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Abstract: A programmable, energy-efficient analog hardware implementation of a multilayer percep-
tron (MLP) is presented featuring a highly programmable system that offers the user the capability
to create an MLP neural network hardware design within the available framework. In addition
to programmability, this implementation provides energy-efficient operation via analog/mixed-
signal design. The configurable system is made up of 12 neurons and is fabricated in a standard
130 nm CMOS process occupying approximately 1 mm2 of on-chip area. The system architecture
is analyzed in several different configurations with each achieving a power efficiency of greater
than 1 tera-operations per watt. This work offers an energy-efficient and scalable alternative to
digital configurable neural networks that can be built upon to create larger networks capable of
standard machine learning applications, such as image and text classification. This research details
a programmable hardware implementation of an MLP that achieves a peak power efficiency of
5.23 tera-operations per watt while consuming considerably less power than comparable digital and
analog designs. This paper describes circuit elements that can readily be scaled up at the system level
to create a larger neural network architecture capable of improved energy efficiency.

Keywords: neural network; multilayer perceptron; energy efficient; analog; weak inversion;
programmable

1. Introduction

Artificial neural networks (ANNs) are machine learning architectures that are inspired
by biological neural structures and can perform several tasks with an example being
function approximation [1]. The MLP is an early type of neural network that classifies
data with nonlinear functions in parallel signal pathways [2]. The MLP structure consists
of an input layer, a hidden layer, and an output layer. The input layer takes the set of
data to be analyzed and passes it on to the hidden layer. The hidden layer may contain
multiple layers that receive the outputs from the previous layer, multiply them with a
weight, and output this weighted sum via a nonlinear activation function. Each layer
consists of one or more neurons that create the overall ANN functionality. Two common
nonlinear activation functions are the sigmoid and the hyperbolic tangent functions with
the general function form:

yi(x) = φ(w′ix + bi) = φ(zi) (1)

where x is the vector of input values, φ() is the nonlinear activation function, w′i is the
vector containing the weight values, and bi is the bias for a given neuron. Figure 1 shows a
general MLP structure with two hidden layers. A distinct characteristic of an MLP ANN is
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that every neuron will output to all of the neurons of the subsequent layer and is typically
used for the classification of a set of data that are not linearly separable [2].

Figure 1. General MLP structure.

The complexity and power consumption of MLP hardware are critical performance
characteristics that require optimization to produce the most efficient network possible
for a specific problem. The implementation complexity can be addressed by utilizing
either a field-programmable gate array (FPGA) or a digital signal processor (DSP) to
easily and efficiently change the architecture of the MLP seamlessly. While these digital
methods provide the programmability that designers desire, these systems do not efficiently
optimize power consumption at the transistor level and can lead to increased system
power consumption. Another method to add programmability to MLP hardware is to
manually design circuit blocks on an integrated circuit (IC), providing better performance
characteristics with greater transparency and control [3]. Overall, the programmability of
an MLP hardware implementation is a key design parameter that allows the network to
function in an optimal manner with the ability to turn off and on sections of the architecture
without penalty to data throughput.

After considering the programmability of an MLP architecture, the overall power
consumption of the network needs determination. The goal of any neural network circuitry
is to provide the highest power efficiency, which is the number of computations per second
per watt of power. Analog designs as a whole have proven over time that they are far more
capable of low power computations (e.g., [4,5]). Analog offers design control over power
dissipation at a transistor level while also taking advantage of transistor characteristics to
optimize performance. Another power-saving aspect of analog circuits is that summation
and subtraction operations are easily performed by a wire junction (current-mode circuits),
whereas digital circuits require multibit subtractors and adders [6].

The ability to control the transistor’s operation region is crucial in creating neural
network hardware that has the basic functionality of an MLP with reduced power con-
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sumption. Weak inversion provides these capabilities in two ways: exponential transfer
characteristics and low power consumption [7]. Exponential transfer characteristics are vi-
tal to the successful operation of the hardware. The architecture’s neurons, or nodes, require
an activation function after the weight sum. In the case of MLP hardware, the activation
function is a nonlinear operation and requires a special circuit design to produce the desired
nonlinear functions [8]. With these characteristics in mind, an analog energy-efficient MLP
design is highly desirable as it has the greatest potential to provide the highest number
of computations per second for the lowest power consumption. The design of the pro-
grammable MLP hardware-based system is presented in Section 3, followed by the results,
a brief discussion of the network results, and conclusions in Sections 2–5, respectively.

2. Results

This section details the measurement results obtained from physically testing the
manufactured integrated circuit in the 130 nm technology node on the printed circuit board
(PCB). The PCB is shown in Figure 2 and contains circuits to test the different elements of
the system. The test board is divided into six sections: power circuits (red), microcontroller
and supplemental circuitry (yellow), input signal circuits for four main inputs (purple),
input signal circuits for simple neural network hardware system (orange), input circuits for
test structures (black), and socket for integrated circuit (white). These six sections allow
every circuit to be thoroughly tested and analyzed. All power rails for the integrated
circuit are kept at 1.2 V, whereas the rails for the microcontroller are held at 3.3 V. The
nominal power supply for the design is 1.2 V with a minimum testing frequency of 1 MHz
(limited by the microcontroller-generated test inputs). The bit streams and input signals are
generated by the microcontroller. A buffer circuit is used to obtain a cleaner output signal
unless otherwise specified as the output structures of the chip are not strong enough to
drive the 12 pF capacitive load of the oscilloscope probe at higher frequencies. In general,
the PCB is capable of testing the system and other circuits at frequencies up to the ones of
MHz. The frequency is limited to the low MHz range due to the chosen microcontroller
and PCB parasitics within the signal pathway.

Figure 2. PCB test board for MLP chip (see text for color details).
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The measurement results are for several different configurations for the system and a
brief noise analysis on the first configuration. The measurement results utilize one or more
inputs from the main input signal, generating a circuit section after the integrated circuit
is programmed via the microcontroller. The programming consists of activating switches
for the best routing scheme for each configuration and activating the bias cells to operate
the hardware implementation at the highest possible frequency while still maintaining an
accurate output signal. For all of the configurations, the architecture is programmed as a
classifier to verify the programming and signal accuracy. The output results detail a basic
classification operation where the system is providing a “high” output when the input
signal(s) are “high” and “low” when the input signal(s) are “low”. This simple operation
offers the ability to effectively characterize each configuration’s power and throughput for
further analysis. Each configuration is judged on its ability to meet a high power efficiency
of 1 tera-operations per watt (TOps/W), which is defined by Equation (2). Operations
consist of either a sum or multiply operation within each activated neuron. In addition to
the verification results for the configuration, the propagation delays for one of the rising
and falling edges of the pulse train will be analyzed. All of the configuration will have
input voltage signals that have a minimum of 200 mV and a maximum in the range of 900 to
1.1 V, depending upon the load on the microcontroller’s IO ports (lower for higher number
of inputs to the chip). Lastly, the input signal is operating at the worst-case situation, which
is alternating between high and low states.

Power E f f iciency =
(operations)( f requency)

Power
(2)

Figure 3 depicts the first configuration analyzed for measurement results with one
input and three neurons. Figure 4 details the input voltage waveform in yellow and the
output voltage waveform in green for this first configuration. The frequency for the input
signal data is 4.06 MHz, which is reflected in the output waveform that goes from a low state
at zero to a high state at 1.2 V. The measured on-state current for this configuration is 14 µA
with the off-state current being 7 µA. These currents averaged over the 8 on states and 8 off
states of the signal and multiplied with the voltage give an average power of 12.6 µW. This
configuration has 6 total operations (2 per neuron with 3 neurons). Therefore, the power
efficiency is 1.93 TOPS/W for this configuration and input signal. Figures 5 and 6 show the
propagation delay for the rising and falling edges, respectively. The rising edge propagation
delay is 338 ns, while the falling edge is 489 ns. The large delays come from the thresholding
circuitry as it requires large currents to change the voltage signal at the comparison node
and the numerous parasitics encountered from the routing and switches.

Figure 3. Hardware configuration for first configuration.
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Figure 4. First system configuration measurement (no load at 4.07 MHz).

Figure 5. First system configuration measurement for rising edge propagation delay.
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Figure 6. First system configuration measurement for falling edge propagation delay.

Figure 7 depicts the seventh configuration analyzed for measurement results with
4 inputs and 12 neurons. The seventh configuration was chosen to detail the full utilization
of all input signal pathways and all available resources in the programmable architec-
ture. Figure 8 details three of the input voltage waveforms in yellow, blue, and magenta
(oscilloscope was limited to four probes) with the output voltage waveform in green for
the seventh configuration. The frequency for the input signal data is 1.51 MHz, which is
reflected in the output waveform that goes from a low state at zero to a high state at 1.2 V.
The measured on-state current for this configuration is 35.8 µA with the off-state current
being 17 µA. These currents averaged over the 8 on states and 8 off states of the signal
and multiplied with the voltage give an average power of 31.68 µW. This configuration
has 60 total operations (5 per neuron with 12 neurons). Therefore, the power efficiency is
2.86 TOPS/W for this configuration and input signals. Figures 9 and 10 show the propaga-
tion delay for the rising and falling edges, respectively. The rising edge propagation delay
is 555 ns, while the falling edge is 889 ns.

The remainder of the configuration figures are not shown so as not to overwhelm the
result sections with excessive figures. However, their results are summarized in Table 1,
showing the important configuration characteristics similar to the discussion in the previous
paragraphs. Table 2 details each configuration’s rising and falling edge propagation delay in
nanoseconds. Table 3 details a comparison of this work against reviewed literature. The ta-
ble is broken into several comparing features of the different system configurations with the
units for each feature being for the computational density operations per second per µm2

(Ops/s/µm2), power in microwatts (µW), synapses (number of multipliers), density per
synapse (Ops/s/µm2), power per synapse (µW), and power efficiency (TOPS/W). Table 4
shows each design’s implemented technology node or whether software only, the nominal
supply voltage, and nominal frequency as compared with the proposed architecture.
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Figure 7. Hardware configuration for seventh configuration.

Figure 8. Seventh system configuration measurement (no load at 4.07 MHz).
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Figure 9. Seventh system configuration measurement for rising edge propagation delay.

Figure 10. Seventh system configuration measurement for falling edge propagation delay.
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Table 1. Summary of measurement results for different system configurations.

Config
Number Inputs Neurons Freq. (MHz) On/Off

Current (µA) Power (µW)
Power

Efficiency
(TOps/W)

1 1 3 4.06 14/7 12.6 1.93

2 1 4 4.06 14.1/7.3 12.84 2.52

3 1 5 4.06 19.4/8.6 16.8 2.90

4 1 7 4.06 18.9/6.3 15.12 5.91

5 1 9 2.75 22.8/7.4 18.12 4.56

6 1 12 2.75 26.6/15.5 25.26 5.23

7 4 12 1.51 35.8/17 31.68 2.86

8 1 6 2.04 13.5/4 10.5 2.09

9 2 6 2.57 19/8.1 16.26 2.85

10 1 7 4.06 21.6/8.2 17.88 4.54

Table 2. Summary of propagation delays for different system configurations.

Config
Number Inputs Neurons Freq. (MHz) Delay

(Rising, ns)
Delay

(Falling, ns)

1 1 3 4.06 338 489

2 1 4 4.06 345 457

3 1 5 4.06 343 479

4 1 7 4.06 436 492

5 1 9 2.75 515 585

6 1 12 2.75 541 621

7 4 12 1.51 555 889

8 1 6 2.04 829 750

9 2 6 2.57 610 687

10 1 7 4.06 395 564

Table 3. Hardware comparison with prior art.

Prior Art Analog or Power Density per
Synapse

Power per
Synapse

Power
Efficiency Fabricated

Digital (µW) (Ops/s/µm2) (µW) (TOps/W)

Park [9] Digital 213,100 20.00 103.65 1.930 Yes

Tsai [10] Digital 310,000 23.86 75.68 1.450 Yes

Yuzuguler [11] Analog - 40.64 - 3.846 No

Binas [12] Analog 200 - 0.008 7.97 Yes

Hoang [13] Digital 42,100 - - 0.0012 No

Shreyas [14] Digital 10,450 - - 2.60 No

Zhang [15] Digital 7,250,000 - - 0.0524 No

This work Analog 15.12 8.12 2.16 5.91 Yes
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Table 4. Technology, voltage, and frequency comparison with prior art.

Prior Art Technology (nm) Supply Voltage (V) Operating
Frequency (MHz)

Park [9] 65 1.2 200

Tsai [10] 65 1.2 210

Yuzuguler [11] 65 - -

Binas [12] 180 1.8 0.066

Hoang [13] 65 1.2 50

Shreyas [14] 65 1/0.55 294/53

Zhang [15] Software - 200

This work 130 1.2 >1

The noise analysis for the configuration in Figure 3 is the last system performance
measurement. The noise is measured with the hardware set up as a simple classifier
with two classes (OFF being class 0 and ON being class 1). An input is connected to a
current source meter to provide the input current to measure input-referred noise. When
the input is near the decision boundary for the system and the classification operation
is performed, the noise will cause the output to become uncertain. Assuming additive
Gaussian noise, the relative frequency of the class 1 output will be shown to approach the
cumulative density function (CDF) of the normal distribution. The standard deviation σ of
this distribution can be extracted from the data and can be analyzed as the input-referred
rms noise of the system. Two noise analysis runs are performed on this configuration and
are shown in Figures 11 and 12. The measured input-referred noise for the first run is
435.9 pArms with the second run giving a similar result of 432.13 pArms. With a full-scale
input of 100 nA (or greater), the SNRs of the MLP system for this configuration for the
first and second run are 47.21 and 47.29 dB, respectively. The analysis measures the circuit
robustness within system configurations to develop larger neural network architectures
utilizing the detailed subsystems.

Figure 11. First noise analysis run on system.
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Figure 12. Second noise analysis run on system.

3. Materials and Methods

The programmable, energy-efficient analog MLP system contains neurons, winner-
take-all (WTA) circuits, and switching structures as well as several support structures.
The neurons are composed of several multipliers and one sigmoid circuit that are imple-
mented via weak inversion operation, providing increased power efficiency while creating
exponential characteristics within the circuits [16]. The support circuitry consists of nu-
merous copies of biasing cells, switching cells, and shift registers that provide power,
connectivity, and programmability, respectively. The system structure has been constructed
with many copies of these subsystems to create an analog configurable neural network.
The block diagram for the MLP is detailed in Figure 13 without the bias cells and shift
registers. The system has four inputs that are routed to the neurons with two different
types of switching matrices (detailed further in Section 3.4). The switching matrices offer
the ability to create an MLP structure with 12 neurons in a fashion that the user requires.
For example, the user could utilize a single neuron in the first layer that outputs to the next
layer containing 4 neurons that in turn output to the next layer of 2 neurons that could
then output to the winner-take-all circuitry before the signals exit the integrated circuit.
The system limits each layer to four since each neuron only has four input multipliers,
which is to simplify the overall structure to focus on the programmable and low-power
system design. The main objective for this small MLP design is to merge the programma-
bility capable within digital circuits with the energy efficiency achievable within analog
circuits to implement a system that contains constructs that are scalable and improve the
power efficiency of the simple neural network. Section 3.4 details the general operation of
the overall architecture, while Sections 3.1–3.3 describe in further detail the circuitry that
composes the system architecture.
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Figure 13. MLP hardware block diagram for programmable energy-efficient system.

3.1. Multiplier Design

The multiplier in this work is based on the translinear principle developed by
Gilbert [17]. The basic translinear principle states that any closed loop containing an
equal number of devices oriented in both directions (clockwise and counterclockwise loops)
creates a circuit where the product of currents in one orientation equals the product of
currents in the other orientation. Gilbert created the first translinear cells consisting of
bipolar transistors, whereas today designers can utilize MOSFETs in weak inversion to
create the same operation [18].

As the following equations will demonstrate, the multiplication and division operation
of the Gilbert translinear cell is completely reliant upon four currents (I1 through I4) and
not upon device parameters.

J1 J2 = J3 J4 (3)

Equation (3) is based on the translinear principle equating two current loops of equal
pn junctions where J represents the current density of a bipolar transistor.

J4 = J1
J2

J3
(4)

Equation (4) is a manipulation of Equation (3) to isolate a single device’s current
density relative to that of the other three devices.

I4 = I1
I2

I3
(5)

A1 A2 = A3 A4 (6)

Equation (5) represents removing the device sizing characteristics from the current
and is only true when Equation (6) is true. Equation (6) states that the device sizing (in this
case, the emitter area of the bipolar devices) of the first two transistors must equal that of
the second two for the current multiplication or division in Equation (5) to be valid. Gilbert
states in [19] that the devices need not all be the same size but rather only equal in the
same amount of area when their area is multiplied with the area of their corresponding
device. The Gilbert cell configuration coupled with weak inversion operation creates the
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opportunity to develop a MOSFET circuit capable of operating with improved energy
efficiency via current-mode operation in a neural network application.

With control of individual transistor characteristics, the multiplier circuit can be biased
to operate in weak inversion at low current levels. This ability opens up the possibility of a
low-power solution for the multiplier circuit. Weak inversion utilization offers exponential
transfer characteristics and low power consumption [7]. The MOSFET weak inversion
equation is compared with the bipolar exponential equation in the following two equations:

ID = I0
W
L

exp(
κVG −VS

UT
) f or VDS > 4UT (7)

IC = IS exp(
VBE
UT

) (8)

Equation (7) depicts the MOSFET weak inversion drain current, where I0 is a process-
dependent constant, W is the width of the transistor, L is the length of the transistor, κ
is the gate coupling coefficient, VG is the gate voltage, VS is the source voltage, and UT
is the thermal voltage [16]. Equation (8) represents the collector current in a bipolar
transistor, where IS is the saturation current and VBE is the base-emitter voltage [20].
Equations (7) and (8) are highly similar to the largest difference coming from the gate
coupling coefficient (κ) in the MOSFET equation. If assuming that κ equals one, then the
transconductance of a MOSFET and a bipolar transistor are the same, leading to a similar
operation between the weak inversion MOSFET drain current and the bipolar collector
current. Furthermore, Equation (7) directly changes Equation (3) to be the following
for currents:

I
1
κ
1 ∗ I2 = I

1
κ
3 ∗ I4 (9)

While the κ term does not cancel out from both sides of Equation (9), the variance expe-
rienced by the inclusion of the κ term is taken care of by the biasing/weighting constructs
implemented within the system and does not appreciably affect the functionality of the
multiplier within the overall system. While the MOSFET weak inversion operation varies
greatly within real devices, these equations demonstrate the ability to utilize MOSFETs as
exponential devices similar to BJTs for the implementation of the system circuitry.

The multiplier design consists of two different sections. The first section implements
the multiplication operation through a circuit similar to Gilbert’s bipolar cell. The second
section implements two Minch cascode current mirrors to provide the bias or weight signals
(I2 and I3 in Equation (5)). These signals scale the input signal according to the desired
weight characteristic being implemented. Figures 14 and 15 show the circuit diagrams for
the multiplier cell and the Minch cascode current mirrors, respectively. The dimensions of
the transistors are not shown on the figures, but the minimum-sized devices are used for
maximum area density within a neural network application (width of 360 nm and length
of 240 nm). These devices are thick oxide transistors used to take advantage of their higher
threshold voltage for better control of the weak inversion signals.

The multiplier utilizes a current-mode approach to decrease the propagation delay of
the circuit from long wire traces on-chip. The current-mode operation along with the weak
inversion biasing allows the circuit to operate at increased energy efficiency. Current-mode
operation offers the capability for higher data rates due to lower signal propagation delay
times due to the parasitics seen by the current signal. Lower-power operation is obtained
by biasing the circuitry in the weak inversion region, which also maintains the exponential
transistor characteristics required for successful multiplication. Figure 14 depicts the
core circuitry that implements the multiplication operation and is similar to Gilbert’s cell.
The five core transistors exhibit a similar translinear loop seen in Gilbert’s cell due to the
exponential characteristics of the MOSFET weak inversion operation. The addition of
the cascode device in the I1 input pathway allows the multiplier to operate faster while
maintaining signal integrity via a low impedance input node for the current input signals.
Otherwise, there would be significant current division between the input node and the
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source impedance, resulting in attenuation in the signal pathway. The circuit operation is
as follows: the input signal enters via the I1 pathway, the input signal is scaled with the I2m
and I3m weight signals from the Minch cascode circuits, and I4 sinks the current, producing
a scaled version of the input signal with some variations due to transistor mismatch and
weak inversion operation.

Figure 14. Multiplier cell schematic.

Figure 15. Minch cascode bias cell schematics.

The circuits in Figure 15 represent two Minch cascode biasing schemes that transfer
the weight inputs to the multiplier for adjustment of the input signal. The Minch cascode
circuit from [21] creates a low-voltage cascode structure that allows for weak inversion
bias weights while maintaining a lower-voltage rail for the circuit. The Minch cascode
circuit also provides a more accurate current mirroring operation than other simpler current
mirror designs. This effect allows for the multiplier weights to be more reliably reproduced
as they are programmed for physical circuits, even accounting for transistor mismatch and
operation in the weak inversion region. The key to this increased accuracy comes from the
input bias current signal (Ib) that helps reduce the weak inversion current mismatch [21].
The Minch cascode scheme allows the transistors to operate effectively during switching
operations within the minimal voltage headroom seen in modern process technologies.
Since the weight signals are DC values and do not require high-speed operation like the
input signal I1, the Minch cascode cells can easily be integrated with the multiplier cell
while maintaining the weak inversion weights. Figure 16 details the simulation results for
a 100 nA input signal into the multiplier when the weight and saturation currents are also
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set to 100 nA. The current output signal follows the input signal with some variation due to
the utilization of subthreshold signals, but this variation will be resolved at the system level
via adjustment of weights further down the signal processing line (at either the sigmoid
circuit or the next neuron). Additionally, the added current is beneficial to maintaining the
desired current signal levels while the signal propagates through the system. Figure 17
demonstrates some of the DC characteristics of the multiplier for set weighting signals
of 100 nA each, while the input current is swept from 0 to 500 nA. The output signal at
the bottom shows current variations due to the subthreshold design, but these variances
will not impact the functionality of the following sigmoid circuit significantly and can
be adjusted via the control of bias currents in either the sigmoid circuit or the multiplier
circuit itself.

Figure 16. Simulation of the multiplier circuit with an input current of 100 nA and weighting signals
of 100 nA.

Figure 17. Simulation of the Multiplier Circuit with a DC sweep of the input current and weighting
signals of 100 nA.

3.2. Sigmoid Design

The sigmoid circuit is an important base element in the MLP system, creating either a
logistic function or hyperbolic tangent function output (Figure 18) at the end of the neuron
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signal pathway that will propagate onto another neuron within the neural network. For this
work, the logistic function is utilized since it does not require a negatively biased circuit
to operate as in the hyperbolic tangent function. The utilization of current signals in the
sigmoid circuit is desired to allow the MOSFETs to function in the weak inversion region
while operating as quickly as possible.

Figure 18. Logistic function (left) and hyperbolic tangent function (right).

The core circuitry for the sigmoid function consists of three transistors, a differential
pair, and a tail (bias) current [22]. The differential output current of the MOSFET pair is quite
similar to that of the bipolar pair with some differences that stem from using MOSFETs over
bipolar transistors. Analyzing the circuit from Mead, the following equations are generated:

Isat = I0 exp(Vgκ −Vs) (10)

Applying the saturated drain current equation to the differential pair yields:

I1 = I0 exp(V1κ −V) (11)

I2 = I0 exp(V2κ −V) (12)

The drain currents added together must equal the tail bias current:

Ib = I1 + I2 = I0 exp(−V)(exp(V1κ) + exp(V2κ)) (13)

Solving for exp(−V) and substituting into Equations (11) and (12) produces:

I1 = Ib
exp(V1κ)

exp(V1κ) + exp(V2κ)
(14)

I2 = Ib
exp(V2κ)

exp(V2κ) + exp(V1κ)
(15)

Taking the difference of Equations (14) and (15) gives the final tanh function:

I1 − I2 = Ib
exp(V1κ)− exp(V2κ)

exp(V1κ) + exp(V2κ)
= Ib tanh

κ(V1 −V2)

2
(16)

V1 = VTH +

√
Iin

W
2L ∗ µn ∗ Cox

(17)

V2 = VTH +

√
Ire f

W
2L ∗ µn ∗ Cox

(18)

I1 − I2 = Ib tanh
κ(

√
Iin

W
2L ∗µn∗Cox

−
√

Ire f
W
2L ∗µn∗Cox

)

2
(19)
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For all of the above equations, κ is a constant that represents the ratio of the MOS-
FET surface potential of the gate voltage [22]. The basis of these equations requires the
differential pair to have voltage inputs. Since the multiplier design from the previous
section outputs a current signal and the reference signal for the sigmoid circuit being a
current signal, both need to be converted via diode-connected devices represented by
Equations (17) and (18), leading to Equation (19), which is the output current difference
based on the input current and reference current signals. Therefore, it has been established
that a circuit including a differential pair will produce the desired sigmoid function if the
input currents are transformed appropriately to voltages via the diode-connected devices,
and the output currents are effectively subtracted from each other.

Figure 19 is the design obtained that accommodates high-frequency current signals
and outputs the desired logistic function. The sigmoid design is composed of several
current mirrors that relay the input, bias, and output signals to and from the differential
transistor pair at the core of the circuit with all transistors having a minimum width and
length of 360 and 240 nm, respectively. These width and length are the minimum size for
the thicker gate oxide devices available within the 130 nm technology node that offer a
higher threshold voltage, which in turn provides the capability for greater design margin
within the subthreshold region of each device. The basic functionality of the circuit is that
when the main input signal Ip is below the reference input signal In, the output signal Iout
will be near zero current. When Ip becomes much higher in magnitude than In, Iout will
then output a current that is near that of the bias current Ib for the sigmoid. This behavior
is typical of a logistic function at the positive and negative extremes on the horizontal axis.
The reference current In allows for the logistic function’s half point to be shifted further
up the horizontal axis (see Figure 18). This functionality requires the circuit to have more
input current in order to reach the fully saturated bias current output. The functionality
of the sigmoid circuit can only be obtained by operating in the weak inversion region,
which enables the output to take the shape of the desired logistic function for proper
signal propagation.

Figure 19. Sigmoid circuit schematic.

Figure 20 details the simulation results for the sigmoid circuit with a 100 nA switching
current input signal and reference and biasing currents that produce an output signal
that is similar in amplitude to the input signal. Chosen current values were based on the
utilization of the bias cells (discussed in Section 3.4) with a power of 2 increments up and
down from a system reference current of 100 nA. Therefore, a reference current of 25 nA
was utilized alongside a bias current of 200 nA to produce an output current signal of
around 93 nA for propagation to the next neuron in the system. Figure 21 shows the DC
characteristics of the sigmoid circuit as the input signal is swept from 0 to 500 nA with a
bias current of 200 nA and a reference current of 25 nA. The output current signal shows
the activation function and the signal magnitude required for the logistic curve to start.
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The subthreshold variance in the sigmoid circuit keeps the output signal from saturating at
the bias current, but this variance can be dealt with in a similar fashion to the variance seen
in the multiplier with the bias control system (adjustment of either the reference or bias
currents to achieve a sufficient signal magnitude).

Figure 20. Sigmoid circuit schematic simulation with current and reference biasing to maintain a
similar output current signal as the input signal.

Figure 21. Sigmoid circuit schematic simulation with the input current swept from 0 to 500 nA with a
constant reference and bias current of 200 and 25 nA, respectively.

3.3. Winner-Take-All Design

The final standalone circuit before the system circuitry is that of the thresholding
circuit (TC) that creates a WTA circuit when combined with a 2-input OR gate. The TC
receives neuron outputs and outputs a signal based on the highest signal level it receives at
its input. Figure 22 shows a block diagram for the two WTA structures that correspond
to the two system outputs. Each “complete” WTA design consists of a multiplier circuit
(Figure 14) and a TC cell (Figure 23). The multiplier circuit sums the neuron current outputs
at its input terminal and then scales the summed currents to create a better signal for
comparison in the TC cell. The TC cell takes the multiplier output and compares it with a
reference current level. This comparison determines if the signal should remain “high” or
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“low” by creating a voltage at the comparison node that is either just above the threshold
voltages of the following inverters or just below their threshold voltages. The use of the
inverters provides the final output off-chip to be a digital voltage instead of an analog
current signal that then needs to be converted. The inverters have different minimum
widths (160 nm) and lengths (120 nm) compared with that of all the other transistors to
provide faster functionality as they create the digital output voltage and utilize less physical
space. The different minimum width and length stem from utilizing the standard gate oxide
devices that are the main transistor devices available within the 130 nm technology node.

The TC cell in Figure 23 contains three current inputs and one voltage output. The main
input signal Iin that comes from the multiplier (and the neurons before that) goes into a
PMOS Minch cascode current mirror to maintain the signal level and integrity before the
comparison node. The reference current Ib for current comparison is input into an NMOS
Minch cascode current mirror similar to those in the multiplier circuit mentioned previously
in this chapter. The Minch cascode structure requires a bias current Ib1 to operate effectively.
The reference and bias current inputs are taken from system circuits and are DC values.
The inputs Iin and Ib are mirrored and compared against each other at the comparison
node before the two inverters. As mentioned before, this node fluctuates based on the
input signal Iin around the inverter threshold voltages. The output signal Vout is a digital
voltage signal that is then passed on to an OR2 gate. The OR2 gate provides another level
of comparison with another signal chain, ensuring that the MLP system output follows the
winner-take-all concept. Figure 24 demonstrates the winner-take-all circuit functioning in a
simulation environment. The input signal to one of the multipliers is a 100 nA switching
current signal. The weight and saturation currents for the multiplier are both 100 nA with
the biasing signal for the TC cell being the same level. These current signals lead to the
winner-take-all circuit, producing a high digital output signal when the current input signal
is high.

Figure 22. Winner-take-all block diagram.
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Figure 23. Thresholding circuit cell schematic.

Figure 24. Winner-take-all circuit simulation with a 100 nA input current signal and 100 nA weight,
saturation, and biasing signals to produce an output voltage that corresponds to the high signal levels
of the input signal.

3.4. MLP Hardware System Architecture

The system design is based on the structure of field-programmable analog arrays
(FPAAs) or FPGAs such that a similar programmable construct can be achieved. The ar-
chitecture contains several hundred biasing cells that need to be programmed for the
proper operation of the neural network. The basic biasing scheme flows as follows: first,
the master bias current is sent on-chip; next, the master bias is mirrored to the bias control
circuitry that controls whether currents are sent to the neuron/WTA blocks; lastly, the bias
current is sent and mirrored into the bias cells based on how many of the current mirrors
are programmed in each neuron/WTA block. The bias programming is controlled by a
string of shift registers that are made up of basic D-type flip-flops, where an example of a
4-bit shift register can be seen in Figure 25. Figure 26 shows the master bias input current
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structure and one of the current mirrors that would be controlled to send current to a
single neuron or WTA block. Figure 27 details the bias input structure for the neuron and a
single current mirror for the biasing of the neuron or WTA block. The programming of the
neuron or WTA biasing determines the number of current mirrors in parallel for each bias
current input.

The weighting of the multiplier and sigmoid circuits relies upon the programming
of hundreds of bias cells similar to Figures 26 and 27 via shift registers connected directly
to the “Sw” node between the transistors that set the current sink or source and VSS and
VDD, respectively. Several bias cells have been put in parallel for each required bias current
in the multiplier and sigmoid circuits to provide the weights required for an appropriate
system operation. The bias cells for a single current signal would range from 0.25× to 8× or
16×, the master bias input current, which is 100 nA supplied externally. This methodology
offers discrete current steps from 25 nA up to greater than 800 or 1600 nA, depending upon
the circuit’s needed biasing levels. These digitized current levels additionally provided
programming for the user and increased design flexibility.

The system in Figure 13 consists of 12 neurons, 2 WTA blocks for the main system
outputs, S-switch matrices, and C-switch matrices. Starting with the neurons, each contains
four multipliers and a single sigmoid, which is shown in Figure 28. Normally, a neuron for
a configurable architecture would have a much larger number of multipliers per neuron
as each neuron should be capable of receiving inputs from every other neuron in the
previous layer. The total inputs are limited to four per neuron due to IC process limits with
metal layers and interconnects. The constraint on the inputs maintains signal integrity by
decreasing routing and switching characteristics that would be needed for a higher number
of multipliers, and helps constrain the required chip area for the hardware implementation.

Figure 25. Four-bit shift register made up of D-type flip-flops.

Figure 26. Master bias input cell with single current mirror output.
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Figure 27. Neuron/WTA input bias cell with single current mirror output.

Figure 28. Neuron block diagram.

The next structures that will be discussed are the two switch matrices. The C-switch
and S-switch matrices are developed from the switch matrix topology in [23] and take the
forms shown in Figure 29a,b, respectively. The main difference is that the switches in the
matrices are a single PMOS transistor whose gate is controlled by the output of a shift
register instead of a floating gate node. The use of a single PMOS transistor instead of a
floating gate cell for each switching node for connectivity reduces the complexity of the
switching network and the programming complexity. The basic C-switch matrix has eight
vertical routes that can be connected to five horizontal routes (four for neuron inputs and
one for the output). Figure 30 shows these vertical and horizontal routes with the C-switch
(single transistor) linking them together when activated. The S-switch matrix provides the
ability to route a signal north, south, east, or west with as few switches as possible and
can be seen in Figure 31. Each S-switch construct contains six transistors for the desired
signal connections and a 3-bit address decoder to simplify the number of shift registers
required to program a single S-switch structure. Additionally, the S-switch matrix offers
routing through a layer of neurons to the next layer if desired. The connectivity is also
stored within blocks of shift registers, providing a single desired configuration prior to the
application of any input signals.

The system operates by routing one or more of the input signals to the first layer of
neurons. Next, those neurons will weigh their inputs at the multipliers, sum the multiplier
currents together before the sigmoid input, and then output a signal to the next layer of
neurons. This operation will continue until the desired number of layers is achieved or all
resources on the chip are utilized. The last layer of neurons will output to one or both of
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the WTAs that will then amplify and compare the signal with a reference before outputting
the digital version of the final signal. The system requires four data streams for switch
programming, four data streams for neuron and WTA bias programming, and one data
stream for master bias control programming.

Figure 29. Switching structures: (a) C-switch and (b) S-switch.

Figure 30. C-switch matrix.

Figure 31. S-switch matrix.
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The system implementation offers increased configurability for analog neural network
hardware. The improved configurability stems from implementing an FPGA/FPAA-type
routing scheme that allows signal pathways to be created going back and forth throughout
the system to reach the desired resources. Additionally, the simplistic circuit structures
utilized promote the scalability of the overall architecture by offering a “plug and play” type
of circuit blocks that can readily be placed in a system architecture with little adjustment
required to fine-tune the circuit performance. The biasing cells included within each
neuron also provide greater flexibility to control multiplier weighting, sigmoid reference
and biasing, and thresholding circuit response time. In this manner, the designer has
the ability to control the power consumption and speed of the overall architecture via
the programming of the neural network hardware. The programmability of the system
offers the user the ability to create a diverse range of very basic neural networks that are
capable of improved energy efficiency. The programmability also offers the capability to
circumvent the effects that the subthreshold circuit variations have on the signal pathways.
For example, the signal variations caused by the subthreshold design attribute to generally
higher currents on the “high” levels of the signals. This variation can be neutralized by
either adjusting the sigmoid circuit’s reference or biasing levels or altering the biasing levels
of other circuits downstream to be slightly lower to attest for the higher input levels. In this
fashion, the analog variations that occur can be readily adjusted with little to no system
level effects. Figure 32 shows the final layout view of the MLP programmable architecture
that was sent for fabrication within the 130 nm technology node. The design with all circuit
constructs was constrained to a 1 mm by 1 mm square layout space.

Figure 32. Final layout view of the MLP architecture that fits within a 1 mm by 1 mm physical space.
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4. Discussion

The presented programmable and energy-efficient simple neural network design
shows promising results compared with prior art in Tables 3 and 4. The system does
not achieve the highest computational density or power per synapse but does boast a re-
spectable power consumption and power efficiency compared with other works. The com-
putational density is lower than comparable works due to the constraints placed on the
neurons to provide the programmability (i.e., limited to four inputs) and the inclusion
of support circuitry to offer greater designer control over power and signal propagation.
Table 3 also demonstrates that an analog design that is not specifically implemented for a
specialized function can outperform digital designs. However, the lack of system resources
in this architecture does not warrant a direct comparison on typical neural network charac-
teristics in terms of training and inference capabilities, but the small form factor designs for
the multipliers, sigmoid, and WTA circuits coupled with the increased energy efficiency
characteristics of analog, weak inversion design offers the ability to markedly scale up the
neural network architecture in future works for a specialized functionality. The overall
goal of achieving an analog hardware implementation of a programmable neuron array
is to provide (1) scalability with a minimal number of transistors per neuron, (2) higher
frequency operation bridging the gap between analog and digital designs, and (3) lower
power consumption for pushing neural network architectures closer to edge capability.

5. Conclusions

The hardware system is centered around the ability to be both a programmable and
energy-efficient analog network as analog multipliers and sigmoid circuits are already
proven concepts. The first criterion of programmability is successfully demonstrated by
the system via the ten configuration samples that produce the correct, expected outputs.
The energy efficiency criterion is shown through the application and calculation of a
power efficiency that is greater than 1 tera-operations per watt in each configuration.
The system programming and small form factor allow for future designs to build up
the number of available resources within the neural network that would enable a wide
range of applications from image analysis to signal processing to pattern recognition.
The architecture is well suited for this diverse range of applications if it is scaled up to
become more of a true neural network as, right now, it is limited by connections and the
number of inputs it can sustain. Classification measurements are not performed as circuit
operation and functionality are the main focuses for this system prototype.
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