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Abstract: This is the first review of conductive electrets (unpoled carbons and metals), which provide
a new avenue for low-power electronics. The electret provides low DC voltage (µV) while allowing
low DC current (µA) to pass through. Ohm’s Law is obeyed. The voltage scales with the inter-
electrode distance. Series connection of multiple electret components provides a series voltage that
equals the sum of the voltages of the components if there is no bending at the connection between the
components. Otherwise, the series voltage is below the sum. Bending within the component also
diminishes the voltage because of the polarization continuity decrease. The electret originates from
the interaction of a tiny fraction of the carriers with the atoms. This interaction results in the charge
in the electret. Dividing the electret charge by the electret voltage V’ provides the electret-based
capacitance C’, which is higher than the permittivity-based capacitance (conventional) by a large
number of orders of magnitude. The C’ governs the electret energy (1/2 C’V’2) and electret discharge
time constant (RC’, where R = resistance), as shown for metals. The discharge time is promoted by a
larger inter-electrode distance. The electret discharges occur upon short-circuiting and charge back
upon subsequent opencircuiting. The discharge or charge of the electret amounts to the discharge or
charge of C’.

Keywords: electret; power source; low-power electronics; conductor; discharge; charge; graphite;
metal; capacitance; permittivity

1. Low-Power Electronics

Low-power electronics for low-power-consumption analog and digital circuits and
low-power data storage and processing are receiving increasing attention. There are
numerous electronic functionalities, including swing field effect transistor devices, non-
volatile memory, memristors, logic device, electronic skin, sensors, medical monitoring
systems, electronic displays, and neuromorphic computing. The growth of low-power
electronics is partly fueled by the reduction in power requirements for working electronic
and energy systems (including portable and wearable electronics), as enabled by improved
efficiency and component size reduction. It is also fueled by the growing demand for the
“Internet-of-Things” (IoT).

Materials or devices that are exploited for low-power electronics include two-dimensional
spintronics [1], graphene [2,3], soft microbial fuel cells [4], thermoelectrics [5], semiconduc-
tors [6], transition metal dichalcogenides [7], antiferroelectric-like materials in HfZrO2 [8],
piezoelectric nanogenerators [9], transition metal carbide/nitride (MXenes) [10], organic
electronics [11], micro-supercapacitors [12], gallium selenide nanosheets [13], monolayer
MoS2 [14], negative-capacitance field effect transistors [15], TiO2 nanofiber electrodes [16],
ultrathin polymer insulating layers [17], organic conductor–elastomer-metal nanoparti-
cles [18], organic solar cells [19], HfN2 monolayers [20], triboelectric energy harvesters [21],
RF energy harvesting systems [22], iontronic cellulose nanopaper [23], amorphous indium
oxide with tantalum pentoxide [24], and dielectric tantalum pentoxide [25]. In particu-
lar, graphene in the form of heterostructures (with graphene used in combination with
semiconductors or other layered two-dimensional materials) [2] or electrodes [3] has been
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used. An electrode is not a power-providing component but is part of a material system for
providing power.

2. Electret

An electret signifies a material that exhibits a permanent electric dipole. The electret
behavior is a part of the dielectric behavior. It has historically been reported for noncon-
ductors, particularly polymers and ceramics that have been poled [26–31], and has been
exploited for microphones and other devices [32–46]. The poling process entails the appli-
cation of a strong electric field [47–56]. It is disadvantageous in the tendency to depole after
the poling and the consequent need to repole. Electrets in the form of conductors (particu-
larly those without poling) are emerging (since 2019), as reported for flexible graphite [57],
polycrystalline graphite [58], carbon fibers [59], carbon fiber composites [60], steel [61] and
Sn-4Ag [62], all without poling.

Because of the lack of conductivity, the electrets involving nonconductors functioning
as capacitors, with DC electric current being not able to flow through them continuously,
though a DC pulse can flow in the direction from the positive electrode to the negative
electrode (Figure 1a). On the other hand, electrets that are conductors function as resistors
(Figure 1b), with continuous DC flow being feasible. With the provision of both DC voltage
and DC, the conductive electret serves as a power source, which is enabled by the electret
and conductive behavior of a conductor. This concept is new in the field of low-power
electronics. This work is directed at providing the first review of the emerging subject of
conductive electrets for low-power electronics.
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Figure 1. Models for describing the electrical behavior of electrets. C indicates the capacitor. R
indicates the resistor. I indicates the current. (a) An electret that is a nonconductor. (b) An electret
that is a conductor.

Graphite differs from the abovementioned graphene [2,3] in terms of its large number
of carbon layers and its wide availability in various bulk forms. Graphite is widely used
for heating elements and electrochemical electrodes [63–79], but its electret behavior is only
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emerging [57,58]. Because of the electret behavior, graphite is a power-providing material
in the absence of semiconductors or other two-dimensional materials, which are used in
prior work on graphene [2]. Comparison of graphite with various grain sizes indicates
that both the electric field in the electret and the electrical resistivity increase slightly as the
grain size decreases [58].

3. Scientific Origin

The basic science is different from that of all previously reported power sources.
Vibrations are not a mechanism for the energy generation of conductive electrets, although
they are a mechanism in the case of nonconductive electrets. The nonconductive electrets
behave as capacitors, whereas the conductive electrets behave as polarizable conductors
(Figure 1). The mechanism for energy generation is described below for conductive electrets.

The permittivity is the key material property that describes the dielectric behavior. For
a conductor, the permittivity originates from the interaction of a tiny fraction of the carriers
with the atoms. As shown for graphite, the permittivity increases with the inverse of the
grain size linearly [58]. This implies that the carrier-atom interaction occurs at the grain
boundaries. The relative permittivity reaches 106 [80,81]. This is consistent with the “Giant
polarizability” predicted theoretically for conductors by Jonscher (1922–2005) in 1999 [82].

An electret discharges by short-circuiting, and charges back upon subsequent open
circuiting (Figure 2). The fact that discharge occurs without the need for a prior charge is
expected from the fact that the electret does not require poling. In fact, poling enhances the
electret negligibly [83]. In other words, the dipole in the electret is inherent (thermodynam-
ically stable). The greater the inter-electrode distance, the longer the discharge time [58].
The discharge/charge of an electret involves that of capacitance. This capacitance is not the
well-known capacitance that relates to permittivity but is a novel type of capacitance known
as the electret-based capacitance [84]. In contrast to the permittivity-based capacitance, the
electret-based capacitance is defined as the magnitude of the electret charge (determined
by integrating the curve of discharge current concerning the time for the entire discharge
period (Figure 2) divided by the electret voltage V’. The electret-based capacitance C’ is
higher than the permittivity-based capacitance C by numerous orders of magnitude [84].
For example, for Sn-4Ag lead-free solder, C’ is 620 F, whereas C is only 175 pF [84]. The
time constant of the discharge/charge approximately equals RC’ (R = resistance) and the
energy of the discharge/charge approximately equals 1

2 C’V’2, as shown for metals [84].
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Figure 2. The discharge–charge behavior, as illustrated by the curve of the current magnitude (
∣∣I∣∣) as

a function of time (t) during discharge (short-circuited) and the subsequent charge (open-circuited).
The shaded area gives the magnitude of charge Q associated with the discharge/charge.

The fraction of carriers that interact with the atoms is much greater for the electret (DC)
than the permittivity (AC polarization) [58]. For graphite (grain size 1 µm), the fraction of
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carriers that take part in the permittivity reaches 1.2 × 10−9, while the fraction of carriers
that take part in the electret discharge reaches 6.4 × 10−3 [58].

A conductor functions as a resistor with low-resistance (mΩ) (usual function), a
capacitor with low-capacitance (pF, permittivity-based), and a power source that provides
low voltage (µV, electret-based) [85]. The extent of a function compared to the other
functions depends on the dimensions. For a given value of the cross-sectional area A,
increasing the length (the inter-electrode distance l) increases the voltage V’ while reducing
the capacitance C (such that the capacitors are in series). For a given value of l, increasing A
promotes C while reducing the resistance [85].

4. Electret Power Source Behavior

Flexible graphite is made by compacting graphite particles in the form of exfoli-
ated graphite without a binder and is commercially available in the form of large sheets
(Figure 3) [86–94]. Exfoliated graphite is expanded intercalated graphite, such that it has
a cellular structure (Figure 4). The expansion is typically conducted by rapid heating of
the intercalated graphite. Because of the cellular structure, multiple pieces of exfoliated
graphite, with each piece made from a graphite flake, join by mechanical interlocking
without the need for a binder.
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Figure 3. Flexible graphite commercially made by compacting particles of exfoliated graphite.
http://www.mvivek.com/flexible.htm (public domain) (accessed on 5 April 2023).

The greater the inter-electrode distance, the longer the discharge time [58], as men-
tioned in Section 3. Presumably due to the microstructure, flexible graphite in the form
of large sheets (hence making large inter-electrode distances feasible) exhibits a discharge
time that is so long that the electret essentially does not discharge upon short-circuiting.
Thus, this material is particularly suitable for use as a power source and its electret charac-
teristics [95] are described below.

The electret voltage (Table 1) can be increased by a series connection of multiple
pieces of the electret. The voltage is doubled when two essentially identical specimens are
connected in series without bending the electrical connection between the two specimens,
but the series voltage is roughly reduced by 50% when the electrical connection is bent [95].
This is indicated by comparing the case of an unbent connection (a silver-paint butt joint)
(Figure 5) and the case of a bent connection (in the form of aluminum foil attached to the
specimen by using silver paint) (Figure 6). The former gives a voltage that corresponds to
the sum of the voltages of the two specimens that are disconnected from one another, but
the latter gives a voltage that is less than the sum (Table 2).

http://www.mvivek.com/flexible.htm
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Table 1. Electrical characteristics of electret in the form of flexible graphite (specimens labeled S1 and
S2). The S1 + S2 column gives the sum of the values for S1 and S2 when these two specimens are
not connected electrically. The electric field is obtained by dividing the voltage by the inter-electrode
distance [95].

S1 S2 S1 + S2 (Sum)

Dimensions (mm) 683 × 302 × 1.656 680 × 300 × 1.668 /
Inter-electrode distance (mm) 633 ± 0.5 630 ± 0.5 1313 ± 2

Resistance * (mΩ) 14.69 ± 0.12 14.08 ± 0.12 28.77 ± 0.24
Resistivity (10−5 Ω.m) 1.16 ± 0.02 1.12 ± 0.02 /

Voltage before polarity reversal (µV) +1.139 ± 0.010 +1.145 ± 0.005 +2.284 ± 0.015
Voltage after polarity reversal (µV) −0.961 ± 0.009 −1.109 ± 0.007 −2.070 ± 0.016

* Four-probe resistance.

Table 2. Effect of the bending of the series connection of two electrets (S1 + S2) in the form of flexible
graphite. The electret voltage is compared for two cases, i.e., the case of no bending of the electrical
connection and the case of bending of the connection. The two specimens (S1 + S2) positioned side
by side are joined in a butt fashion at their edges. The inter-electrode distance corresponds to the
distance between the proximate edges of the two voltage electrodes, with one electrode positioned
close to the left end of the left specimen (S1) and the other electrode positioned close to the right end
of the right specimen (S2) [95].

Specimens S1 + S2
Inter-Electrode

Distance = 1313 ± 2 mm

Voltage (µV)
Fractional Change in Voltage

Magnitude Relative to the
Sum (%)

Electric Field (µV/m)

Before Polarity
Reversal

After
Polarity
Reversal

Before Polarity
Reversal

After
Polarity
Reversal

Before Polarity
Reversal

After Polarity
Reversal

Without bending in the connection * +2.246
±0.015

−2.105
±0.011

−1.7
±1.3

+1.7
±1.3

+1.711
±0.012

−1.603
±0.009

With bending in the connection † +1.054
±0.027

−1.008
±0.034

−53.9
±1.9

−51.3
±2.4

+0.803
±0.021

−0.768
±0.025

Sum of the voltages of two
disconnected specimens

+2.284
±0.015

−2.070
±0.016 / / +1.740

±0.012
−1.577
±0.012

* For the case without connection bending, the butt joint is obtained by applying silver paint along the full
length of the joint (Figure 5, for S1 + S2). † For the case with connection bending, the butt joint is obtained by
applying a layer of double-sided adhesive tape along the full length of the joint. The two specimens (S1 + S2) are
electrically connected via aluminum foil leads, with a lead protruding from each specimen. The protruded leads
are connected by applying silver paint on the leads (Figure 6, for S1 + S2).
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Figure 5. Configurations for the testing of electrets in the form of flexible graphite. Two specimens
(labeled S1 and S2, Table 1) are electrically connected in series. The connection involves silver
paint applied to the proximate edges of the two specimens so that the connection between the two
specimens is not bent. (a) Schematic illustration (dimensions in mm). (b) Photograph with the 8-inch
ruler (with divisions in inches and centimeters) having main divisions in cm in its lower scale [95].
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Figure 6. Configurations for the testing of electrets in the form of flexible graphite. Two specimens
(labeled S1 and S2, Table 1) are electrically connected in series, such that they are in contact along the
full length of their proximate edges, except for double-sided adhesive tape between the proximate
edges. The electrical connection is achieved by using two aluminum foil electrodes that have been
applied to the specimens using silver paint, which is applied near the proximate edges of the two
specimens. The foils protrude from the specimens and are connected by using silver paint. As a result
of the protruded part of the foil, there is much bending (curling) in the connection. (a) Schematic
illustration (dimensions in mm). (b) Photograph with the 8-inch ruler (with divisions in inches and
centimeters) having main divisions in cm in its lower scale [95].
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Due to the electret voltage, current passes through a series of load resistances in
accordance with Ohm’s Law (Table 3, Figure 7) This supports the possibility of using the
electret as a power source [95].

Table 3. Comparison of the measured and calculated values of the voltage across a load resistor. A
flexible graphite specimen (a single piece, S1, Table 1) is in series with the load resistor [95].

Resistor
Resistance (Ω)

Measured Voltage (µV) Calculated Voltage (µV) Current (µA)

Before Polarity
Reversal

After Polarity
Reversal

Before Polarity
Reversal

After Polarity
Reversal

Before Polarity
Reversal

After Polarity
Reversal

∞ * +1.139
±0.010

−0.961
±0.009 / / / /

10.000 +1.082
±0.005

−0.911
±0.018

+1.090
±0.010

−0.920
±0.009

+0.109
±0.001

−0.092
±0.002

1.000 +0.772
±0.007

−0.628
±0.003

+0.787
±0.007

−0.664
±0.007

+0.787
±0.007

−0.664
±0.006

0.1000 +0.210
±0.005

−0.164
±0.005

+0.208
±0.002

−0.176
±0.002

+2.080
±0.018 −1.760 ± 0.017

* Open-circuit condition.
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Figure 7. Testing an electret in the form of flexible graphite electrically connected to a load resistor
(0.1000 Ω, shown in the bottom region of the image). The specimen is the one labeled S1 (Table 1) [95].

The electret material is preferably not bent, as the bending would decrease the voltage
because of the reduction in the degree of polarization continuity [95]. Polarization conti-
nuity is an emerging concept in the field of the dielectric properties of materials. This is
because nonconductive materials that dominate the study of dielectric behavior are investi-
gated in thin dimensions along the capacitance direction and the thin dimensions do not
allow variations along the thickness direction for the purpose of studying the polarization
continuity [96–99].
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5. Conclusions

This is the first review of the emerging subject of conductive electrets (metals and
carbons without poling), which provide a new avenue for low-power electronics. Electrets
provide multiple electrical functions, namely, serving as power sources and providing
capacitance and resistance, with the functions being tunable via the dimensions (both
length and cross-sectional area) of the electret material.

Electrets provide a low-DC current voltage (µV) while allowing a low DC (µA) to
pass through. Ohm’s Law is obeyed. The voltage scales with the inter-electrode distance.
Series connection of multiple electret components is effective if there is no bending at the
electrical connection between the components, giving a series voltage equal to the sum
of the voltages of the components. In the case of bending at the electrical connection, the
series voltage is below the sum. Bending within a component also diminishes the voltage
because of the decrease in the degree of polarization continuity.

The science is fundamentally different from that of all previously reported power
sources. The electret originates from the interaction of a tiny fraction of the carriers with
the atoms. This interaction results in the charge in the electret. Dividing the electret charge
by the electret voltage V’ gives the electret-based capacitance C’, which is higher than
the permittivity-based capacitance (conventional) by orders of magnitude. Both V’ and
permittivity depend on the microstructure, with the values increasing with decreasing
grain size. The C’ governs the electret energy (1/2 C’V’2) and electret discharge time
constant (RC’, where R = resistance), as shown for metals. The discharge time increases
with increasing inter-electrode distance. Electret discharge occurs upon short-circuiting
and charges back upon subsequent open-circuiting. The discharge/charge of the electret
involves that of C’.

Low-power power sources in the form of conductive electrets constitute a new field
of science. This review focuses on emerging new science. The attraction of this new
technology is that poling is not required and the electret materials (whether carbons or
metals) are widely available. Moreover, because of the absence of any chemical reaction
and the established wide utilization of the materials in structures (e.g., steel structures),
there is no environmental issue. In fact, existing structures (as opposed to new structures)
may be used as power sources. The electret voltage scales with the dimensions, so large
structures are preferred. Because existing large structures are abundant in almost any
city, large structures such as the steel rebars in a building may be used as power sources.
This would involve applying electrodes to each piece (e.g., each rebar) of the structure.
By staggering the discharge start time for different pieces of electret material in the same
structure, continuous energy generation by the structure may be feasible. Thus, no energy
storage is needed, in contrast to this need for wind and solar forms of energy. Both the
common availability of electret materials and the absence of the need for energy storage are
advantageous from the cost viewpoint. However, the very low power is a disadvantage,
though it is expected to increase with the dimensions and with microstructural refinement,
which enhances the abundance of sites for the carrier–atom interaction that is required for
the polarization. As the emerging field progresses, the power is expected to increase.
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