# Proposal of an Algorithm for Choice of a Development System for Operational and Environmental Safety in Mining

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Formalization of the Task for Monitoring the Stress–Strain State of Rock Mass

- -
- The degree of impact on the mass;
- -
- The exposure time and parameters of the mined stopes;
- -
- The applied development system for an integrated assessment of the rock mass state.

^{3}in experimental modeling), and they interact with each other through the transfer of stresses and strains in the mass.

## 3. Construction of a Simulation Model

- j—the number of explosions;
- y
^{2}—the average volume of fractures produced by a single explosion.

## 4. Statement of the Problem and Initial Data

^{3}, Young’s modulus varies from 12 to 7 × 10

^{−4}MPa, and the all-around compression modulus varies from 10 to 6 × 10

^{−4}MPa. The strength characteristics of the ores and host rocks determine stability in terms of the ultimate stress parameter. However, the structural factor plays a decisive role in assessing the mass stability and depends on the structural attenuation coefficient. The calculated data of the strength of the rocks in the mass, taking into account the structural attenuation coefficient, are given in Table 2.

## 5. The Mathematical Model Structure and Algorithm

- -
- Set as the rock weight in the volume of the pressure arch, a weak bind and a rock column to the surface;
- -
- Found through the host rocks’ displacement under conditions of rock and artificial mass deformation.

- -
- The staging of excavation and its spatial position;
- -
- The size of the undermined rock mass;
- -
- The lag in the formation of the fill mass in time and space from the work front;
- -
- The smooth subsidence of the underworked rocks.

_{p}) from compressive loads can be determined using Equation (10):

- h—the pillar height, m;
- γ = ρg—the unit weight of the overlying rocks, N/m
^{3}; - ρ—the rock density, kg/m
^{3}; - g—the acceleration of gravity, m/sec
^{2}; - H—the depth of the excavation, m;
- S
_{r}—the roof square supported by the pillar, m^{2}; - S
_{p}—the cross-section square of the ore pillar, m^{2}; - E
_{p}—the proportional modulus for the ore, MPa; - Μ
_{p}—the coefficient affecting the longitudinal deformation, considering the artificial mass characteristics.

- ɳ—the horizontal stress coefficient;
- σ
_{t}—the ultimate tensile strength of the roof rocks, Pa.

- l—the minimum size of the stope, m;
- φ—the angle of the internal friction of the roof rocks, deg.;
- f = σ
_{c}/100—the rock hardness on a scale of Professor M. M. Protodiakonov; - σ
_{c}—the compressive strength.

- ${h}_{t}$—the size of the zone of the tensile stresses (caving) in the absence of pressure on the contour, m;
- ${\sigma}_{b}$—the backfill pressure on the roof contour, MPa;
- $\gamma H$—stress in the tight mass at the roof level, MPa.

- ${h}_{m}$ and ${l}_{m}$—the height and width, respectively, of the mined-out void, m.

- $e$—the base of the natural logarithm;
- $L$—the under-mining span, m;
- $H$—the depth of the work, m;
- ${l}_{b}$—the width of the mined band, m;
- $n$—the number of simultaneously mined belts.

- $P$ is the load on the artificial pillar, Pa;
- ${S}_{p}$ is the section area of the pillar, m
^{2}.

## 6. Conclusions

- -
- The selection of the optimal development system with backfill when extracting minerals;
- -
- The determination of the rational composition of the fill material.

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Mikolas, M.; Mikusinec, J.; Abrahamovsky, J.; Dibdiakova, J.; Tyulyaeva, Y.; Srek, J. Activities of a Mine Surveyor and a Geologist at Design Bases in a Limestone Quarry. IOP Conf. Ser. Earth Environ. Sci.
**2021**, 906, 012073. [Google Scholar] [CrossRef] - Khayrutdinov, A.M.; Kongar-Syuryun, C.B.; Kowalik, T.; Tyulyaeva, Y.S. Stress-strain behavior control in rock mass using different-strength backfill. Min. Inf. Anal. Bull.
**2020**, 10, 42–55. [Google Scholar] [CrossRef] - Marcak, H.; Mutke, G. Seismic activation of tectonic stresses by mining. J. Seismol.
**2013**, 17, 1139–1148. [Google Scholar] [CrossRef] - Gao, Y.; Hao, M.; Wang, Y.; Dang, L.; Guo, Y. Multi-Scale Coal Fire Detection Based on an Improved Active Contour Model from Landsat-8 Satellite and UAV Images. ISPRS Int. J. Geo-Inf.
**2021**, 10, 449. [Google Scholar] [CrossRef] - Ignjatovi’c, L.D.; Krsti’c, V.; Radonjanin, V.; Jovanovi´c, V.; Malešev, M.; Ignjatovi´c, D.; Ðurdevac, V. Application of Cement Paste in Mining Works, Environmental Protection, and the Sustainable Development Goals in the Mining Industry. Sustainability
**2022**, 14, 7902. [Google Scholar] [CrossRef] - Tcvetkov, P.; Cherepovitsyn, A.; Fedoseev, S. The changing role of CO
_{2}in the transition to a circular economy: Review of carbon sequestration projects. Sustainability**2019**, 11, 5834. [Google Scholar] [CrossRef] - Grayson, R.L. Addressing the Dual Challenges of Meeting Demand for Minerals and Sustainable Development. Minerals
**2011**, 1, 1–2. [Google Scholar] [CrossRef] - Han, L.; Liu, H.; Zhang, W.; Ding, X.; Chen, Z.; Feng, L.; Wang, Z. Seismic behaviors of utility tunnel-soil system: With and without joint connections. Undergr. Space
**2022**, 7, 798–811. [Google Scholar] [CrossRef] - Zhang, W.; Han, L.; Feng, L.; Ding, X.; Wang, L.; Chen, Z.; Liu, H.; Aljarmouzi, A.; Sun, W. Study on seismic behaviors of a double box utility tunnel with joint connections using shaking table model tests. Soil Dyn. Earthq. Eng.
**2020**, 136, 106118. [Google Scholar] [CrossRef] - Dobrzycki, P.; Ivannikov, A.L.; Rybak, J.; Shkodkina, V.O.; Tyulyaeva, Y.S. The impact of Rapid Impulse Compaction (RIC) of large non-cohesive material deposits on the surrounding area. IOP Conf. Ser. Earth Environ. Sci.
**2019**, 362, 012132. [Google Scholar] [CrossRef] - Li, X.; Huo, D.; Goldberg, D.W.; Chu, T.; Yin, Z.; Hammond, T. Embracing Crowdsensing: An Enhanced Mobile Sensing Solution for Road Anomaly Detection. ISPRS Int. J. Geo-Inf.
**2019**, 8, 412. [Google Scholar] [CrossRef] - Herbut, A.; Khairutdinov, M.M.; Kongar-Syuryun, C.; Rybak, J. The surface wave attenuation as the effect of vibratory compaction of building embankments. IOP Conf. Ser. Earth Environ. Sci.
**2019**, 362, 012131. [Google Scholar] [CrossRef] - Łupieżowiec, M.; Rybak, J.; Różański, Z.; Dobrzycki, P.; Jędrzejczyk, W. Design and Construction of Foundations for Industrial Facilities in the Areas of Former Post-Mining Waste Dumps. Energies
**2022**, 15, 5766. [Google Scholar] [CrossRef] - Golik, V.I.; Razorenov, Y.I.; Lukyanov, V.G. Environmental and economic aspects of resource saving in mining. Bull. Tomsk. Polytech. Univ. Geo Assets Eng.
**2017**, 328, 18–27. (In Russian) [Google Scholar] - Huang, J.; Tian, C.; Xing, L.; Bian, Z.; Miao, X. Green and Sustainable Mining: Underground Coal Mine Fully Mechanized Solid Dense Stowing-Mining Method. Sustainability
**2017**, 9, 1418. [Google Scholar] [CrossRef] - Bučinskas, A.; Kriipsalu, M.; Denafas, G. Proposal for Feasibility Assessment Model for Landfill Mining and Its Implementation for Energy Generation Scenarios. Sustainability
**2018**, 10, 2882. [Google Scholar] [CrossRef] - Sekhohola-Dlamini, L.M.; Keshinro, O.M.; Masudi, W.L.; Cowan, A.K. Elaboration of a Phytoremediation Strategy for Successful and Sustainable Rehabilitation of Disturbed and Degraded Land. Minerals
**2022**, 12, 111. [Google Scholar] [CrossRef] - Adigamov, A.E.; Yudenkov, A.V. Stress-strain behavior model of disturbed rock mass with regard to anisotropy and discontinuities. Min. Inf. Anal. Bull.
**2021**, 8, 93–103. (In Russian) [Google Scholar] [CrossRef] - Golik, V.I.; Burdzieva, O.G. Increase of Work Safety by Enlargement of Field of Application of Hardening Mixtures from Processing Waste. Bezop. Tr. Promyshlennosti
**2016**, 8, 45–50. (In Russian) [Google Scholar] - Han, G.; Zhang, J.; Sun, H.; Shen, D.; Wu, Z.; An, X.; Meye, S.M.; Huang, Y. Application of Iron Ore Tailings and Phosphogypsum to Create Artificial Rockfills Used in Rock-Filled Concrete. Buildings
**2022**, 12, 555. [Google Scholar] [CrossRef] - Zglinicki, K.; Małek, R.; Szamałek, K.; Wołkowicz, S. Mining Waste as a Potential Additional Source of HREE and U for the European Green Deal: A Case Study of Bangka Island (Indonesia). Minerals
**2022**, 12, 44. [Google Scholar] [CrossRef] - Tcvetkov, P. Engagement of resource-based economies in the fight against rising carbon emissions. Energy Rep.
**2022**, 8, 874–883. [Google Scholar] [CrossRef] - Khayrutdinov, M.M.; Kongar-Syuryun, C.B.; Khayrutdinov, A.M.; Tyulyaeva, Y.S. Improving safety when extracting water-soluble ores by optimizing the parameters of the backfill mass. Bezop. Tr. Promyshlennosti
**2021**, 2021, 53–59. [Google Scholar] [CrossRef] - deCarvalho, F.A.; Nobre, J.N.P.; Cambraia, R.P.; Silva, A.C.; Fabris, J.D.; dosReis, A.B.; Prat, B.V. Quartz Mining Waste for Concrete Production: Environment and Public Health. Sustainability
**2022**, 14, 389. [Google Scholar] [CrossRef] - Anan’ev, P.P.; Vasilev, S.V.; Meshcheryakov, R.V.; Plotnikova, A.V.; Belyakov, K.O.; Kuznetsov, E.B. Prospects of development of space mining and processing industry. Innovations
**2016**, 4, 4–8. (In Russian) [Google Scholar] - Gugunskiy, D.; Chernykh, I.; Khairutdinov, A. Legal Models for Activities on the Exploration and Utilization of Space Resources: Towards the “Space-2030” Agenda. Adv. Intell. Syst. Comput.
**2020**, 1100, 657–664. [Google Scholar] [CrossRef] - Khayrutdinov, A.M. Current Issues of Mining Activities on Celestial Bodies: International Law Aspects. In Advances in the Astronautical Sciences, Proceedings of the First IAA/AAS SciTech Forum on Space Flight Mechanics and Space Structures and Materials, Moscow, Russia, 13–15 November 2018; American Astronautical Society: Springfield, VA, USA, 2020; Volume 170, pp. 895–902. [Google Scholar]
- Šajn, R.; Ristović, I.; Čeplak, B. Mining and Metallurgical Waste as Potential Secondary Sources of Metals—A Case Study for the West Balkan Region. Minerals
**2022**, 12, 547. [Google Scholar] [CrossRef] - Zhang, Z.; Liu, H.; Su, H.; Zeng, Q. Green Mining Takes Place at the Power Plant. Minerals
**2022**, 12, 839. [Google Scholar] [CrossRef] - Blinova, E.; Ponomarenko, T.; Knysh, V. Analyzing the Concept of Corporate Sustainability in the Context of Sustainable Business Development in the Mining Sector with Elements of Circular Economy. Sustainability
**2022**, 14, 8163. [Google Scholar] [CrossRef] - Khairutdinov, A.; Ubysz, A.; Adigamov, A. The concept of geotechnology with a backfill is the path of integrated development of the subsoil. IOP Conf. Ser. Earth Environ. Sci.
**2021**, 684, 012007. [Google Scholar] [CrossRef] - Wu, C.; Zhang, Y.; Zhang, J.; Chen, Y.; Duan, C.; Qi, J.; Cheng, Z.; Pan, Z. Comprehensive Evaluation of the Eco-Geological Environment in the Concentrated Mining Area of Mineral Resources. Sustainability
**2022**, 14, 6808. [Google Scholar] [CrossRef] - Tcvetkov, P.; Cherepovitsyn, A.; Fedoseev, S. Public perception of carbon capture and storage: A state-of-the-art overview. Heliyon
**2019**, 5, e02845. [Google Scholar] [CrossRef] [PubMed] - Khayrutdinov, A.; Paleev, I.; Artemov, S. Replacement of traditional components of the backfill mixture with man-made waste. IOP Conf. Ser. Earth Environ. Sci.
**2021**, 942, 012005. [Google Scholar] [CrossRef] - Prokopowicz, P.; Pires, P.; Michałek, A.; Rybak, A.; Khairutdinov, A.M. Time necessary for microwave drying of mineral soils. IOP Conf. Ser. J. Phys.
**2020**, 1614, 012021. [Google Scholar] [CrossRef] - Rakhutin, M.G.; Boyko, P.F. Ways to improve assessment methods of the main characteristics of grinding balls. Russ. Coal J.
**2017**, 12, 49–52. [Google Scholar] [CrossRef] - Boyko, P.F.; Titievsky, E.M.; Timiryazev, V.A.; Mnatsakanyan, V.U.; Khostikoev, M.Z. Provision of operational life-time period of crushers liners by applying new technologies of their manufacturing and wear-out diagnosing. Equip. Technol. Oil Gas Complex
**2019**, 5, 42–47. [Google Scholar] [CrossRef] - Adach-Pawelus, K. Back-Calculation Method for Estimation of Geomechanical Parameters in Numerical Modeling Based on In-Situ Measurements and Statistical Methods. Energies
**2022**, 15, 4729. [Google Scholar] [CrossRef] - Carmo, F.F.; Lanchotti, A.O.; Kamino, L.H.Y. Mining Waste Challenges: Environmental Risks of Gigatons of Mud, Dust and Sediment in Megadiverse Regions in Brazil. Sustainability
**2020**, 12, 8466. [Google Scholar] [CrossRef] - Litvinenko, V. Advancement of geomechanics and geodynamics at the mineral ore mining and underground space development. Geomech. Geodyn. Rock Masses
**2018**, 1, 3–16. [Google Scholar] - Du, X.; Zhou, K.; Cui, Y.; Wang, J.; Zhou, S. Mapping Mineral Prospectivity Using a Hybrid Genetic Algorithm–Support Vector Machine (GA–SVM) Model. ISPRS Int. J. Geo-Inf.
**2021**, 10, 766. [Google Scholar] [CrossRef] - Rybak, J.; Khayrutdinov, M.M.; Kuziev, D.A.; Kongar-Syuryun, C.B.; Babyr, N.V. Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing. J. Min. Inst.
**2022**, 253, 61–70. [Google Scholar] [CrossRef] - Komolov, V.; Belikov, A.; Demenkov, P. Research on Load-Bearing Constructions Behavior During Pit Excavation Under «Slurry Wall» Protection. Technol. Adv. Constr.
**2022**, 180, 313–323. [Google Scholar] [CrossRef] - Wu, P.; Chen, L.; Li, M.; Wang, L.; Wang, X.; Zhang, W. Surrounding Rock Stability Control Technology of Roadway in Large Inclination Seam with Weak Structural Plane in Roof. Minerals
**2021**, 11, 881. [Google Scholar] [CrossRef] - Czajka, K.; Kawalec, W.; Król, R.; Sówka, I. Modelling and Calculation of Raw Material Industry. Energies
**2022**, 15, 5035. [Google Scholar] [CrossRef] - Liu, S.; Bai, J.; Wang, G.; Wang, X.; Wu, B. A Method of Backfill Mining Crossing the Interchange Bridge and Application of a Ground Subsidence Prediction Model. Minerals
**2021**, 11, 945. [Google Scholar] [CrossRef] - Pal, A.; Rošer, J.; Vulić, M. Surface Subsidence Prognosis above an Underground Longwall Excavation and Based on 3D Point Cloud Analysis. Minerals
**2020**, 10, 82. [Google Scholar] [CrossRef] - Dumakor-Dupey, N.K.; Arya, S.; Jha, A. Advances in Blast-Induced Impact Prediction—A Review of Machine Learning Applications. Minerals
**2021**, 11, 601. [Google Scholar] [CrossRef] - Pang, D.; Zhou, Y.; Niu, X.; He, K.; Li, C.; Chen, Z. Research on the Mechanical Properties of Flexible Material Backfilling Wall in Gob-Side Entry Retaining. Minerals
**2022**, 12, 1020. [Google Scholar] [CrossRef] - Chakrawarthi, V.; Jesuarulraj, L.R.; Avudaiappan, S.; Rajendren, D.; Amran, M.; Guindos, P.; Roy, K.; Fediuk, R.; Vatin, N.I. Effect of Design Parameters on the Flexural Strength of Reinforced Concrete Sandwich Beams. Crystals
**2022**, 12, 1021. [Google Scholar] [CrossRef] - Chen, F.; Liu, J.; Zhang, X.; Wang, J.; Jiao, H.; Yu, J. Review on the Art of Roof Contacting in Cemented Waste Backfill Technology in a Metal Mine. Minerals
**2022**, 12, 721. [Google Scholar] [CrossRef] - Jelínek, P.; Marschalko, M.; Lamich, D.; Yilmaz, I.; Zastěrová, P.; Bednárik, M.; Heviánková, S.; Kyncl, M.; Drusa, M.; Růčková, H. Monitoring and analysis of burning in coal tailing dumps: A case study from the Czech Republic. Environ. Earth Sci.
**2015**, 73, 6601–6612. [Google Scholar] [CrossRef] - Mustafin, M.; Bykasov, D. Adjustment of Planned Surveying and Geodetic Networks Using Second-Order Nonlinear Programming Methods. Computation
**2021**, 9, 131. [Google Scholar] [CrossRef] - Ding, X.; Luo, Z.; Ou, Q. Mechanical property and deformation behavior of geogrid reinforced calcareous sand. Geotext. Geomembr.
**2022**, 50, 618–631. [Google Scholar] [CrossRef]

Deposit | Ore Body | Dip Angle (deg) | Length (m) | Boundary Value 0.5% Ni True Thickness (m) | Boundary Value 0.6% Ni True Thickness (m) | |||||
---|---|---|---|---|---|---|---|---|---|---|

Strike | Dip | from | to | Average | from | to | Average | |||

Zhdanovskoye deposit | central | 47 | 1420 | 600 | 2.4 | 75.9 | 29.7 | 2.5 | 70.5 | 21.9 |

south-eastern | 53 | 1940 | 620 | 2.1 | 58.5 | 14.2 | 2.1 | 48.5 | 11.6 | |

eastern | 32 | 360 | 470 | 3.6 | 33.1 | 12.5 | 3.5 | 33.1 | 12.3 | |

south-west 1 | 37 | 660 | 950 | 2.7 | 55.1 | 22.5 | 2.1 | 42.1 | 11.3 | |

south-west 2 | 39 | 1060 | 390 | 1.4 | 39.1 | 11.6 | 1.4 | 36.9 | 8.2 | |

west | 49 | 440 | 750 | 5.2 | 33.3 | 16.2 | 2.4 | 33.3 | 11.4 | |

Tundrovoe deposit | main | 48 | 900 | 780 | 2.9 | 34.6 | 12.1 | 2.7 | 34.6 | 8.9 |

Rock | Strength of Samples (MPa) | Strength in Mass (MPa) | |
---|---|---|---|

in Zone of Unstable Rock | in Zone of Stable Rock | ||

Siltstones | 100–120 | 20 | 60 |

Sandstone | 120–140 | 40 | 80 |

Gabbro | 140–200 | 60 | 90 |

Diabases | 180–240 | 60 | 120 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Khayrutdinov, M.M.; Golik, V.I.; Aleksakhin, A.V.; Trushina, E.V.; Lazareva, N.V.; Aleksakhina, Y.V.
Proposal of an Algorithm for Choice of a Development System for Operational and Environmental Safety in Mining. *Resources* **2022**, *11*, 88.
https://doi.org/10.3390/resources11100088

**AMA Style**

Khayrutdinov MM, Golik VI, Aleksakhin AV, Trushina EV, Lazareva NV, Aleksakhina YV.
Proposal of an Algorithm for Choice of a Development System for Operational and Environmental Safety in Mining. *Resources*. 2022; 11(10):88.
https://doi.org/10.3390/resources11100088

**Chicago/Turabian Style**

Khayrutdinov, Marat M., Vladimir I. Golik, Alexander V. Aleksakhin, Ekaterina V. Trushina, Natalia V. Lazareva, and Yulia V. Aleksakhina.
2022. "Proposal of an Algorithm for Choice of a Development System for Operational and Environmental Safety in Mining" *Resources* 11, no. 10: 88.
https://doi.org/10.3390/resources11100088