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Abstract: A threshold voltage (Vth) controllable multigate FinFET on a 10-nm-thick 

ultrathin BOX (UTB) SOI substrate have been investigated. It is revealed that the Vth of the 

FinFET on the UTB SOI substrate is effectively modulated thanks to the improved 

coupling between the Si channel and the back gate. We have also carried out analysis of 

the Vth controllability in terms of the size dependence such as the gate length (LG) and the 

fin width (TFin). 
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3. Results and Discussion  

Figure 4 compares capacitance-voltage (C-V) characteristics of the UTBOX layer and the thermal 

SiO2. It is found that the C-V characteristics of the UTBOX layer are similar to that of the thermal 

SiO2. The capacitance equivalent thickness (CET) of the UTBOX is measured as 11.5 nm and the 

uniformity of the UTBOX thickness is as good as that of the thermal SiO2. Figure 5 compares the 

current-voltage (I-V) characteristics of the MOS capacitor using the UTBOX and the thermal SiO2. 

The I-V characteristics of the MOS capacitor with the same dielectric thickness are also the same. 

Figure 6 shows the gate voltage of the MOS capacitor where the leakage current exceeds 10−7 A/cm2 

as a function of the oxide thickness. The gate voltage of the UTBOX completely follows the trend of 

the thermal SiO2. These results strongly indicate that quality of the UTBOX and its interface is as good 

as that of the thermal SiO2.  

Figure 4. C-V characteristics of the MOS capacitor: (a) UTBOX; (b) thermal SiO2. 

 

Figure 5. I-V characteristics of the MOS capacitor: (a) UTBOX; (b) Thermal SiO2. The 

glitches in the figure indicate the fluctuation of the breakdown in different MOS capacitors. 

 
  

0.6

0.5

0.4

0.3

0.2

0.1

0.0

C
a

pa
ci

ta
nc

e 
(μ

F
/c

m
2
)

-4 -3 -2 -1 0 1
Vgc (V)

0.6

0.5

0.4

0.3

0.2

0.1

0.0

C
a

pa
ci

ta
nc

e 
(μ

F
/c

m
2
)

-4 -3 -2 -1 0 1
Vgc (V)

SiO2=11.5 nm 

6.3 nm 

10.6 nm 

14.7 nm 

(a) (b)

10
-12 

 
10

-9 
 

10
-6 
 

10
-3 
 

10
0 
 

Le
ak

ag
e 

cu
rr

en
t 

(A
/c

m
2
)

-20 -15 -10 -5 0
Vgc (V)

10
-12 

 
10

-9 
 

10
-6 
 

10
-3 
 

10
0 
 

10
3

Le
ak

ag
e 

cu
rr

en
t 

(A
/c

m
2
)

-20 -15 -10 -5 0
Vgc (V)

SiO2
11.5 nm 

6.3 nm 

10.6 nm 

14.7 nm 

(a)
(b)



J

 

 

th

f

T

ta

th

c

 

J. Low Powe

Figure

10−7 A

Figure 7 

hick BOX S

flexibly mod

TFin was eff

aken by the

he conventi

clearly show

Figure

thick B

(a) TF

(c) TFin

er Electron.

e 6. The g

A/cm2 as a fu

shows the I

SOI. We re

dified by ap

fective for th

e constant cu

ional thick B

wn. This is c

e 7. ID-VG 

BOX SOI. T

Fin= 50 nm,

n= 50 nm, L

. Appl. 2014

gate voltage

function of t

ID-VG chara

evealed that

pplying the 

he Vth mod

urrent meth

BOX substr

caused by th

characteris

The substrat

, LG= 40nm

LG= 40nm, B

 

4, 4 

e of the M

the oxide th

acteristics o

t the ID-VG

substrate bi

dulation. Fig

hod. The ID-

rate. Also, th

he increased

stics of the 

te bias volta

m, BOX 10

BOX 120 nm

MOS capaci

hickness.  

of the FinFE

characterist

ias voltage.

gure 8 show

-VG charact

the effective

d coupling b

FinFETs w

ages are rang

0 nm; (b) T

m. 

itor where 

ET with the 

tics the Fin

We also fo

ws the Vth a

teristics are 

eness of the

between the

with the UT

ging from −

TFin= 70 nm

the leakage

 

UTBOX SO

FET on the

ound that th

as a function

fixed and th

thick TFin f

e Si body an

TBOX and

−1 V to 1 V 

m, LG= 40n

e current e

OI and the 

e UTBOX S

he FinFET w

n of the Vsu

hus the Vth 

for the Vth m

nd the back 

d the conve

V with a 0.5 

nm, BOX 1

11

exceeds  

convention

SOI could b

with the thic

ub. The Vth

is fixed wit

modulation 

gate. 

entional 

V step: 

10 nm;  

14 

al 

be 

ck 

is 

th 

is 

 



J. Low Power Electron. Appl. 2014, 4 115 

 

 

Figure 8. The Vth of the FinFET as a function for the substrate bias. 

 

Figure 9 summarizes the size dependence of the body factor γ determined by the ΔVth/ΔVsub. The γ 

is increased by increasing the TFin supporting the effectiveness of the thick TFin for the Vth modulation. 

In contrast to the TFin dependence, the opposite trend with the LG is shown and the γ is increased  

by reducing the LG. Moreover, the γ exceeded more than 0.1 with the 70-nm-thick fin thanks to the  

10-nm-thick UTB SOI. To understand this LG dependence, the short channel effect represented by the 

Vth roll-off is evaluated as shown in Figure 10. We found that the Vth roll-off is more sever for the 

FinFET with the positive Vsub, small LG, and the thick TFin. Thus, the γ becomes higher for the FinFET 

with the small LG and the thick TFin due to the Vth roll-off. This result is consistent with the previous 

report on the nanowire FET with the 20-nm-thick BOX SOI [19]. 

Figure 11 shows the s-slope of the FinFET as a function of the LG. The increase of the s-slope by 

reducing the LG due to the short channel effect is clearly shown. It is noteworthy that the s-slope of the 

FinFET with the negative Vsub is smaller than that of the positive Vsub. Thus, the body bias is also 

effective for suppressing the short channel effects. 

Figure 9. The size dependence of the body factor γ determined by the ΔVth/ΔVsub, (a) TFin 

dependence; (b) LG dependence. 

 
  

-0.1

0

0.1

0.2

0.3

0.4

-1 -0.5 0 0.5 1

V
th

 [V
]

Vsub [V]

BOX 10 nm

BOX 120 nm

LG= 40 nm

TFin= 50 nm

TFin= 70 nm

LG= 100 nm

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100

T
Fin

 [nm]

γ 
(Δ

V
th

/Δ
V

su
b
) 

0

0.02

0.04

0.06

0.08

0.1

0.12

0 50 100 150 200 250 300

50
70

Lg [nm]

γ 
(Δ

V
th

/Δ
V

su
b
) 

TFin=50 nm
TFin=70 nm

(a) (b)



J. Low Power Electron. Appl. 2014, 4 116 

 

 

Figure 10. Vth roll-off characteristics for the FinFET with the different TFin. 

 

Figure 11. The s-slope of the FinFET as a function of the LG. 

 

4. Conclusions  

The Vth controllable FinFETs using the 10-nm-thick UTB SOI substrate have been successfully 

fabricated and controllability of the Vth is analyzed in terms of the size dependence. It is shown that the 

body factor is increased by increasing the TFin and reducing the LG and it exceeded above 0.1 thanks to 

the 10-nm-thick UTBOX SOI. The back gate bias is also effective for the reduction of the s-slope. 

Thus, the UTBOX SOI is promising for the modulation of the Vth and improvement of the short 

channel effects for the scaled FinFET. 
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