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Abstract: Polyphenolic compounds are a group of secondary metabolites in plants; these molecules
are widely distributed in fruits, vegetables, and herbs and can be found in the vacuoles of plant
cells. The current trend in these compounds is their extraction to study their applications in several
areas, such as the food, cosmetic, and pharmacology industry. This review article presents a critical
analysis of polyphenol extraction using solid-state fermentation. The parameters of extraction, such
as the substrate, temperature, pH, inoculum of the microorganism, moisture, and water activity, are
discussed in detail. This biotechnological extraction method affects the concentration and recovery of
polyphenolic compounds. Some polyphenolic sources that are rising for their biological properties
belong to agro-industrial wastes, such as peels, seeds, and the pulp of some fruits. Solid-state
fermentation is an innovative and environmentally friendly tool that can contribute to generating
value-added agrifood from agro-industrial wastes.

Keywords: bioprocess; solid-state fermentation; phenolic compounds

1. Introduction

Polyphenols are biological compounds found in plants that present several health ben-
efits. Some of these biological properties may include antiviral activity against SARS-CoV-2,
anticarcinogenic, antiproliferative activity, and antimicrobial and antioxidant activities.
These biocompounds can be found in fruits and vegetables, spices, teas, wines, and even
dark chocolate. These polyphenols are known to possess antioxidant activities due to their
capacity to neutralize harmful free radicals, prevent heart diseases and cancer, reduce
inflammation, and also they may be effective against chronic diseases such as diabetes [1].

There are several types of polyphenols, such as tannins, flavonoids, anthocyanins,
and polyphenolic amides, that can be found in plants, vegetables, and fruits such as
pomegranates, grapes, mangoes, or apples (Figure 1). Polyphenols are more hydrophilic
molecules than they are lipophilic molecules. In this way, solvents such as ethanol,
methanol, acetonitrile or a mixture of these solvents with water are generally used to
obtain said compounds. Concentrations of these compounds depend on various factors of
the fruit, the harvesting, and the extraction method [2–4].

Traditional techniques have been used to extract phenolic compounds where the sol-
vents used harm the environment, and higher temperatures induce negative effects on the
biological properties of the extracts. Emergent technologies, or as they call them, “green
technologies”, have come out as an alternative to prevent damage that traditional tech-
niques can cause; however, these emergent technologies generate an incomplete liberation
of phenolic compounds. In this way, biotechnological extraction methods have come out
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since the first uses of a microorganism to help degrade the cell wall with the help of en-
zymes causing hydrolysis, where biotransformation and biodegradation of the compounds
occur [5]. Solid-state fermentation (SSF) can be implemented to obtain compounds from
agro-industrial residues previously considered pollutants, such as peels or seeds, requiring
small equipment and producing less wastewater [5,6]. Based on the above, this review
aims to explore the advantages of extracting phenolic compounds using SSF. The factors
that affect SSF are also discussed.
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2. Polyphenol Chemistry
Hydrolysable and Condensed Polyphenols

Tannins are polyphenols that are divided into condensed and hydrolyzable polyphe-
nols. Hydrolyzable polyphenols, accordant to their chemical structures, are divided into
gallotannins and ellagitannins [7].

Condensed tannins are widely present in vegetables, fruits and teas—they are polyphe-
nols conformed from two or more so-called flavan-3-ol catechetical molecules or so-called
leucoanthocyan flavan-3,4-diols. They can also be the result of the union of these two types
of molecules. These kinds of polyphenols do not hydrolyze under the action of diluted
mineral acids. However, when boiled in water, they form insoluble compounds called
plobaphenes [8].

According to Amarowicz et al. [9], gallotannins are natural polymers formed by the
subsequent esterification of gallic acid and hydroxyl groups of glucose in polymeric chains,
where depside bonds link the galloyl moieties. Karas et al. (2017) [10] reported that this
kind of hydrolyzable polyphenols possesses antioxidant, anti-cancer, anti-ulcerative, and
anti-inflammatory biological activities.

Ellagitannins are hexahydroxydiphenic acid (HHDP) esters, generally coupled with
glucose with a molecular weight of 300 to 20,000 Da [11]. These molecules are mostly soluble
in water and accumulate in the vacuoles of the cells, acting as protection for the plant in
stressful situations and helping the plant in its adaptation to environmental changes [12].
Ellagitannins possess several biological activities, such as antioxidant, anti-microbial, or
anti-cancer, that position them as compounds of interest for the health of human beings
against diseases such as diabetes, cancer, and even SARS-CoV-2.
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3. Biological Activities of Phenolic Compounds
3.1. Polyphenols Activity against SARS-CoV-2

Coronaviruses (CoVs) belong to the sub-family of Ortho-coronavirinae, under the
Coronaviridae family and in order of Nidovirales, this sub-family contains alpha-, beta,
gamma-, and delta-CoVs. SARS-CoV-2 is an RNA virus, and the genome sequence of this
type of virus shows only moderate homology to other known coronaviruses. The viral
genome encodes a protease, which plays a crucial role in the production of viral proteins
and in controlling the activity of the replicase complex. Protease enzyme is necessary for
virus infections and replication, making it a perfect target for designing antiviral therapies.
To help stop the spread of viruses that cause diseases such as severe acute respiratory syn-
drome (SARS), Middle East respiratory syndrome (MERS), and human immunodeficiency
virus-acquired immunodeficiency syndrome (HIV-AIDS), protease inhibitors have been de-
veloped [13,14]. For coronaviruses, the proteolytic processing of the replicase polyproteins
by viral proteases must lead to the release of structural and non-structural proteins [15,16].

SARS-CoV-2 affects all people, especially those with weak immune systems and/or
weak immune-based responses [13].

Polyphenols have been isolated from several kinds of plants, such as vegetables, fruits,
nuts, herbs, coffee, and teas, and agro-industrial wastes, such as pomace, seeds, or peels.
In the past few years, these biocompounds have attracted the attention of the scientific
community since their dietary consumption has been associated with the prevention of
some degenerative and chronic diseases that are significant causes of incapacity and a high
mortality rate. The efficiency of their biological activities depends on their bioavailability
and the number of polyphenols ingested [17–19].

According to their antiviral efficiency potential, polyphenols have been studied due to
their activity against SARS-CoV-2 in cell-free polyphenol-protein interactions, cell-based
virus infection, and molecular modeling studies [13,20].

In an in silico study, Singh et al. [21] found that quercetagetin, epigallocatechin gallate,
and myricetin exhibited high binding affinity towards the RdRp of both SARS-CoV and
SARS-CoV-2. Schetting et al. [22] reported a study where quercetin and N-acetylcysteine
substantially nebulized the formula and relieved the respiratory symptoms of SARS-CoV-2 in
a patient with antibiotics and hydroxychloroquine. In an in silico assay, Torres-León et al. [23]
demonstrated that Luteolin 7-O-glucoside, Kaempferol, and Quercetin originally from Chi-
huahua desert plants can act as potential inhibitors against Mpro and RdRp proteins of
COVID-19.

Khalifa et al. [24] describe 19 structurally different hydrolyzable tannins, such as
gerannin, punicalin, and tellimagradin, among others, to find out a potent inhibitor against
COVID-19 that could target the main protease of SARS-CoV-2 using in silico approaches
(drug-likeness and molecular docking scan). Authors reported that hydrolyzable tannins,
specifically pedunculagin, tercatain, and castalin, are efficient and selective anti-COVID-19
therapeutic compounds.

3.2. Antioxidant Activity of Phenolic Compounds

Antioxidant activity can be defined as the inhibition or limitation of the oxidation that
occurs in proteins and lipids by restraining oxidative chain reactions [25].

The anti-oxidative characteristics of phenolic compounds have been widely stud-
ied, mostly in in vitro assays, including the inhibition of lipid oxidation, scavenging free
radicals, and reduction of hydroperoxide formation.

The most common methods employed to demonstrate this particular biological ac-
tivity of phenolic compounds are ferric-reducing antioxidant power (FRAP), ferrous
iron chelation activity, thiobarbituric acid-reactive substances (ABTS or TBARS), 2,2-
diphenil-1-picrylhydrazyl (DPPH) radical scavenging activity and the β-carotene bleaching
(BCB) [26–29].
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3.3. Antimicrobial Activity of Phenolic Compounds

Antimicrobial activity can be defined as all active agents that can inhibit the growth of
microorganisms and can also prevent the formation of microbial colonies [30].

Fei et al. [31] analyzed the anti-microbial effects of olive oil polyphenols extracted
against Cronobacter sakazakii. Authors reported a reduction of intracellular ATP concen-
trations, cell membrane depolarization, and a decrease in bacteria protein in C. sakazakii
against olive oil polyphenols extract, which indicates an effective anti-microbial activity.

3.4. Antiproliferative and Anticarcinogenic Activities of Phenolic Compounds

Antiproliferative activity can be defined as the ability of a compound to stop the
growth of the tumor cells, not allowing the cells to multiply at a fast pace.

Cancer is one of the most common causes of death around the world; some of the
most common types are breast, lung and colon cancer, melanoma, and brain tumors [32].

Sung et al. [33] reported an update on the global cancer burden, estimating cancer
incidence and mortality in 19.3 million cancer deaths, where female breast cancer (11.7%)
has surpassed lung cancer (11.4%) as the most commonly diagnosed cancer, followed by
colorectal (9.4%), liver (8.3%), and stomach (7.7%), worldwide.

In México, the most common type of cancer in females of all ages is breast cancer,
affecting 28.2% of the population, followed by cervix uterine (8.9%), thyroid (8.6%), col-
orectum (6.6%), and corpus uterine (5.2%), among other types of cancer (42.4% between
pancreas, bladder, esophagus, non-melanoma skin, and lip-oral cavity). In males of all
ages, the most common incidence of cancer is prostate, present in 29.9% of the population,
followed by colorectum (8.9%), stomach (5.2%), lung (5.0%), and non-Hodgkin lymphoma
(4.6%), among others (46.5%) [34].

The medical industry has been using chemotherapy and radiation-based therapy as a
treatment for cancer. However, the problem with these kinds of therapy is that they are
really invasive, and they also tend to fill the patient with severe secondary effects that
diminish the patient’s quality of life. Hence, the search for new, less invasive treatments is
a priority.

Proliferation is a significant part of cancer development because this can manifest in
the alteration of the cell cycle related to proteins [35,36]. Cancer cells require a constant
supply of oxygen and nutrients to divide themselves, like any other normal cell. Here is
where polyphenol extracts take effect, causing apoptosis in cancer stem cells due to the
bioactive properties of their phytochemical components [37].

4. Solid-State Fermentation Extraction Effects on Phenolic Contents

Solid-state fermentation is a common technique used for the production of microbial
metabolites, which consists of a three-phase heterogeneous process (solid, gaseous, and
liquid)—offering potential benefits for microbial cultivation for bioprocesses and product
development [38]. SSF is performed on a solid substrate, mostly in agro-industrial wastes
that contain a low moisture level, which is absorbed by the substrate in a solid matrix
offering the transfer of oxygen that influences microbial growth [38,39].

Some of the advantages that SSF offer is a low sterility requirement, less water demand,
high volume production, and the growth of aerobic and anaerobic microorganisms [40].
In addition, this bioprocess provides an alternative at a low cost for the production of
several antibiotics, enzymes, biopesticides, and biosurfactants, among other bioactive
compounds [41].

One of the challenges for SSF is to bring it to an industrial scale. Scaling up this
bioprocess involves a variety of fundamental parameters, like moisture and water activity,
temperature, inoculum, microorganism, heat, mass transfer and pH, among others, that
must be carefully checked.

Mekoue et al. [42] evaluated the interactions between Saccharomyces cerevisiae and grape
to purify polyphenols during alcoholic fermentation, and they found that polyphenols in-
duce significant changes in the fermentation kinetics and metabolism of the microorganism
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where yeast showed a lower capacity to convert sugar in ethanol, and cell mortality appear
in early stages of fermentation.

Some of the effects of SSF in the extraction of polyphenolic compounds are the increase
in the content of bioactive compounds found in food products, the production and extrac-
tion of these compounds from agro-industrial wastes, and the production and extraction of
enzymes. Although polyphenols are present in all kinds of plants, the type and amount of
these bioactive compounds vary depending on the plant, the environmental conditions,
and their genetic factors. The quality of the food can be directly related to the presence
of bioactive compounds that produce positive effects on human health and not only on
nutritional values [43,44].

Buenrostro-Figueroa et al. [45] produced enzymatic extracts using pomegranate ellagi-
tannins as a carbon source and inducers of ellagitannase enzyme in a SSF with Aspergillus
niger GH1 strain. The authors reported that the content of the ellagitannase enzyme
increased its values associated with ellagic acid biosynthesis. In another study, Yepes-
Betancour et al. [46] reported the influence of SSF with A. niger GH1 strain on the release
of phenolic compounds from avocado seed, which is considered an agro-industrial waste.
The results revealed the ability of the fungal to degrade the compounds present in the seed,
improving the antioxidant capacity and providing a broad overview of adding value to the
avocado industry and developing new products.

4.1. Factors That Affect a SSF
4.1.1. Bioreactors

A bioreactor is a container that is implemented to carry out the fermentation biopro-
cess, which must provide ventilation, regulation of temperature, pressure, liquid level,
nourishment to the microorganism, sterilization, maintenance of sterility, and agitation if
necessary. The selection of the bioreactor implemented in a SSF is of vital importance as the
production of metabolites and biomass depends on this [47,48].

The material of which a bioreactor is made should possess some important proper-
ties, like tolerating the sterilization process; the material of the bioreactor should not be
corrosive and should not add toxic substances to the fermentation process. A qualified
bioreactor will improve optimum conditions for the microorganism to grow, like tempera-
ture and maintenance of the moisture, and provide higher productivity of metabolites in
the fermentation [48,49].

In SSF, the bioreactor used is a challenge due to the low levels of moisture that it works
with, and if the process involves filamentous fungi, agitation and high level of moisture,
those variables could affect growth, production formation and damage the fungal hyphae.
The temperature in the bioreactor must be carefully checked with the proper ventilation,
with a good supply of O2 and removal of CO2 playing a crucial role in heat removal;
the conditions mentioned before are essential for the microorganism to start and stop its
metabolism [50–52].

In SSF, packed-bed bioreactors are commonly used, providing a good supply of O2
to the particles when the air flows uniformly to the substrate bed, avoiding the need for
mixing. At a laboratory scale, the use of packed-bed bioreactors goes from sizes up to
30–80 cm in height and 5–50 cm in diameter. Once the SSF demonstrates promising results
at the pilot scale, the challenge is to scale it up to a commercial level where one of the most
difficult aspects to control is the temperature [53–55]. To avoid this, a two-phase model
of packed-bed bioreactors has been developed, which consists of two transfer coefficients
related to the transfer of water and sensible energy across the solids-air interface [54].

4.1.2. Temperature

Temperature is a factor that affects the fermentation rate because microbial production
depends on it [56]. Temperature is one of the most significant factors that can influence the
production of several enzymes and metabolites.
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In SSF, filamentous fungus optimal growth is at 20 to 55 ◦C because they are mesophilic
microorganisms. Nevertheless, the optimal temperature to produce metabolites of interest
can be contrary to the optimal temperature for growth. Lu et al. [57] reported a study where
they evaluated differences in the functional properties of microorganisms and structural
characteristics between simulated natural fermentation and high-temperature fermentation
in the production of soybean meal. The authors found that high-temperature fermentation
inhibits the growth of microorganisms present in simulated natural fermentation and
possesses a lower peptide content compared to simulated natural fermentation.

4.1.3. Inoculum and Microorganism

Inoculum can be defined as the population of cells or microorganisms that is added
into the fermentation medium, and the inoculum needs to be prepared and optimized
before the bioprocess can begin, as Sood et al. [58] established.

The inoculum must be optimized for a better fermentation performance, which can be
conducted based on several parameters like the addition of chemicals, DNA recombination,
or radiation. When it comes to microbiological techniques, inoculation of microbiological
cultures is significant to obtain proper efficiency for anti-microbial sensitivity and diagnosis,
both for fungal and bacterial cultures [58].

There are several criteria for inoculum preparation. These may include the morphology
and physiology of the microorganisms as certain mediums have conditions that affect
these parameters, such as pH, viscosity, chelating agents, or the presence of solids in the
medium [59]. The microbial inoculum must be active and healthy; this means it must
adapt quickly to the environmental conditions in the culture medium, which is designed
for high-speed microbial growth.

The possibility of contamination in inoculum development is always present, where
the repercussion is lower productivity by low microorganism development used in the
inoculum preparation [60].

Microorganisms implemented in a SSF must be carefully reviewed due to their
metabolism and the requirements that it demands. In SSF, several microorganisms have
been used, such as filamentous fungi, bacteria, and yeast.

Yeast

Yeasts are eukaryotic organisms—generally single-celled, and reproduce by the asex-
ual method of budding, which is adapted for specialized environments, normally liquid,
that do not produce toxic secondary metabolites [61]. Yeast grows faster under severe
anaerobic conditions, being capable of incrementing their number in liquid environments
but limiting their development into solid surfaces. These kinds of microorganisms are
used as starter cultures in bread and cheese, as well as in alcoholic fermentation products
like beer or wine. Nevertheless, they also spoil some foods, such as fruits, juices, and
yogurts [62]. The most common yeast species used in SSF are Saccharomyces spp. and
Zygosaccharomyces spp., which are capable of growth in the complete absence of oxygen.
They can continue fermenting at reduced water activities in the presence of high preser-
vative levels and can continue fermentation under several atmospheres of the pressure of
carbon dioxide (CO2) [63,64].

Filamentous Fungi

Filamentous fungi are microorganisms capable of adapting to different environments
and are usually employed in industrial development, used in industry as a source of
alkaloids, steroids, pigments, or alcohols because fungi act as a source of several compounds
in pharmaceutical-related processes [65]. They are also employed for the production of
high-added value enzymes, such as cellulose, lipase, xylanase, and lactase [65]. In SSF,
the best microorganism for this bioprocess is filamentous fungi, as they have the best
capacity to produce industrially important enzymes. The metabolism of this microorganism
means that it is possible that it can permeate the surface of the substrate in order to
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transform the compounds. The most common species employed in a SSF are Aspergillus
and Trichoderma (38).

De León-Medina et al. [66] evaluated Castilla rose as a potential source of polyphenols
using a SSF with Aspergillus niger. A maximum accumulation of polyphenolic compounds
was obtained at 24 h, and this study allowed the characterization of 25 different polypheno-
lic compounds.

Meini et al. [67] compared Aspergillus niger and Aspergillus oryzae by implementing
a SSF on grape pomace as support and added substrate with tannic acid, with aimed to
evaluate the enzyme activity in the recovery of polyphenols. The authors reported the
production of cellulose, pectinase, and tannase enzymes. Likewise, increasing the initial
moisture content increases the extraction of the total phenolic content; however, the effect
of fungi fermentation on polyphenols extraction is unfavorable at low moisture levels.

Bacteria

Bacteria are the most abundant living organism on earth as there are a great variety of
species and sub-species. Under optimal conditions of nutrient availability, temperature and
pH, their replication is fast. Some bacteria have a symbiotic effect on the human body and
grant their host many health benefits, such as intestinal microbiota. However, some are
pathogenic and can be transmitted in different ways, like the ingestion of contaminated wa-
ter or food, through direct contact with an infected host, or by the action of an intermediate
host [68]. In SSF, the most common bacteria used in this process are the Gram (+) species
members of the family Bacillus, which grow under aerobic conditions, secretes catalase and
forms oblong endospores. Meanwhile, Clostridium, an anaerobic bacteria, does not secrete
catalase but forms bottle-shaped endospores and produces bio-butanol [69].

For a SSF, the level of water must be low, and even if bacteria can be implemented
in this bioprocess, the level of water that they need to carry out their metabolism is high
compared to other microorganisms like filamentous fungi.

Ong et al. [70] used bacteria Gram (+) Bacillus subtilis and filamentous fungus As-
pergillus oryzae in a SSF of okara and brewer’s spent grains, where they compared these
microorganisms in a mixed culture harnessing the synergistic effect through cooperative
metabolism against pure cultures, with the aim of determining the total phenolic content.
They reported a high increase in total phenolic content, providing that a mixed culture was
effective and the cooperative metabolisms of both microorganisms were present.

4.1.4. Moisture and Water Activity

Water plays different roles in a matrix, acting as a reactant or as a solvent, facilitating
the reaction in this way. Moisture content and water activity are parameters used to control
SSF [71]. Water absorption capacity (WAC) determines the interaction of the substrate’s
macromolecules with the water allowing the formation of the gel, which is identified as
how the water molecules bound with the substrate by the accessibility of their hydrophilic
groups. To control, monitor, and optimize a SSF, one of the main prerequisites is to
understand the water dynamics. It can be divided into three categories: overall water
content, change of the whole substrate matrix by evaporation and respiration, a different
state such as free or bound water, and internal water distribution transfer over the substrate
matrix due to gradients [72,73].

These three dynamics affect the physical properties of the substrate, enzymatic activi-
ties, microbial physiology, and the SSF performance in general [72].

In SSF, the substrates that possess a high WAC are the most qualified to be imple-
mented in this bioprocess because it helps the microorganism grow and develop [66]. Water
activity is a key parameter for regulating microbial growth [74]. The inadequate water
content will affect its biological state or distinct microbial growth, devaluating the process
and destroying the microbial culture. Fungi and yeast are the microorganisms that are
more appropriate for a SSF performance [75].
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4.1.5. pH

Glab et al. [76] define pH as the parameter that is most often measured in analytical
chemistry due to its effects on the position of the chemical equilibrium of the chemical
reactions in aqueous solutions and other mediums. This parameter also impacts reaction
kinetics, acting as a catalyst and changing the rate.

The most important regulating parameter in glucose fermentation is Ph [77].
Temudo et al. [78] reported the product spectrum of glucose fermentation as a function of
the Ph in mixed culture fermentation. The authors showed that a reactor fed with glucose
running under substrate limitation would shift its product distribution from butyrate,
acetate, and molecular hydrogen at low pH (4–6.5) into acetate, ethanol, and formate at
high pH (6.5–8.5) [79].

4.1.6. Substrate

A solid substrate is used as a matrix in SSF, which can be natural or synthetic. When it
is a natural matrix, agro-industrial wastes are the most common organic material used as a
carbon source for a microorganism. When it is an inert material, it is impregnated with a
substance rich in nutrients for the microorganism to grow [80].

In SSF, homogenous and porous substrates induce enzyme production, while the
heterogeneous nature of the substrate generates issues during enzyme production. The
microorganism employed in SSF must also be considered in order of the substrate because
when a filamentous fungus is used, the mycelium penetrates the substrate to convert it;
meanwhile, yeast and bacteria grow on the surface of the substrate [38].

Buenrostro-Figueroa et al. reported the use of several inert supports, such as polyurethane
foam, perlite, and nylon fiber, in the production of ellagic acid with partially purified polyphe-
nols of pomegranate in SSF. Authors reported that the best support was polyurethane foam
with the highest ellagic acid production at 24 h (231.22 mg g−1), which promotes a better
transport of nutrients and the best solubility, improving the availability of nutrients for the
microorganism due to its water absorption index.

Table 1 shows several types of natural agro-industrial waste substrates used in SSF,
the fermentation conditions, and the polyphenolic compounds recovered for each one.

Table 1. Types of natural agro-industrial waste substrates used in FES.

Substrate Microorganism Reactors Conditions of
Fermentation

Polyphenolic
Compounds Recovered References

Pomegranate peel Aspergillus niger PSH Tray reactor (40 × 30
× 6 cm)

2 × 107 spores/g at
30 ◦C for 18 h

Pullicalagin, punicalin,
ellagic acid [7]

Mango Ataulfo seed Aspergillus niger GH1 Petri dishes 2 × 107 spores/g at
30 ◦C for

Gallic acid, ellagic acid [5]

Grape pomace and
wheat bran

Aspergillus niger
3T5B8

Erlenmeyer flasks
(125 mL)

107 spores at 37 ◦C
kinetic until 96 h

Ellagitannins,
anthocyanins,

proanthocyanidins
[81]

Rambutan peel Aspergillus niger GH1
Polypropylene flask

(five cubic
centimeters)

2 × 107 spores/g at
25 ◦C for 24 h

Ellagic acid [82]

Castilla Rose Aspergillus niger GH1 Erlenmeyer flasks
(250 mL)

2 × 106 esp/g at
25 ◦C for 24 h

Ellagic acid, Catechin,
Epicatequin, Kaempferol

3,7-O-diglucoside,
[66]

4.1.7. Generalities of Natural Agro-Industrial Wastes Substrates Used in SSF
Castilla Rose

Castilla rose has been used as traditional folk medicine in Mexico for stomach diseases
and as an ingredient in food preparations, which makes it a potential source of phytochem-
icals. It is native to the semi-desert area in the northeast of Mexico, in the states of Nuevo
Leon, Coahuila, and Chihuahua [83]. Castilla rose is rich in hydrolyzable and condensed
polyphenols, which classifies into four groups: gallotannins, ellagitannins, complex tannins,
and condensed tannins that conferee its biological and therapeutic properties.
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Ueno et al. [84] reported the use of water-soluble extracts from Castilla rose in mice
subjected to chronic stress in order to evaluate the anti-stress effect of the plant, reporting
that it did not affect normal behavior in mice but exerted anti-stress effects under conditions
of chronic stress.

Mango

This fruit is an important tropical crop because it contains a high nutritional value; it
is a natural source of vitamins, essential minerals, dietary fiber, and proteins; it provides
energy and possesses a unique flavor [85]. Mexico is the main producer around the globe,
followed by Thailand, India, Indonesia, and China. The main phenolic compounds present
in mangoes include gallic acid, ellagic acid, catechin, β-carotene, and kaempferol [86].

Mango pulp is the only consumed part of the fruit. The seed and peel are considered
agro-industrial wastes containing phenolic compounds and other nutritional value com-
pounds like starch. Chen et al. [87] evaluated the effect on the digestibility and quality
of bread by adding mango peel flour, finding that it affected the quality of bread and the
digestibility of starch.

Grapes

Vitis vinifera L. is the most common species of cultivated grape in the market. Grapes
grow in clusters of elliptical berries that contain edible or nonedible seeds and can also be
seedless. They are usually consumed fresh or in processed products such as wine, juice,
jelly, or grape-seed oil, among others [88]. This fruit is the most cultivated crop in the world,
and approximately 75% of the total production is used in the wine industry, where 20-30%
of grape ends up as pomace, which contains residual pulp, seed, stem, and small pieces of
stalks from the wine fermentation process [89].

Grape pomace is rich in polyphenols. The major compounds present in the seed of
grapes are gallic acid, catechin and epicatechin. The major phenolic compounds found in
the grape peel are procyanidins, epicatechin, epigallocatechin, catechin, and gallic acid.
These biocompounds are effective free radical scavengers and have the potential to prevent
cardiovascular diseases and diabetes and possess carcinogenic activity [89].

Pomegranate

Pomegranate fruit is native to Iran, Egypt, Spain, and China and is known as the Apple
of Carthage or the Chinese apple. It is a sweet fruit with an acidic juice and is known for its
chemo-preventive medicinal properties. It is widely used in food products such as juices,
and it is known as one of nature’s most powerful antioxidants as it has three times the
antioxidant activity than that of green tea or red wine [90]. Pomegranate juice strengthens
the liver, heart and kidney functions, increasing the body’s resistance to infections and is
also used in syrups and jellies [90].

After the extraction of pomegranate juice from the fruit and the separation of the
seeds, the two main agro-industrial wastes produced are the peel and the seed, which are
excellent sources of important bioactive compounds such as tannins, flavonoids, sterols,
vitamins, minerals, and dietary fibers. These by-products have been used in the production
of industrial enzymes or single-cell proteins [91]. Punicalin, punicalagin, gallic acid, and
ellagic acid; also, caffeic acid, ferulic acid catechin, quercetin, and epicatechin are the phe-
nolic compounds present in pomegranate. These bio compounds are capable of inhibiting
atherosclerosis progression and reducing macrophage oxidative stress [92]. In Figure 2, the
chemical composition of pomegranate is shown, where nutrients such as carbohydrates,
vitamins, fats, proteins, and minerals are essential nutrients of this fruit [93,94].
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Rambutan

Rambutan (Nephelium lappaceum) belongs to the Sapindaceae family, and it is native to
Southeast Asia, and harvested especially in Malaysia, Thailand, Cambodia, and Indonesia.
Rambutan is an exotic tropical fruit where the only edible part is the pulp, and its most
particular characteristic is its peel—which is covered whit soft thorns that vary between
colors yellow, orange, red, green and brown [95,96].

Although this fruit has been cultivated for a long time in Asia, it has a short history
in Latin America, being introduced in Mexico between the 1950 and 1960, where the
largest producer is the state of Chiapas, specifically in the region of Soconusco, other
productor states are Tabasco and Oaxaca. In the year 2021, Chiapas reported production of
10,614 tons (96.4%), followed by Oaxaca with 194 tons (1.8%) and Tabasco with 188 t (1.7%),
representing 99.9% of the national production [97].

The ethanolic extract of rambutan peel turns out to be secure to be implemented in
skin tone clarifiers and antiaging cosmetic products due to the protection in the human skin
fibroblasts from oxidative damage and the capacity to suppress the production of melanin
in B16F10 melanoma cells inhibiting the tyrosinase enzyme and TRP-2 [98,99]. The main
compounds isolated and identified from rambutan are shown in Table 2.

Table 2. Major phenolic compounds present in Rambutan.

Group Structure Compounds Molecular Weight (g/mol) References
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5. Synthesis of Phenolic Compounds Recovered by SSF Assistant Extraction

In several studies across time, tannase has been reported as responsible for ellagitannin
and gallotannin hydrolysis, producing ellagic acid and gallic acid, but the advanced enzy-
matic degradation of ellagitannin studies have reported that this enzyme is not responsible
for the EA accumulation [107–110].

Aspergillus niger GH1 has been reported as a tannin-degrading fungal strain with a
high capacity to degrade high molecular tannins into small molecules such as ellagic acid
and gallic acid, using and producing tannase and ellagitannase enzymes [109,111].

Ellagitannin acyl hydrolase (EAH), known as ellagitannase, is an enzyme responsible
for EA biosynthesis through ellagitannin’s biodegradation [45]. Several parameters such
as temperature, pH, aeration rate, nitrogen and carbon source, medium composition and
packing density have been explored for its production by SSF [45,109,111,112].

Ascacio-Valdés et al. [113] reported the fungal biodegradation pathway of pomegranate
ellagitannins during SSF and identified the role of the enzyme produced by A. niger GH1
during the ellagitannnin degradation process to identify compounds produced in the recov-
ery of EA. The authors reported that this fungal strain produces an ellagitannase enzyme
induced by ellagitannins in the substrate during SSF.

6. Concluding Remarks and Future Perspectives

SSF as a model for the extraction of biocompounds, such as polyphenols, and how it
affects their extraction performance, and the yield obtained is revolutionizing the way of
doing science so that it can be applied to beneficial products for humans.

The factors of moisture, water activity, temperature, pH, inoculum, type of microorgan-
ism, as well as the substrate and type of bioreactor, are parameters that must be carefully
reviewed as the success in extracting the compounds of interest depends on these variables.

SSF has the advantage of harnessing agro-industrial residues such as peels or seeds,
which possess polyphenols, apart from the pulp of the fruits. With the help of enzymes
such as ellagitannase present in the metabolism of microorganisms, SSF can break the
chains of chemical structures and biotransform them in other compounds, recovering a
greater quantity of biological compounds.

This new biotechnology is on the rise in the industry as well as in the research area
since it does not negatively affect the recovered polyphenols but rather allows for better
extraction yields.
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