
resources

Article

Critical Tectonic Limits for Geothermal Aquifer Use:
Case Study from the East Slovakian Basin Rim
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Abstract: The Pannonian basin is a major geothermal heat system in Central Europe. Its peripheral
basin, the East Slovakian basin, is an example of a geothermal structure with a linear, directed heat
flow ranging from 90 to 100 mW/m2 from west to east. However, the use of the geothermal source is
limited by several critical tectono-geologic factors: (a) Tectonics, and the associated disintegration of
the aquifer block by multiple deformations during the pre-Paleogene, mainly Miocene, period. The
main discontinuities of NW-SE and N-S direction negatively affect the permeability of the aquifer
environment. For utilization, minor NE-SW dilatation open fractures are important, which have
been developed by sinistral transtension on N–S faults and accelerated normal movements to the
southeast. (b) Hydrogeologically, the geothermal structure is accommodated by three water types,
namely, Na-HCO3 with 10.9 g·L−1 mineralization (in the north), the Ca-Mg-HCO3 with 0.5–4.5 g·L−1

mineralization (in the west), and Na-Cl water type containing 26.8–33.4 g·L−1 mineralization (in the
southwest). The chemical composition of the water is influenced by the Middle Triassic dolomite
aquifer, as well as by infiltration of saline solutions and meteoric waters along with open frac-
tures/faults. (c) Geothermally anomalous heat flow of 123–129 ◦C with 170 L/s total flow near the
Slanské vchy volcanic chain seems to be the perspective for heat production.

Keywords: geotherm; heat flow; permeability; structural modeling; seismic; resources; renewable;
utilization; Pannonian basin; East Slovakian basin

1. Introduction

Geothermal energy represents a very attractive, economic, and ecologic energy source.
The utilization of geothermal energy for commercial purposes, which is mainly a result
of the increase of world fuel prices, as well as new technologies, proved to be an essential
action for the realization of programs benefiting from this heat source. The necessity of
the use of renewable energy resources (including geothermal energy) in Slovakia stems
from both international trends, above all the countries of European communities, and
from the increase of fuel prices on the world markets. The increased interest in renewable
resources stems from the high priority in the human environment. All these factors caused
that the topic of renewable energy is an important agenda not only for scientists, but also
for politicians and business activities. As the socio-political pressure increases towards
the transition to low global carbon and sustainable future, the role of geothermal energy
usage worldwide intensifies [1]. In 2020, there are records quantified records of direct
geothermal utilization worldwide in 88 countries [2]. This is an increase in direct utilization
from 82 countries reported in 2015 [3], 78 countries reported in 2010 [4], 72 countries
reported in 2005 [5], and 58 countries reported in the year 2000 [6]. Around 283.58 Terawatt-
hours (TWh) of geothermal heat are being used worldwide each year. An estimation of
the worldwide installed thermal power at the end of 2019 is 107.7 GW which is a 52%
increase from 2015. Moreover, the thermal energy used increased from 2015 by 72.3% to
1,020,887 TJ/year [2]. The distribution of the used geothermal energy used by category is
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approximately 58.8% for ground-source heat pumps, 18.0% for bathing and swimming,
16.0% for space heating (of which 91.0 % is for district heating), 3.5% for greenhouse and
open ground heating, 1.6% for industrial process heating, 1.3% for aquaculture pond and
raceway heating, 0.4% for agricultural drying, 0.2% for snow melting and cooling, and
0.2% for other applications (desalination, bottle washing, animal farming, etc.) [7]. For the
last five years, the number of wells drilled was 2647; the combined effort of professionals
working on geothermal energy was 34,500 person-years, and the total worth invested into
projects was 22.262 billion US$ [2]. The production cost for geothermal heating is highly
variable. The cost is highly dependent on the quality of the geothermal resource and the
investment needed for recovery, especially the number and depth of wells required and
the distance from the wells to the point of use. Geothermal heat could be transported over
a considerable distance from the source to consumers. The longest single geothermal hot
water pipeline in the world is located in Iceland (62 km) [8].

The Pannonian basin is one of the most significant geological structures in Central
Europe. The basin evolution is related to thermal impact when crustal fragments have
been directly subjected to crustal melting in the Carpathian embayment [9]. Heat flow
distribution in the Pannnoanian basin shows values ranging from 50 to 130 mW/m2 [9–12].
The average heat flow is considerably higher in the Great Hungarian Plain, than in the
Carpathians. Especially in the East Slovakian basin [13–15] are heat flow values above
100 mW/m2 (Figure 1).
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Figure 1. The heat flow distribution in the Pannonian basin and their peripheral areas (values in mW/m2). The East
Slovakian basin is an integral part of the major heat flow system in Central Europe (modified after [9,10]).

The East Slovakian Basin is part of the extensive Pannonian basin that formed during
the Miocene. The basin is divided by the Slanské vrchy neovolcanic chain into the eastern,
i.e., the Trebišov depression, and the western, the Košice depression. The Košice depression
is the area with the highest potential for geothermal use, including the generation of
electricity in Slovakia. In general, geothermal sources in the Slovakia territory and their
utilization are influenced by two “unknown” basic parameters: Geothermal fluids and
temperature.

The main sources of geothermal water in the Western Carpathians are usually linked
with the Middle-Upper Triassic dolomites. Geological processes during the closure of
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the Carpathian orogeny uplifted [16], and eroded the overlying sedimentary rocks of the
Upper Triassic to Cretaceous age. They were eroded to the dolomite level. Subsequent
karstification of the dolomites created the ideal aquifer in the region. The heat flow is related
to the evolution of the Pannonian basin [17–19]. During the Miocene, basin subsidence
accelerated, due to the ascent of asthenolite. The result was earth crust thinning, rifting, as
well as the formation of the peripheral basins [20], at the northern edge of the Pannonian
basin. These individualized sedimentary basins are considered the most important and the
most suitable geothermal areas in Slovakia with a relatively high heat flow. Geothermal
water in the wells was found at depths ranging from 92 m to 3616 m. Free outflow in the
wells ranged from 0.1 up to 100 l/s. Na-HCO3-Cl, Ca-Mg-HCO3, and Na-Cl chemical type
of waters with the TDS value of 0.4–90.0 g·L−1 prevail. The temperatures vary from 20
to 74 ◦C in 1000 m depth, with an average value of 45 ◦C. Overall in Slovakia 230.3 MW
and 2000.9 TJ/year are utilized [21]. Geothermal energy for heating is registered in 68
localities (Figure 2a), 39 localities are useable for swimming and bathing, 11 for drying, 6
for commercial use, 4 localities for district heating, and only one locality for fish farming.
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Figure 2. Simplified geological maps (a) Utilization of the geothermal sources in Slovakia is localized mainly on the west
side of the territory. Producing wells are situated in the same aquifer as in the Košice depression. (b) Košice depression lies
in the west part of the East Slovakian basin. In the geological map are important wells and deep 2D seismic cross-sections
localization use in the article faults (modified after [21–23]).

The article aims to analyze additional parameters, such as tectono-geological limits
in the potential geothermal area. The processes of multiple deformations that modified
tectonic and sedimentary structures, had a limiting effect on aquifer spatial distribution,
the chemistry of fluids (open dislocations), hydraulic parameters (subsidence/uplift), the
temperature (thermolift), lithology and wells construction. Parameters of each thermal
resource have an impact on total initial cost and confirmation of economic and technical
feasibility.

2. Materials and Methods

The data set consisted of several types of technical data, which were used to create a
structural model and a 3D model of the aquifers. The 3D model of the southeastern part
of the Kosice basin displays a spatial distribution of the aquifers and overlying Neogene
insulators and spatial thickness transition of the aquifers and their relations to tectonic
structures. Data processing [24], correlation of 2D seismic profiles vs. well data, and
interpretation (Figure 3) have been realized in the Petrel software. The modeling workflow
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includes depth conversion, establishing horizons, volume calculation, and geometrical
modeling. Data from the wells that were used in the model can be divided into three
groups [25–27]. The first group of wells: Structural KP-1, DUR-1, DUR -2, ROZ-1, and
geothermal key wells, GTD-1, GTD-2, and GTD-3, are situated in the Košice depression.
The second group of wells: Kosice KM-4, Kosice G5, Kosice KM-9, Drienov-2, Bankov-15,
Bankov-17 are localized at the west edge of the Košice depression. The third group of wells
is situated in the south Gemeric unit. They are without carbonates and dolomites in the
subsurface: Bociar-1, Cana-6, Komarovce-1. Structural and lithostratigraphic interpreta-
tions come out from 2D seismic cross-sections No. 700/92, 702/92, 703/92, 704/92, 705/92,
and 706/92 (Figures 2b and 4). Based on these results, it was possible to distinguish five
following reliably indicative lithostratigraphic interfaces. They separate rock complexes of
the different evolution stages of the area:

1. the basal plane of Mesozoic sequences
2. the interface of Mesozoic top/Karpatian formations
3. the interface between Karpathian/Early-Middle Badenian formations
4. Early-Middle Badenian/Late Badenian formations boundary
5. Late Badenian/Sarmatian formations boundary
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Figure 3. Integrated workflow diagram divided into three groups: Data collection (yellow), interpre-
tation (orange), and modeling (green).

Fault interpretations do not fall into the important tasks of geological modeling. At
this point, we have to emphasize that available seismic data belongs to 2D and not to a 3D
category, i.e., they provide only limited possibilities for precise 3D modeling. The problem
is moreover caused by relatively large (ca., 5–7 km) distances between the 2D seismic
profiles. Individual faults could change their length, depth, and direction in the profile, or
they could completely disappear, and new faults could emerge. For the above-mentioned
reasons, the final 3D tectonic model presents a simplified structure of a lesser section of the
area only. Due to the insufficient seismic data quality, fault tectonics is not included in the
rest of the area. The 3D grid processed at the mentioned principles is ready for final 3D
model elaboration and following interpretation steps. For the more precise demonstration
of spatial distribution and changes in the thickness of the model’s interior geostructural
components, the model is sliced.
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normal faults (modified after [28]).

3. Results
3.1. Geology and Hydrogeological Conditions

The East Slovakian basin is filled by Karpathian/Pannonian volcano-sedimentary
formations and Quaternary deposits (Figure 5). They substantially differ in their basement
nature which has a direct consequence on hydrogeologic conditions of the depressions [29].
The base of the Košice depression Neogene formations exclusively comprises the Inner West
Carpathian rock complexes. The footwall of its northern, i.e., the Prešov part, is formed by
Paleogene sandstone/shale formations. Pre-Tertiary rock sequences of the Čierna hora Mts.
(mainly Triassic dolomites and Paleozoic cover/crystalline complexes) are elevated at the
western margin of the depression [30]. They submerge below the larger part of the Neogene
fill of the depression. Especially a thick dolomite layer posses very good conditions for
water infiltration and groundwater circulation. Paleozoic rock complexes (mostly phyllites)
of the Gemeric unit [31] form the main part of the depression footwall on the southwest.
Their low water-saturation capacity is largely restricted to surface joints and weathering
zone. The Triassic carbonates of the Čierna hora Mts. Underlying the depression on the
western border are located at the geothermally less perspective area. Following actual
exploration, the most promising part for the economic utilization of geothermal energy
seems to be the southeastern part of the depression. In this area, 20 km distant eastward of
Košice town, is the most potential Cizatice/Durkov area, where three positive geothermal
wells, GTD-1, GTD-2, and GTD-3, have been drilled. The wells transected reservoir rocks
(e.g., the Čierna hora Mts. Triassic dolomites) at 2850–3150 m depths. At the GTD-1 well,
the water temperature reached 125 ◦C having 56 L.s−1 discharge overflow. The water
mineralization didn’t exceed 30 g·L−1 containing 96% of CO2. The water of the GTD-2
well, located westwardly from the previous one, achieved 124 ◦C and the discharge of
70 Ls−1. The mineralization doesn´t exceed 28 g·L−1 and 98% CO2 content. The water of
the geothermal well GTD-3 has reached 126 ◦C temperature and 150 Ls−1 discharge.
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Figure 5. Structural deep wells with representative lithology and stratigraphy log in the Košice Depression. The wells are
arranged from west to east. In the same direction, geothermal activity increase, and the dolomite aquifer rapidly drops down
from the surface (0 m) to a depth of 2000 m. The aquifer is disintegrated into tectonic blocks on the Miocene/Quaternary
Hornád fault system of N–S direction with normal fault activity (modified after [32–34]).

3.2. Structural Model

The spatial and depth extent of the geothermal aquifer in the Košice Basin is limited
by the tectonic structure. The basin structure was developed by multiple deformations
(Figure 6) of the basement underlier and sedimentary filling of the Neogene basin.
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Deformation phases activate fault sets with one major system (green row). Distinct tectonic control is visible on seismic
profiles, well cores, and outcrops. Their impact on basin basement, subsidence, and present morphology is significant
(modified after [35]).

As a result of these processes, the aquifer is divided into segments, which run from
the west to the east, creating a system of individual structural blocks with different vertical
depositional depths (Figure 7). At the same time, individual measurements also show
different permeability of the fault system, which affects the flow of thermal groundwater.
In the Košice Depression, we can localize three differently oriented fault systems NW-SE,
N-S, and NE-SW, which differ in age of origin, their activity, impact on the main dolomite
geothermal aquifer, and impact on underlier morphology.
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ern Carpathians. Margecany shear zone is a pre-Mesozoic tectonic structure that tectoni-
cally divides the Gemeric unit (phyllites/low permeability) and the Veporic unit (dolo-
mites/high permeability). The morphology and the fault rocks of the zone are on the sur-
face best visible between the Košice and the Margecany towns. The activity of the zone 
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Figure 7. Block structure distribution bounded by three basic systems of NW–SE, N–S, and NE–SW directed faults
in the territory of the Košice depression. (a) Interaction between morphology and tectonics is largely influenced by
Miocene/Quaternary tectonics. The depth of the aquifer gradually increases from west to east to a depth of 2475 m at
a distance of 20 km. (b) Sketch of two important deformation stages of tectonic structure development. The period of
Upper Badenian was characterized by the delimitation of crust and its disintegration on N–S trending faults, while their
asymmetric subsidence caused the formation of sinistral dips with subsequent formation of individualized shear basins.
The Miocene uplift of the Inner Western Carpathians (IWC) was compensated at the edge with the East Slovakian basin by
forming asymmetric shear bends, while externally from this zone, this uplift was compensated by oblique drops on the SE.
(c) Block models of the Middle Triassic dolomites underlying the Košice Basin indicate significant irregularity and very
significant tectonic limitation. Tectonic boundaries have different properties from the viewpoint of permeability (modified
after [23]).

NW–SE fault system is parallel with the direction of major tectonic units of the
Western Carpathians. Margecany shear zone is a pre-Mesozoic tectonic structure that
tectonically divides the Gemeric unit (phyllites/low permeability) and the Veporic unit
(dolomites/high permeability). The morphology and the fault rocks of the zone are on
the surface best visible between the Košice and the Margecany towns. The activity of the
zone has polystage character and was formed during the Alpine Cretaceous North–South
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shortening of the Central Western Carpathians. The zone was reactivated several times
during the Cretaceous-Neogene period. The zone is tens of meters wide on the surface.
Towards the depth, the zone is lesser inclined to a subhorizontal position. Shear zone
segments rocks of the crystalline complexes, as well as the rocks of the cover formations.
Typical fault rocks are mylonites of the crystalline gneisses, mylonites of the Carboniferous
and Permian meta-sediments, and mylonites of the Triassic quartzites. Mylonites have
strong foliation and penetrative subhorizontal stretching lineation of the NW–SE direction.
There are also occurring rauwackes of the Mesozoic carbonates. Therefore, this zone
is the so-called “main limiting parameter”, which tectonically delimits the potentially
usable area from the south. Parallel with this shear zone, the dislocations of the lower
level were developed. Their multi-deformation history points out the structural diversity
depending on paleo-stress conditions. The sigmoidal transpress bend of the Vinicna horst
was developed at these fractures. Positive structures and local declines compensate the
Miocene subsidence of the basin, e.g., subsidence of the Košice depression, rating from
–285 m to –310 m during the post-Middle Miocene to Holocene period [29].

The N-S trending Hornád fault zone controls geomorphology of the depression. Dur-
ing the Paleogene/Quaternary period, the faults of the zone divided the Košice depression
into individual sub-depressions with huge tectonic subsiding from west to east. Mostly
eastwards (60–85◦) inclined faults, forming 3 to 5 km wide zone, practically check the
shape and filling of the depression, including geothermal carbonate reservoir and their
underlying rock complexes. A relatively massive normal faulting represented a total rate
of subsidence 2100 m at a distance of 20 km. The faults substantially influence the current
submersion depth of these initially slowly eastwards inclined Miocene also formations. The
polystage history of the fault is closely related to ESB opening during the Miocene period.
According to structural research, it is possible to track deformation stages on the fault.

Huge subsidence of the ESB during the Early Miocene created a system of N–S de-
pressions. Middle Miocene core delamination had an impact on the fault too. Asymmetric
subsidence and plate rotation effect [36,37] caused sinistral shear movements with high
intensity at the west ESB rim [38]. The basin breakdown is possible to correlate with
horizons in the seismic cross-sections (Figures 4 and 5) and with subdivision into blocks,
horsts, and depressions. The fault is filled with cataclastic surrounding sediments (mainly
shales) with limited permeability.

Moderately (45–60◦) mostly to the SE dipped NE-SW faults, are related with depres-
sion forming in the transtensional tectonic regime. The faults separate the depression
basement into individual blocks. Tension tectonic has a positive impact on permeability
and fluid flow. The same structure separates the northern Čižatice depression from the
southern Ďurkov depression. Groundwater migration from the center of the basin towards
the western edge at the contact with the Hornád fault system in the Košice area is likely
occurring at these faults. As a result, disproportionally high groundwater temperatures are
observed towards the western edge of the basin. Therefore, these are “key fault structures”
that enabled the flow of overheated groundwater in the Košice Depression (Table 1).

Table 1. Basic fault parameters with different impacts on permeability and surface morphology.

Faults Rank Sense Permeability Morphology

NW-SE I., III. Inverse, shear, normal closed asymmetric

N-S II. shear, normal, closed horst/depressions

NE-SW III., IV. Normal opened -

Based on the results of the structural model in the southeastern part of Košice Depres-
sion, the so-called Ďurkov/Čižatice geothermal area, the thickness, and distribution of
sedimentary packets, which are also considered as potential aquifers, has been modeled.
The 3 D model is bounded on the east by the Sarmatian neovolcanic of Slanské vrchy Mts.,
which in places laterally extend into the filling of the sedimentary basin. The western
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boundary of the model is represented by the N-S fault line, which is part of the Hornád
fault zone. At these faults, the depth of the underlier reaches the greatest depths in the
Košice Depression, which was verified by several wells. The Margecany shear zone borders
the model from the south and the NE-SW fault from the north.

In the seismic profiles, five lithostratigraphic boundaries are interpreted. Seismic
reflexes of the middle part of the profile indicate a pronounced pre-tertiary basement
elevation, reflecting probably an uplift effect of the Sarmatian neovolcanites. Steeply
dipped normal faults and/or oblique-slip faults detected within the profile reduce the
Miocene sequences and markedly cut the Mesozoic formations. In the long axis of the
model is possible to identify flexural bend separating Čižatice and Ďurkov structure. More
information about the Miocene basement composition and deformation nature provide
the KP-1, DUR-1, and DUR-2 wells. The last well penetrate heavily crushed Middle/Late
Triassic dolomites [39]. Penetrating of the Late/Middle Triassic carbonates in the DUR-1
well ceased at 3200 m depth. The top section of the carbonates, which are underlying the
Neogene successions, comprises light grey compact dolomite shales containing dynamo-
metamorphic exsolutions of calcite veins. Dark grey clay/shale layers among dolomites
appear, namely, at 2682–2753 m depth interval. From ca. 2750 m depth dolomites containing
an increased CaCO3 (up to 45%) [40].

The modeling of evaluated seismic/well data allows specifying four lithostructural
geothermal water aquifers (Figure 8) limited by the over/underlying bedding planes.
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Figure 8. 3D geothermal model of the major lithological formations participated in the Košice Depression geological
structure. The dolomites (blue) represent the main aquifer of the geothermal structure, which has an asymmetric shape in its
N–S direction. In the model is a nice visible flexural boundary between Čizatice and Ďurkov structures (modified after [29]).

The first aquifer (AQ1) body forms the Mesozoic sequence of the Čierna hora Mts.
Veporic unit. The deepest part of the Mesozoic pile, i. e. the basal aquifer plane (marked in
violet color in Figure 8), reaches depth 2000 m to 2600 m, while a depth of its overlying pre-
Neogene interface varies from 1250 m to 1380 m. The aquifer sole depth differences proba-
bly indicate topographical effects of pre-Neogene denudation and/or syn-postsedimentary
tectonic processes. At the central part of the modeled section, an outstanding (blue-colored
at Figure 9) elevation extends. The elevation separates the Ďurkov area depression of the
SE edge of the section from the Čižatice graben structure developed at the western section
margin. Both of the graben structures are reflecting probably NE-SW normal faulting. The
Ďurkov graben structure is not as large as the previous surface, but the depression in the
Čižatice area is still very outstanding. It is because of the increasing activity of the Miocene
N-S or NE-SW faults. These two surfaces delimitate Triassic carbonate rocks, and variability
in topography and thickness can be assumed. Only two wells from the plotted ones, i.e.,
KP-1 and ROZ-1, penetrate the Mesozoic pile sole. The overlying plane of the aquifer



Resources 2021, 10, 31 10 of 15

elevation shows an uneven topography. Its deepest level reaches from 1800 m to ca. 2270 m,
while the highest one from 800 m to 85 m only. Larger altitude differences, in comparison
to the Mesozoic formations aquifer sole, seemingly reflect the post-Sarmatian fault activity
and distinctly higher deformation competencies of overlying Neogene formations as well.
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Figure 9. 3D model of the Middle Triassic buried dolomites under Košice depression. The thickness and inclination changes
are influenced by fracture tectonics, which is an important structural phenomenon underlying the aquifer.

The second (AQ2) aquifer body form Karpathian clastic sediments (mainly conglom-
erates and sandstones). This Neogene basal formation lies directly on the Mesozoic aquifer,
following in this manner topography of Mesozoic formations. The Karpathian deposits
are conformably overlain by Lower/Middle Badenian fine-grained clastic sediments and
evaporite sediments. The topography of this lithostratigraphic interface is not as rugged as
in the previously discussed cases. The variation in depth shows ca. 260 ms (approx. 220 m).
The surface deepest part reaches 1550 ms (ca. 1850 m), and the top-level reaches 600 ms
(approx. 570 m). The intensity of N-S faults decreases, while NE-SW faults are still very
outstanding.

The third (AQ3) aquifer body is sandwiched between the Lower/Middle Badenian
and Upper Badenian boundaries. It has a moderate topography, but a distinct depression
in the western part of the section surface achieves 1080 m amplitude. The maximal depth of
the depression reaches ca.1530 m, while its top point is located at ca. 450 m depth. Whereas,
an activity of the NE-SW faults fades out in the depression, normal faulting at the NW-SE
faults is still progressive.

The Upper Badenian/Sarmatian bedding plane terminates the fourth (AQ4) aquifer
body. It forms the top surface of the model with a moderate topography of the boundary
plane or its outstanding depression reaching ca. 910 m depth. The Sarmatian volcanoclastic
sediments of the modeled area outcrops to the surface.

The following indicative/proportional volumetric calculation (the model comes out
from 2D) of the individual lithostratigraphic horizons of the Košice depression forms one
of the modeled outputs (Table 2). As it results from the cubature of the formations, the
Karpathian aquifer possesses the highest capacity for geothermal water accumulations.
Regarding volumetrically the second aquifer, it is necessary to mention, that only Mesozoic
sequences comprising ca. 40.6 km3 of calculated volume, could be effective for the discussed
purposes. Such volumes are not present throughout the Košice depression. The thicknesses
of dolomites in the Ďurkov/Čižatice area are many times thicker, which is related to their
tectonic accumulation (duplexes) as a consequence of the uplift and unroofing of Čierna
Hora Mts.
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Table 2. Results of volumetric calculation of each modeled lithostratigraphic formation.

Body Bulk Volume
(km3)

Percentage
(%)

Sarmatian 73,457 35.8

Badenian 34,674 16.9

Karpathian 56,285 27.5

Mesozoic 40,618 19.8

4. Discussion

The creation of economically perspective geothermal water reservoirs at geological
conditions of the East Slovakian basin (ESB) closely depends on a sufficient geothermal
flow and a presence of compositionally/volumetrically adequate aquifers. Both are present
in the western part of the ESB, especially the southeastern section of the Košice subbasin,
more precisely in the Čižatice/Ďurkov structure.

Presented values reflect main rock formations data collected largely from the south-
eastern margin of the Košice depression. They could be significantly influenced by initial
compositional irregularities and the tectonic impact as well. The dolomitic aquifer (AQ1) of
the Middle Triassic Period with underlying Verfenian shales, ± quartzites, Permian cover
formation, and crystalline basement rocks (as has been confirmed by mentioned KP-1 well)
belongs to the Čierna hora Veporic unit [41]. The dolomitic complex shows the variable
thickness and lateral development throughout the unit [42]. The thickness irregularities
are related to duplexes of the Triassic dolomites observed in the surface and also in drill
cores. At such conditions, a vertical duplication of the dolomitic sequences is multiplying
their reservoir capacity. The thickness of the dolomite aquifer is variable. In the western
edge at the contact with the basement, the Middle Traissic dolomite complex thickness is
185 m, towards to east it grows up to 1060 m.

The thickness of sedimentary layers is a key factor in terms of total groundwater
reserves, but also for the calculation of the thermal gradient.

An average thermal gradient of the depression sedimentary fill varies from 36.5 to
50.3 ◦C/km or between 25.0–32.3 ◦C/km in pre–Tertiary rock formations, respectively [43].
The relatively high thermal gradient in the Neogene sequences relates to their lower
thermal conductivity. The geothermal gradient generally increases towards the Pannonian
basin (i.e., in the south direction), due to a substantially larger overheating of the thinning
Earth crust. A tectonic brecciation and the hot water inflow at the faults are the other
reasons for higher geothermal gradient raising within the Neogene sequences. At depths
of 500–4000 m, i.e., at the depths of a presumable geothermal water aquifers location, the
temperature ranges from 27–182 ◦C [44]. Thermal conductivity of particular lithotypes
recorded regional and vertical characteristics of horizons. Thermal conductivity varies from
1.6 (W/mK) for coarse-grained formations and evaporites, 1.8 (W/mK) for fine-grained
lithotypes, and 3.1 (W/mK) for carbonates in the Western Carpathians. The andesites
observed in the SE part of the structure have defined thermal conductivity of 2.1 (W/mK).
Hereby, mean geothermal values are used, and the possible impact of horizon thickness
and depth of its top is limited to a minimum. Analysis of the sedimentary fill in the wells
confirms a rather smaller thermal conductivity growth in the depth. While Sarmatian
(AQ4) sediments show lower (i.e., 2.10 W/mK) thermal conductivity, the conductivity of
Badenian and Karpatian (AQ3,AQ2) sediments is somewhat higher, i.e., 2.09 W/mK to
2.19 W/mK, respectively. The conductivity of Paleogene sandy/clay sediments shows a
characteristic value of 2.31 W/mK. An average thermal conductivity of the Tertiary rocks
varies about 2.05 ± 0.25 W/mK (Table 3), while constant Mesozoic carbonate rocks display
3.62 W/mK [39]. The highest thermal flow values (i.e., 100–110 mW/m2) of the area have
been detected at the foothills of the Slanské vrchy Mts. neovolcanic territory. In the central
part of the Košice depression, typical values range between 85–95 mW/m2, while in its
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western part, they vary at the 80–85 mW/m2 interval. The average value of the Košice
depression thermal flow reaches 94.9 ± 10.5 mW/m2.

Table 3. Geothermal data summary.

Stratigraphy Lithology
Thermal
Gradient
◦C/km

Thermal Conductivity
W/mK

NEOGENE
(23–2.5 Ma)

Sarmatian claystones
sandstones

38.1–51.4

2.10
av.

2.05 ± 0.25Badenian claystones 2.10

Karpathian conglomerates 2.19

MESOZOIC (251–66 Ma) dolomites
limestones 22.4–30.6 3.62

The groundwater geochemical analyzes from Košice depression show significant
differences. Waters of the Ca-Mg-HCO3 type with a hydrochemical coefficient Cl/Na = 0.75
predominate. These waters have origin in the dolomites of the Mesozoic unit of Čierna
Hora Mts. The structure of Čižatice/Ďurkov is dominated by groundwater with NaCl
content with a low proportion of Na-HCO3. From the origin point of view, these waters
formed by the infiltration of probably meteoric/marine (subsequently marinogenic) water
through Neogene formations (also salt marine sediments of Karpathian) into the Mesozoic
collector [45,46]. By dissolving salts from salt formations, the waters contain small amounts
of Br and have a Cl/Br ratio greater than 1000. It is a specific-polygenic type of geothermal
water created when sea (marinogenic) water dissolves saline formations of the Karpathian.
Their origin is probably in the area north of the Čižatice structure at the northern edge of
the Košice Basin. The source may be in the evaporites of the Sol’ná Baňa Formation. The
water solutions from them infiltrate through the NE-SW faults towards the south. On the
contrary, their lateral distribution is limited by the sealing properties of the N-S Hornád
fault system, and therefore, this type of water reaches the western edge of the basin.

The exploitation of geothermal energy in practice is primarily a source of possibilities.
Even if a hyperthermal structure is missing slightly lower tempered geothermal water
of this area is technologically utilizable for power generation and/or heating of Kosice
town [39], as it is known from other world countries. For example, ORC binary power
plants are designed for temperatures ranging from 45 ◦C (Alaska) to 225 ◦C (Hawaii) and
are built in a variety of sizes [47–49]. For comparison, the Turkey government in 2015
build a low-temperature geothermal powerplant Tosunlar 1, with an output steam/brine
of 105 ◦C and gross electrical generation of 3878 kW [50]. Residual heat can be used for
secondary purposes, e.g., for tourism development, agricultural or industrial production.

5. Conclusions

Geothermal waters in the western edge of the East Slovakian basin saturate the
Mesozoic karstified limestones and dolomites with fissure and karstic permeability.

� The thickness of the Mesozoic aquifer is increasing from the west (185 m) to the east
(1060 m or more). The changes of thickness relate to the tectonic thickening of layers
as a consequence of the uplift of the basement units on the western edge of the East
Slovakian basin.

� The aquifer depth increase significantly from the west (0 m) to the east (2475 m) on a
short distance of 20 km. The entire original horizon is subdivided into tectonic blocks
with individual depth and lateral rate by the “domino” effect. The vertical subsidence
of the tectonic blocks reaches 1200 m.

� The process of individualization of the tectonic blocks was successive. First, existing
NW-SE and N-S pre-Miocene structures were preferred. Later, evolutionary younger
dislocations and joints of NE-SW direction were active.
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� The flow of the thermal groundwater in the fractures is closely linked to the dilatation
structures of the NE-SW direction, which enabled the migration of waters from the
basin center towards its western edge. The result is warm groundwater in wells (17 ◦C
from depth 150 m, 26 ◦C from depth 300 m) at the western edge of the East Slovakian
basin. Common temperatures are up to 9 ◦C.

� The geothermal structure contains three different chemical types of water confirmed
by wells. Their spatial chemical distribution where Na-HCO3 water type and 10.9 g·L−1

mineralization (in the north), the Ca-Mg-HCO3 with 0.5–4.5 g·L−1 mineralization (in
the west), and Na-Cl water type containing 20.4–33.1 g·L−1 mineralization (in the
southwest), correlate with open fissure distribution.

� Identifying critical tectonic structure is most important in the areas with a high tectonic
impact on the geothermal aquifer. The future project for geothermal utilization of
geothermal potential must implement all relevant datasets. The tectonics dataset is
one of them.
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29. Jacko, S.; Labant, S.; Bátorová, K.; Farkašovský, R.; Ščerbáková, B. Structural contraints of neotectonic activity in the eastern part

of the Western Carpathians orogenic wedge. Quat. Int. 2020. [CrossRef]
30. Jacko, S. New Upper Triassic Formations in Mesozoic of the Čierna Hora Mts. Geol. Práce 1987, Správy 87, 19–25.
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34. Kaličiak, M.; Baňacký, V.; Janočko, J.; Karoli, S.; Petro, L’.; Spišák, Z.; Vozár, J.; Žec, B. Explanation to Geological map of the Slanske
Mts. and Kosice Depression—Southeastern; Slovak Geological Survey: Bratislava, Slovakia, 1996; pp. 1–206.
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