible for quite contrasting soil porous
populations influencing plant water availability: macropores between aggregates and
micropores within aggregates [50]. Water is held strongly in micropores, decreasing water
availability for plants. Conversely, gravity readily removes water from macropores. Red
Latosol has very high clay content, but Sans [51] noted that the unsaturated hydraulic
conductivity decreases sharply within about two weeks of water saturation.

Thus, plant water availability was conditioned by soil class and reached its maximum
expression during the period of 2017–2018 when decreasing water input produced the
expected theoretical pattern. This fact was also verified by Méndez-Barroso et al. [52].

Previous research utilizing the integrated NDVI metric as a measure of seasonal
productivity has revealed a correlation between soil moisture, clay content, and natural
fertility [49,53]. As noted by Araya et al. [6], vegetation productivity is directly proportional
to rainfall until it reaches a saturation point. This pattern is illustrated in Figure 8, which
highlights similar processes, particularly for the RL soil type.

4. Discussion
4.1. Soil Control on the Response of Vegetation Greenness to Rainfall

Previous studies have confirmed that temporal variability of vegetation greenness is
an effective covariate for digital soil mapping. Dematte et al. [15] found that analyzing
the seasonal differences of NDVI can capture the influence of soil types on vegetation
greenness, as different soil types reflect varying water dynamics in depth. Maynard and
Levi [16] also verified that soil acts as the primary link between vegetation and climate
feedback, further supporting the use of vegetation temporal variability as a DSM covariate.
However, these studies did not explicitly consider the temporal dimension of vegetation
in a phenological sense. Our research addresses this gap by analyzing the performance of
time-synthetic images of NDVI phenological metrics and their relationship with seasonal
rainfall as conditioned by soil types.

4.2. Suitability of LSP Data for DSM

Our study found that phenological synthetic imagery used as a DSM environmental
covariate was just as important as parent material and relief proxies. This means that LSP
imagery has great potential for use in DSM. However, it is important to note that the NDVI
temporal signal may not accurately reflect the effects of water availability itself, as soil
fertility and pollution can also impact the interaction between soil type and vegetation
greenness. This can modify the time-spectral signature [15,54], thus affecting the results.
Additionally, this fact might be one of the main sources of unexplained variability in the
accuracy assessment. Therefore, future research should focus on functional signal filtering
to identify stronger temporal signatures. These might be affected by biological indicators
such as intraspecific or interspecific competition or genotypic diversity. Since this study
was performed only in soils under pasture, the extension of this manuscript’s findings
might be limited by biological indicators such as intraspecific or interspecific competition
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or genotypic diversity, since these factors also influence plant phenophases [55] (Menzel,
2002), which, in turn, might influence LSP.

5. Conclusions

This study investigated the effects of soil type on the response of vegetation greenness
to rainfall in a seasonal context. Our research confirms that soil, in conjunction with rainfall
seasonality, influences the temporal variability of vegetation greenness. The seasonal
dynamics of rainfall act as a trigger for soil–plant interaction, causing the most responsive
temporal signature when transitioning from a steady to a low-water input condition.
While soil-forming factors such as parent material and topography are essential for soil
classification and mapping, LSP metrics related to the availability of seasonal water to
plants, large integrated NDVI, and the NDVI base level are also significant, particularly for
the Red Latosol (Ferralsol). The map production process supports the use of vegetation
seasonal metrics derived from remote sensing, along with other soil-forming factors, as a
reliable source of information for the production of digital soil maps.
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