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Abstract: This contribution addresses the numerical optimization of the harvested energy of a
mechanically and electrically nonlinear and nonideal piezoelectric energy harvester (PEH) under
triangular shock-like excitation, taking into account a nonlinear stress constraint. In the optimization
problem, a bimorph electromechanical structure equipped with the Greinacher circuit or the standard
circuit is considered and different electrical and mechanical design variables are introduced. Using
a very accurate coupled finite element-electronic circuit simulator method, deep neural network
(DNN) training data are generated, allowing for a computationally efficient evaluation of the objective
function. Subsequently, a genetic algorithm using the DNNs is applied to find the electrical and
mechanical design variables that optimize the harvested energy. It is found that the maximum
harvested energy is obtained at the maximum possible mechanical stresses and that the optimum
storage capacitor for the Greinacher circuit is much smaller than that for the standard circuit, while
the total harvested energy by both configurations is similar.

Keywords: piezoelectric energy harvesting; finite element method; electronic circuit simulator;
multiphysics optimization; coupled optimization; numerical optimization

1. Introduction

Harvesting energy from the environment will become increasingly vital in the future,
e.g. for powering the Internet of Things [1]. Piezoelectric energy harvesters (PEH) are one
of the most promising solutions, as they provide clean energy and are an alternative to
conventional, non-environmentally friendly energy sources such as batteries [2]. Increasing
the harvested energy is always a goal in the development process of PEHs, and optimization
techniques are applied for this purpose. Because of the direct and indirect piezoelectric
effect, the electromechanical structure and the electric circuit influence each other, and
consequently the harvested energy depends on the complete PEH system. Therefore,
optimizing the PEH system means that both the electromechanical structure and the electric
circuit to be simultaneously optimized for each other.

The geometric shape of a beam-type structure influences the harvested energy and an
optimal beam shape is proposed in Dietl and Garcia [3]. Topology optimization considering
the maximum stress in the piezoelectric material is performed in Wein et al. [4] and yields
a novel design of a cantilevered electromechanical structure. In the two approaches only
linear electromechanical structures are considered and the electric circuits are simplified to
ohmic resistors.

In Miller et al. [5], an optimization of a PEH system under harmonic base excitation is
presented considering a linear electromechanical structure along with a nonlinear electric
circuit. A single-degree-of-freedom model representing the electromechanical structure
is derived and integrated in an electronic circuit simulator (ECS) to enable system sim-
ulation. Ultimately, a sweep over the PEH system parameters is conducted to obtain
optimal values. In Bagheri et al. [6], the optimization of a linear electromechanical structure
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with SSHI circuit under harmonic base excitation is studied. Mechanical and electrical
parameters are introduced as design variables and a semi-analytical model of the PEH
is presented. Subsequently, this semi-analytical model is used to generate training data
for a neural network. Next, the system parameters of the PEH are optimized using a
genetic algorithm in conjunction with the neural network. This approach is limited to linear
electromechanical structures.

Most simulation-based optimization approaches presented in the literature focus ei-
ther on optimizing the electromechanical structure and significantly simplifying the electric
circuit, or vice versa. The few optimization strategies that consider both, the electrome-
chanical structure and the electric circuit only take into account harmonic excitations and
linear electromechanical structures.

Nonlinear constitutive and dissipative behavior of the electromechanical structure
is present for large base excitations, and these nonlinearities must be accounted for in
the simulations [7–9]. Moreover, when the mechanical excitation of linear PEHs does not
coincide exactly with the resonance frequency, the power output drops dramatically [10].
To solve this inherent problem of low bandwidth of linear electromechanical structures,
nonlinearities are intentionally introduced to broaden the bandwidth substantially [11,12].
Hence, accounting for nonlinearities of the electromechanical structure is paramount in
energy harvesting applications but of course complicates the task of optimizing the PEH to
harvest the maximum amount of energy.

This contribution addresses the numerical optimization of a PEH consisting of a
nonlinear electromechanical structure and a nonlinear electric circuit under triangular
shock-like excitation. No simplifications are introduced due to the optimization method
and arbitrary PEHs can be optimized. Firstly, an implicit coupling between a finite element
method (FEM) simulation and an electronic circuit simulator (ECS), recently introduced
by the authors in Hegendörfer et al. [13], is used for the analysis of arbitrary PEHs and
the optimization problem is presented. Performing multiple simulations to evaluate the
objective function is computationally expensive. Hence, a more efficient deep neural
network (DNN) is trained based on a set of training data generated from the coupled FEM-
ECS simulations. A genetic algorithm then uses the trained DNN to determine the optimal
parameters of the PEH that maximize the harvested energy, accounting for a nonlinear
stress constraint.

2. Accurate System Simulations of the PEH

In the following, an implicit coupling between an in-house C++ FEM code based on
the open source FE library deal.ii [14] and the circuit simulator Matlab/Simulink Simscape
is presented. In the approach, recently introduced by authors in Hegendörfer et al. [13], the
full capabilities of the FEM can be exploited for the simulation of the electromechanical
structure. Nonlinearities and changing boundary conditions can be considered. In addition,
an ECS is applied to simulate electric circuits with nonideal components such as diodes.
An efficient implicit coupling algorithm based on Newton’s method ensures convergence
between the FEM and ECS simulations in each time step.

In the following, the FEM and ECS frameworks and the coupling between them are
shortly introduced. More detailed information can be found in Hegendörfer et al. [13].

2.1. FEM Simulation

For the simulation of the electromechanical structure a FEM framework is applied,
which we presented in [15]. A nonlinear piezoelectric constitutive law is used to allow for
large base excitations. In this case, nonlinear elasticity becomes important and must be
considered in the simulations [8]. In Stanton et al. [8] the additional parameters c4 and c6
are postulated for a 1D material model for PZT-5A to include nonlinear elastic behavior via
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a polynomial function. In Hegendörfer et al. [15] this nonlinear elasticity model is extended
to enable 3D FEM simulations and yields

Tij = cE
ijklSkl − ekijEk + c4[Smn Amn]

3 Aij + c6[Smn Amn]
5 Aij

Di = eiklSkl + εS
ijEj (1)

with the structural tensor Aij = aiaj and the vector ai = e1i being equal to the Cartesian
basis vector and denoting the direction with the nonlinear elastic behavior. The piezoelectric
constitutive law relates the mechanical stresses Tij and the dielectric displacements Di with
the mechanical strain Sij and the electric field Ei. Here, cE

ijkl are the components of the

elasticity tensor at constant electric field and εS
ij is the dielectric constant at constant strain.

The mechanical and electrical fields are coupled via the piezoelectric coupling tensor ekij.
These constitutive equations are introduced into the balance of linear momentum (for the
mechanical problem) and Gauss’ law (for the electro-static problem) and solved with the
finite element method.

Ultimately, after applying the FEM for the piezoelectric problem and the Bossak–
Newmark method [16] for direct time integration, the nonlinear vector-valued equation to
be solved results in

rn+1=[1+α] f dyn
n+1−α f dyn

n + f damp
n+1 + f int

n+1− f ext
n+1=0 (2)

whereby rn+1 is the residuum at time tn+1, n corresponds to the current time step, while
n + 1 denotes the next time step to be computed and α is the Bossak–Newmark param-
eter. The force vectors contain the mechanical and electrical fields, whereby f dyn is the
inertial force vector, f damp is the damping force vector, f int is the vector of internal forces
and f ext is the vector of external forces. The force vectors are specified in Appendix A,
Equations (A1)–(A4). In each time step the system of Equation (2) is solved with the
Newton–Raphson method.

To enable efficient FEM time domain simulations, the time step size must be adapted
to the current conditions in the simulation. This adaptive time step control is performed
with an empirical method presented in Hibbitt and Karlsson [17], which is based on the
limitation of a residual calculated between two FEM time steps.

2.2. ECS Simulation

An ECS is a powerful numerical tool for the analysis of arbitrary electric circuits.
Generally, an ECS automatically formulates the electric circuit equations by applying
Kirchhoff’s circuit laws, and, then, a time integration scheme to solve the obtained equations.
In this contribution, the commercial software Matlab/Simulink Simscape is used for the
electric circuit simulation.

In the numerical examples, electric circuits with diodes will be considered. These
nonlinear electric components are modeled using the Shockley equation

iD = ID
S

[
e

vD
nVT − 1

]
(3)

as in Leadenham and Erturk [7]. Thereby, vD is the voltage across the diode, iD is the
current flowing through the diode, n is the ideality factor and VT represents the thermal
voltage. Here, ID

S is a small saturation current, which will flow in reverse direction when
a large reverse voltage is applied. Every real diode has a reverse breakdown voltage at
which a large current will flow in reverse direction. However, this effect is neglected in the
Shockley diode model and, consequently, it is assumed that no breakdown occurs.
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2.3. FEM-ECS Coupling

In Hegendörfer et al. [13] an implicit coupling between a 3D FEM simulation of the
electromechanical structure and an ECS analysis of the electric circuit is introduced. This
coupling method in its voltage controlled form is also used in this contribution and is
summarized in the following.

The equilibrium between the FEM and ECS simulations is iteratively obtained at each
time step. The relevant variables for the FEM-ECS coupling are the electrode voltage ϕel
and the electric current Q̇el leaving the electrode. These values are influenced on the one
hand by the electromechanical structure and on the other hand by the electric circuit. The
equilibrium of these values, used in the FEM simulation and the ECS, has to be ensured in
each time step. The Newton–Raphson method is applied to iteratively solve this nonlinear
coupling equation. Due to the coupling method, there are no constraints on nonlinearities
that can be taken in to account in the FEM simulation or the ECS. Here, the system
simulation method is used to couple the FEM library deal.ii with the Matlab/Simulink ECS.
However, the method is not restricted to any specific software but can be applied to all
FEM and ECS tools that can read and export time step results. A detailed description of
this implicit coupling method is given in Hegendörfer et al. [13].

3. Definition of the Optimization Problem

In the following optimization problems, PEHs are considered that consist of a bimorph
cantilever beam and either a Greinacher circuit or a standard electric circuit. A prescribed
shock-like excitation is applied to the bimorph. The objective of the optimization problem
is to evaluate the optimal design variables of the PEH such that the harvested energy is
optimized. The PEH with the Greinacher circuit is shown in Figure 1 and that with the
standard circuit in Figure 2. The triangular shock-like excitation is illustrated in Figure 3.

D2

a(t)

lG wG

x

y
z

mG
t

CG
2

D1

CG
1

PZT-5A Substructure Electrode

Q̇el

φel

Figure 1. The nonlinear bimorph electromechanical structure with the Greinacher electric circuit.
The four design variables mG

t , lG, CG
1 and CG

2 are indicated.

CS
1

a(t)

lS wS

x

y
z

mS
t

Q̇el

PZT-5A Substructure Electrode

φel

Figure 2. The nonlinear bimorph electromechanical structure with the standard electric circuit. The
three design variables mS

t , lS and CS
1 are indicated.
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Figure 3. Triangular shock-like excitation a(t) with a magnitude of 0.3 mm and a duration of 8 ms.

The bimorph cantilever beam consists of two layers of PZT-5A, bracketing a passive
substructure layer [18]. The layers are poled in opposite directions and connected in series.
The thickness of the layers is 0.26 mm, that of the substructure 0.14 mm. These geometric
parameters are fixed in the optimization. The lenght and the width of the beam can be
changed in the optimization, with the constraint that the PZT-5A volume remains constant.
Therefore, the length is chosen as a design variable. A tip mass is added to the cantilever
beam to ensure a more uniform stress distribution. In the simulation, this tip mass is
modeled as a point mass. Its value mt is used as a design variable in the optimization.

Since PZT-5A is a brittle material it is necessary to ensure that the stresses in the
structure do not exceed the strength of the material. The dynamic tensile strength of PZT-
5A was reported as 27.6 MPa in Berlincourt et al. [19]. Applying a safety factor of 1.5, a
constraint on the maximum principle stress σ1 of σ1 ≤ 18.4 MPa is used in the optimization.

Since the electromechanical structure operates in its resonance frequency, mechan-
ical damping significantly influences its behavior. The damping caused by the electric
circuit is accurately considered in the system simulations. Other sources of damping,
e.g. material damping or support damping, are modeled by means of a Rayleigh type
damping, compare Equation (A4). This simplified model assumes that the damping of the
structure is mass and stiffness proportional. The two Rayleigh coefficients, αR and βR, see
Equation (A4), have to be determined experimentally for each particular structure. During
the optimization process, the geometry of the electromechanical structure changes and
therefore, the Rayleigh coefficients have to be adjusted. To achieve comparable damping in
all configurations, the Rayleigh coefficients are adapted in a way that the damping ratio of
the first vibration mode ζ1 is constant. This damping ratio can be computed by means of
the Rayleigh coefficients as

ζ1 =
αR

2ω1
+

βRω1

2
(4)

and was experimentally measured for the original bimorph structure in Erturk and Inman [18]
as ζ1 = 0.027. This constant damping ratio is ensured for all bimorph configurations in the
simulations by keeping βR = 5 · 10−5 s/rad fix and computing αR from Equation (4), for
ζ1 = 0.027 and the first short-circuit eigenfrequency of the particular configuration ω1.

The bimorph electromechanical structure is connected to two different circuits namely
the Greinacher [20,21] and standard circuit. Figure 1 shows the electromechanical structure
coupled to the Greinacher circuit, which consists of two diodes and two capacitors whose
capacitance values CG

1 and CG
2 are defined as design variables for the optimization. The

harvested energy E(X ) is stored in the capacitor CG
1 and the voltage across CG

1 is denoted
as VG

C1
. Figure 4 presents the typical wave form of the electric voltage and the current on the

electrode for the Greinacher circuit under harmonic base excitation of the electromechanical
structure. Because the polarity of the electric current charging capacitor CG

2 changes during
operation of the circuit, the voltage across capacitor CG

2 also changes its direction. Since the
direction of the voltage VG

C1
across capacitor CG

1 is different than that across CG
2 when the
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electric voltage ϕel increases, the electric voltage value ϕel necessary to charge capacitor CG
1

is reduced. Only one diode is used when charging the capacitor CG
1 , resulting in relatively

low electrical losses.

Time

ϕ
el

Q̇
el

Figure 4. Typical wave forms of electrode voltage ϕel and electric current Q̇el evolutions for the
Greinacher circuit charging a storage capacitor when a harmonic base excitation is applied.

Figure 2 presents the electromechanical structure equipped with the standard circuit.
It consists of four diodes forming a full bridge rectifier and a storage capacitor, whose
capacitance value CS

1 is to be optimized. In Figure 5 the typical wave form of the electrode
voltage and the electric current for the standard circuit under harmonic base excitation
of the electromechanical structure is shown. During charging, the voltage VS

C1
across CS

1
increases and, thus higher electrode voltages |ϕel | are necessary to further charge the
capacitor CS

1 . The performance of the standard circuit does not depend on the polarity of
the electrode voltage ϕel resulting in symmetric wave forms for the electrical signals. When
the capacitor CS

1 is charged, the electric current Q̇el has to pass two diodes, which leads to
higher electric losses compared to the Greinacher circuit.

Time

ϕ
el

Q̇
el

Figure 5. Typical wave forms of electrode voltage ϕel and electric current Q̇el evolutions for the
standard circuit charging a storage capacitor when a harmonic base excitation is applied.

For the electromechanical structure with the Greinacher circuit, there are four design
variables X G in the optimization problem, the length of the beam lG, the tip mass mG

t and
the two capacitances CG

1 and CG
2 . Their lower and upper bounds are given in Table 1. The

electromechanical structure with the standard circuit has three design variables X S, length
of the beam lS, tip mass mS

t and the capacitance CS
1 . Their bounds are given in Table 2.

The optimization problem to maximize the harvested energy reads

max E(X )

s.t. σ1,max(X ) ≤ 18.4 MPa

Xmin ≤Xi ≤ Xmax (5)
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whereby the maximum stress constraint and the bounds for the design variables have to be
taken in to account. The harvested energy E(X ) is stored in the capacitor C1 and can be
obtained as

E(X ) =
1
2

C1VC1(X )2 (6)

whereby VC1 is the voltage across the capacitor C1 and depends on the design variables X .

Table 1. Design variables X G with lower and upper bounds for the configuration with
Greinacher circuit.

Design Variables X G X G
min X G

max

length lG 40 mm 80 mm

tip mass mG
t 5 g 15 g

capacitance CG
1 0 µF 1 µF

capacitance CG
2 0 µF 8 µF

Table 2. Design variables X S with lower and upper bounds for the configuration with
standard circuit.

Design Variables X S X S
min X S

max

length lS 40 mm 80 mm

tip mass mS
t 5 g 15 g

capacitance CS
1 0 µF 1 µF

The solution of the optimization problem (5) usually requires the solution of the system
simulation and the computation of the harvested energy E(X ) for many combinations
of the design variables. Since the system simulations are quite expensive, a deep neural
network is trained to compute the harvested energy and the maximum principle stress
depending on the design variables. After the training phase, this DNN model can then
efficiently be evaluated during the solution of optimization problem (5).

4. DNN Models to Approximates the System Simulations

In the presented optimization problem (5), the harvested energy E and the maximum
mechanical stress σ1,max must be evaluated for a given set of design variables X . Two
separate DNN models are derived for this task, both, the Greinacher and the standard
circuit configurations. Thus, four different DNNs are deduced, two for the Greinacher
circuit configuration (for EG and σG

1,max) and two for the standard circuit (for ES and σS
1,max).

In the following, the generation of training data for the DNNs and the training process
itself are described and the performance of the DNNs is evaluated.

4.1. Generation of Training Data

Training data are essential for the learning process of a DNN to adjust its internal
parameters. The accuracy of the DNNs improves with the amount of training data. Here,
for the configurations with the Greinacher and standard circuit, 800 randomly selected
sets of design variables X are defined in each case. Subsequently, the coupled FEM-ECS
simulation framework is used to evaluate the harvested energy E and the maximum
mechanical stress σ1,max. For each set of design variables X , one time domain system
simulation run is required.

The coupled FEM-ECS simulations are quite expensive. To reduce the computational
costs, an adaptive time stepping scheme is applied, as described in Section 2.1. Furthermore,
a termination criterion for the simulations is introduced. Due to the triangular shock-like
excitation, energy is only harvested during a certain period of time, which depends on the
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particular design variables. When no energy is harvested anymore for longer than 1.3 times
the period of oscillation, the simulation is stopped.

The bimorph electromechanical structure is discretized with 90 quadratic hexahedral
elements. A Young’s modulus of 105 GPa is used for the substructure and the material
parameters for PZT-5A are listed in the Appendix B in Equations (A7)–(A9). For the
ECS analysis in Matlab/Simulink, the daessc solver is used with an automatic choice of
minimum and maximum time step sizes (setting auto). The specified values for the diode
parameters in Equation (3) are listed in the Appendix C. Using one Intel Core i7-9700, one
system simulation with the coupled FEM-ECS approach to evaluate the harvested energy
E and the maximum mechanical stress σ1,max takes about 25 min.

4.2. Training of the DNNs

To efficiently predict the harvested energy E and the maximum mechanical stress
σ1,max two DNNs are used for the each of the two configurations. All DNNs applied in the
present work share a similar structure, consisting of an input layer, one fully connected layer
and an output layer. The input layers for the DNNs for the Greinacher circuit configuration
consist of four neurons, each for one design variable. Consequently, only three neurons
are necessary for the input layer of the two DNNs for the standard circuit configuration.
Subsequently, a fully connected layer is used, where all neurons of this layer are connected
to all neurons of the input layer [22]. For all DNNs a constant number of 100 neurons
in the fully connected layer is chosen. However, this number can be selected freely and
independently for each DNN, but good accuracy was observed for 100 neurons. The output
layer of each DNN contains only one neuron representing either the harvested energy E
or the maximum mechanical stress σ1,max for the two configurations. Figure 6 presents
the structure of the DNN predicting the harvested energy EG for the configuration with
Greinacher circuit.

lG

mG
t

CG
1

CG
2

EG

...

lG

mG
t

CG
1

CG
2

EG

...

lG

mG
t
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2
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mG
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CG
1

CG
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EG
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mG
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mG
t
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1
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2
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...

Input
layer

Fully connected layer

Output
layer

Figure 6. DNN structure for the approximation of the harvested energy EG for the configuration
with Greinacher circuit.

The two datasets containing 800 data points for each configuration were randomly
partitioned into a test set containing 160 data points (20%) and a training set containing
640 data points (80%). The training sets are used to optimize the internal parameters of
the DNNs and the test sets to evaluate the accuracy of the resulting DNNs. This training
process was performed using the Matlab Regression Learner app [22]. In the following, the
accuracy of the DNNs is assessed.

4.3. Performance Evaluation of the DNNs

The trained DNNs are used to predict data points from the test set. Then, the predic-
tions are compared to the true values from the test set to evaluate the accuracy of the DNNs.
Figure 7 presents the comparison between the predictions of the DNNs and the true values
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for the harvested energies of the Greinacher circuit configuration EG and of the standard
circuit configuration ES. The black line represents the perfect accuracy, as the the DNN
predictions agree with the true values. A high accuracy of the two DNNs can be observed.
This is confirmed by the low root mean squared errors (RMSE) and normalized root mean
squared errors (NRMSE) for the DNNs for the harvested energies for both electric circuits

RMSE(EG) = 0.73µJ and NRMSE(EG) =0.06

RMSE(ES) = 0.69µJ and NRMSE(ES) = 0.05 (7)

with

RMSE(Y) =

√
1
n

n

∑
i=1

[
Yi − Ŷi

]2 (8)

and

NRMSE(Y) =
n RMSE(Y)

∑n
i=1 Yi

(9)

where n is the number of data points, Yi are the true values and Ŷi are the DNN predictions.

0 25 50 75 100
0

25

50

75

100

True E [µJ]

P
re

di
ct

ed
E

[µ
J]

Perfect prediction

Observation DNN for EG

Observation DNN for ES

Figure 7. Comparison between true values and predictions of the DNNs for the harvested energy E
for the configurations with Greinacher and standard circuit.

Figure 8 compares the predictions of the DNNs of the maximum mechanical stress
for the configurations with Greinacher σG

1,max and standard circuit σS
1,max against the true

values from the coupled FEM-ECS simulations. A good agreement can also be observed for
both electric circuits

RMSE(σG
1,max) = 0.80 MPa and NRMSE(σG

1,max) =0.05

RMSE(σS
1,max) = 0.62 MPa and NRMSE(σS

1,max) =0.04 (10)

Overall, as the comparisons with the test sets show, the predictions of the trained
DNNs are very accurate. One evaluation of a DNN requires approximately 0.003 s, which
is around 5× 105 times faster than one evaluation with the coupled time domain FEM-ECS
simulation framework. Therefore, the trained DNNs enable the solution and analysis of
the optimization problem (5).
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Figure 8. Comparison between true values and predictions of the DNNs for the maximum mechanical
stress σ1,max for the configurations with Greinacher and standard circuit.

5. Optimization Results

A genetic algorithm is used to solve the optimization problem (5) and to find the
optimal set of design variables for the configuration with Greinacher circuit X̂ G and
for the configuration with standard circuit X̂ S. Genetic algorithms in combination with
DNNs have been shown to be effective for comparable optimization problems in Bagheri
et al. [6], Chimeh et al. [23], Nabavi and Zhang [24]. The idea of a genetic algorithm is
to repeatedly modify a population of individual solutions by using them as parents to
produce the children of the next generation. Over several generations, the population
evolves towards an optimal solution [22]. Genetic algorithms usually need a high number
of objective function evaluations, but these are very inexpensive due to the use of DNNs.

Table 3 presents the optimal values for the design variables for the configuration with
Greinacher circuit X̂ G and for the configuration with standard circuit X̂ S.

To obtain the optimal values X̂ , the genetic algorithm requires around 8.5 × 104

evaluations of the harvested energy EG for the Greinacher configuration and around
6.0× 104 evaluations of ES for the standard circuit configuration since it has one design
variable less.

Table 3. Optimal values for the design variables for the Greinacher configuration X̂ G and for the
standard circuit configuration X̂ S.

X̂ G X̂ S

l̂G = 48.46 mm l̂S = 47.64 mm

m̂G
t = 10.83 g m̂S

t = 12.91 g

ĈG
1 = 0.19 µF ĈS

1 = 0.60 µF

ĈG
2 = 5.79 µF -

The PEHs with these optimal design variables are simulated with the coupled FEM-
ECS simulation method. Table 4 compares the predicted values of the DNNs for the
maximum harvested energy Ê and the maximum mechanical stress σ̂1,max for the optimal
design variables X̂ against the true values obtained by the coupled FEM-ECS simulations.
The relative error is below 5% for the predictions of the DNNs for both configurations,
confirming the accuracy of the DNNs.
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Table 4. Comparison between the results for the optimal design varaibles X̂ of the DNNs against
that of the FEM-ECS coupling for the harvested energy Ê and the maximum mechanical stress σ̂1,max.

Quantity DNNs (X̂ ) FEM-ECS (X̂ ) Rel. Error Abs. Error

ÊG 24.8 µJ 24.1 µJ 2.9% 0.7 µJ

σ̂G
1,max 18.4 MPa 19.1 MPa 3.7% 0.7 MPa

ÊS 26.0 µJ 24.8 µJ 4.8% 1.2 µJ

σ̂S
1,max 18.4 MPa 18.2 MPa 1.1% 0.2 MPa

Figure 9 shows the time signals of the electrode voltage for the Greinacher configura-
tion ϕ̂G

el and for the standard circuit configuration ϕ̂S
el obtained by the coupled FEM-ECS

simulations. In the beginning of the simulation, the electromechanical structure is at rest
and the base excitation starts. The shock-like base excitations results in higher frequency
modes, which can be observed in the zoom-in in Figure 9 on the right. Because the capacitor
ĈG

2 of the optimal Greinacher configuration is relatively large, the electric voltage ϕ̂G
el can

not reach high negative values. As a result, the oscillation of the electric voltage ϕ̂G
el is

shifted into the positive range. Consequently, the storage capacitor ĈG
1 of the optimal

Greinacher configuration is much smaller compared to that of the optimal standard circuit
configuration ĈS

1 and the electric voltage ϕ̂G
el becomes significantly higher than ϕ̂S

el . After
around 82 ms for the Greinacher configuration and at around 66 ms for the standard circuit
configuration the electric voltage ϕ̂el can not reach sufficiently high values anymore to
charge the storage capacitor Ĉ1. Due to the damping, the oscillation of the electrode voltage
ϕ̂el then decays.

0 55 110
−11

0

17

Time [ms]

ϕ
el
[V

]

ϕ̂G
el

ϕ̂S
el

4 5

Figure 9. Time signals of the electrode voltage for the optimal Greinacher ϕ̂G
el and standard circuit

ϕ̂S
el configurations.

Figure 10 presents the time signals of the maximum harvested energy for the Greinacher
ÊG and for the standard circuit configuration ÊS obtained by the coupled FEM-ECS simu-
lations. At the beginning of the simulations, no energy is stored in the storage capacitor
C1 and the harvested energy Ê vanishes. When the electromechanical structure oscillates,
the standard circuit can harvest energy at positive and negative electrode voltages ϕel .
In contrast, the Greinacher circuit can only harvest energy at positive electrode voltage
ϕel . Therefore, the harvested energy of the standard circuit increases more uniformly
compared to the Greinacher circuit. However, the total harvested energy is similar for both
configurations.
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ÊS

Figure 10. Time signals of the harvested energy for the optimal Greinacher ÊG and standard circuit
ÊS configurations.

6. Discussion of the Results

The computational efficiency of DNNs allows for an extended analysis of the opti-
mization problem. The relations between several design variables were examined in detail
and resulted in the following observations:

• The maximum harvested energies are obtained for configurations that result in maxi-
mum principle stresses close to the constraint value.

• The capacitances of the electric circuits have a strong influence on the optimal length
and tip mass of the beam.

• For the Greinacher circuit, the optimal design does not depend on capacitance CG
2 .

To illustrate the first finding, Figure 11 presents the harvested energy for the standard
circuit configuration ES when the tip mass mS

t and beam length lS are varied, with the
capacitor ĈS

1 = 0.60 µF set to the optimal value. Combinations of mS
t and lS that cause

violations of the nonlinear stress constraint in Equation (5) are assigned 0 µJ of harvested
energy since failure of the electromechanical structure is assumed. A clear demarcation
between parameter combinations with admissible and non-admissible stresses is visible. All
parameter combinations along this line give high values for the harvested energy ES since
larger mechanical stresses result in higher harvested energies due to the piezoelectric effect.
The energy values along this line are so close that various optimal parameter combinations
of mS

t and lS are possible, taking into account the accuracy of the DNNs.
There is also a limited region for a small tip mass and a length of 55–60 mm, in

which the stress constraint is violated. The maximum stress σ1,max in this region is slightly
higher than the maximum value of 18.4 MPa, which is also confirmed by the coupled
FEM-ECS simulations. This slight increase in the stresses can be caused by an unfavorable
deformation response of the electromechanical structure, influenced by the capacitance
and the nonlinear piezoelectric material law. For the PEH with the Greinacher circuit,
the harvested energy plotted over lG and mG

t looks very similar. These results affirm the
importance of an optimization procedure including a stress constraint for the piezoelectric
material. Due to the piezoelectric effect, high amounts of energy are harvested for high
stresses in the material. Therefore, evaluation of a stress constraint during the optimization
is required to ensure that the PEH does not only harvest the highest amount of energy but
can also withstand the mechanical stresses that occur.
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Figure 11. Harvested energy ES of the standard circuit configuration for the optimal value of the
capacitor ĈS

1 = 0.60 µF with respect to different tip mass mS
t and beam length lS values. The optimum

point is indicated with a cyan dot.

Figure 12 presents the harvested energy for the Greinacher circuit configuration EG

when the tip mass mG
t and capacitor CG

1 are varied, with the length l̂G = 48.46 mm and
capacitor ĈG

2 = 5.79 µF set to their optimal values. When the stress constraint is violated,
0 µJ of harvested energy is assigned. The optimal combination of mG

t and CG
1 is at the border

defined by the stress constraints. Due to the coupling between the electromechanical struc-
ture and the electric circuit, both the tip mass mt and the storage capacitor CG

1 significantly
influence the mechanical stresses, resulting in a curved boundary of admissible stresses.
The harvested energy for the standard circuit plotted over the mass mS

t and the capacitance
CS

1 looks similar, only that the optimum is obtained for larger values for CG
1 . The energy

curves over the capacitance and the beam length also show similar characteristics. It is
important to note that the capacitance significantly influences the optimal mass and length
values and also the position of the stress constraint boundary. It is therefore clear that
the simultaneous optimization of the electromechanical structure and the electric circuit
is necessary.

Figure 12. Harvested energy EG of the Greinacher configuration for optimal values for the capacitor
ĈG

2 = 5.79 µF and the length l̂G = 48.46 mm and varying values for the mass mG
t and the capacitor CG

1 .
The optimum point is indicated with a cyan dot.

Figure 13 shows the harvested energy for the Greinacher circuit configuration EG

for different capacitors CG
1 and CG

2 while the length l̂G = 48.46 mm and the tip mass
m̂G

t = 10.83 g are set to their optimal values. The capacitor CG
1 has a significant influ-

ence on the harvested energy. In contrast, there is nearly no dependency of the harvested
energy on the capacitor CG

2 . Therefore, it could be neglected and a half-diode bridge circuit
would be obtained. Because significant higher electrode voltages can be reached with the
Greinacher circuit than with the standard circuit, the optimal value for the capacitor of the
Greinacher circuit CG

1 is much smaller than that of the standard circuit CS
1 .
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Figure 13. Harvested energy EG of the Greinacher configuration for optimal values for the tip mass
m̂G

t = 10.83 g and the length l̂G = 48.46 mm and varying values for the capacitors CG
1 and CG

2 . The
optimum point is indicated with a cyan dot.

7. Conclusions

This contribution introduces a numerical approach to find optimal design variables
for an electrically and mechanically nonlinear PEH taking into account a stress constraint.
A single shock event in the form of a triangular shock-like base excitation is considered. A
bimorph electromechanical structure equipped with Greinacher or standard circuit is used
and various design variables are defined that need to be optimized to obtain the maximum
harvested energy. For the system simulation of the PEH an implicit FEM-ECS coupling
method is applied. Within the coupled system simulation, the capabilities of the FEM
and the ECS can be fully exploited and nonlinear PEH under shock-like excitations can be
accurately simulated. However, this highly accurate simulation method is computationally
expensive and inappropriate for a large number of simulations as required for the repeated
evaluation of the objective function during an optimization procedure. Therefore, the
coupled FEM-ECS method is used to generate training data for DNNs that are used
afterwards to evaluate the objective function in the optimization procedure. It is shown that
the trained DNNs are very computational efficient and able to approximate the behavior of
the different PEHs configurations accurately. A genetic algorithm is applied to find optimal
design variables that maximize the harvested energy and do not violate the stress constraint.

The optimal configurations of the PEH with the Greinacher and the standard circuit
harvest approximately the same amount of energy. The optimal value of the storage
capacitor of the Greinacher circuit configuration is much smaller than that of the standard
circuit configuration, resulting in a higher capacitor voltage in the Greinacher circuit
configuration. In energy harvesting applications, higher voltages are usually preferred
because they result in lower electrical losses when the electrical energy in the storage
capacitor is further processed. The result that the two circuits harvest approximately the
same amount of energy applies only to the optimization problem considered and may
change under other conditions, e.g., other base excitations or geometries of the PEH.

For the PEH with both electric circuits the maximum harvested energies occur at the
boundary defined by the stress constraint. The position of this boundary in the parameter
space depends on the electric circuit parameters. It is shown that the storage capacitor has a
significant influence on the admissible tip mass if the stress constraint is not to be violated.
For shock-like excitations, the influence of the capacitor CG

2 of the Greinacher circuit on the
harvested energy is negligible. Consequently, the capacitor CG

2 can be removed without
significant loss of harvested energy and the Greinacher circuit reduces to the half-diode
bridge circuit.

In summary, the DNNs, trained by means of accurate coupled FEM-ECS simulations,
are able to approximate the behavior of nonlinear PEHs under shock-like excitations. The
presented DNN-based numerical optimization procedure can therefore be used to design
and optimize general nonlinear PEHs.
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Appendix A. FEM Simulation

In the FEM, the domain Ω is subdivided into small discrete elements Ωe (“finite
elements”). The unknown solutions, the displacement field uj and the electric voltage ϕ,
are approximated elementwise by means of polynomial ansatz functions and nodal values
as ue

j = N I
j uI and ϕe = N̂ I ϕI , whereby N I

j denotes the vector valued ansatz function

(for the displacements) of degree of freedom I and N̂ I denotes the scalar valued ansatz
function (for the electric voltage) of degree of freedom I. The residuum Equation (2) that
has to be solved for the unknown displacements uj and electric voltages ϕ consists of the
following forces

f dyn =

[
Muuü

0

]
(A1)

f int =


nel
A
e=1

∫
Ωe N I

j,iTij dV
nel
A
e=1

∫
Ωe N̂ I

,jDj dV

 (A2)

f ext =


nel
A
e=1

∫
Ωe N I

i t̄i dV
nel
A
e=1

∫
Ωe N̂ I

j Q̄ dV

 (A3)

with the acceleration ü, the free surface charge density Q̄, the surface traction t̄i and
nel
A
e=1

denotes the assembly of all element contributions to the global vector. The vector of
damping forces f damp is constructed by means of the linear mechanical stiffness matrix Kuu,
the mechanical mass matrix Muu and the velocity u̇ as

f damp =

[
[αR Muu + βRKuu]u̇

0

]
(A4)

with the Rayleigh-coefficients αR and βR. The linear mechanical stiffness matrix Kuu and
the mass matrix Muu result as

Kuu =
nel
A
e=1

∫
Ωe

N I
i,jc

E
ijkl N

J
k,l dV (A5)

Muu =
nel
A
e=1

∫
Ωe

Ni
IρN J

j dV (A6)

whereby ρ denotes the material density.
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Appendix B. PZT-5A Parameters

In the following, material parameters for PZT-5A are provided that are used in this
contribution.

cE=



120.3 75.2 75.1 0 0 0
75.2 120.3 75.1 0 0 0
75.1 75.1 110.9 0 0 0

0 0 0 21.1 0 0
0 0 0 0 21.1 0
0 0 0 0 0 22.6

GPa (A7)

e =

 0 0 0 0 12.3 0
0 0 0 12.3 0 0
−5.4 −5.4 15.8 0 0 0

 C
m2 (A8)

εS=

813.7 0 0
0 813.7 0
0 0 731.9

× 10−11 F
m

(A9)

The nonlinear coefficients for the nonlinear piezoelectric constitutive law (1) were
identified in [8] as c4 = −9.7727× 1017 Pa and c6 = 1.4700× 1026 Pa for the considered
PZT-5A material.

Appendix C. Diode Parameters

In the following, the values used to model the behavior of a diode by means of
Equation (3) are defined.

Diode saturation currentID
S [pA] 1

Diode ideality factor n 1

Diode thermal voltage VT [mV] 26

References
1. Shirvanimoghaddam, M.; Shirvanimoghaddam, K.; Abolhasani, M.M.; Farhangi, M.; Barsari, V.Z.; Liu, H.; Dohler, M.; Naebe, M.

Towards a green and self-powered Internet of Things using piezoelectric energy harvesting. IEEE Access 2019, 7, 94533–94556.
[CrossRef]

2. Safaei, M.; Sodano, H.A.; Anton, S.R. A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later
(2008–2018). Smart Mater. Struct. 2019, 28, 113001. [CrossRef]

3. Dietl, J.M.; Garcia, E. Beam shape optimization for power harvesting. J. Intell. Mater. Syst. Struct. 2010, 21, 633–646. [CrossRef]
4. Wein, F.; Kaltenbacher, M.; Stingl, M. Topology optimization of a cantilevered piezoelectric energy harvester using stress norm

constraints. Struct. Multidiscip. Optim. 2013, 48, 173–185. [CrossRef]
5. Miller, L.M.; Elliott, A.D.; Mitcheson, P.D.; Halvorsen, E.; Paprotny, I.; Wright, P.K. Maximum performance of piezoelectric energy

harvesters when coupled to interface circuits. IEEE Sens. J. 2016, 16, 4803–4815. [CrossRef]
6. Bagheri, S.; Wu, N.; Filizadeh, S. Application of artificial intelligence and evolutionary algorithms in simulation-based optimal

design of a piezoelectric energy harvester. Smart Mater. Struct. 2020, 29, 105004. [CrossRef]
7. Leadenham, S.; Erturk, A. Mechanically and electrically nonlinear non-ideal piezoelectric energy harvesting framework with

experimental validations. Nonlinear Dyn. 2020, 99, 625–641. [CrossRef]
8. Stanton, S.C.; Erturk, A.; Mann, B.P.; Dowell, E.H.; Inman, D.J. Nonlinear nonconservative behavior and modeling of piezoelectric

energy harvesters including proof mass effects. J. Intell. Mater. Syst. Struct. 2012, 23, 183–199. [CrossRef]
9. Stanton, S.C.; Erturk, A.; Mann, B.P.; Inman, D.J. Nonlinear piezoelectricity in electroelastic energy harvesters: Modeling and

experimental identification. J. Appl. Phys. 2010, 108, 074903. [CrossRef]
10. Gammaitoni, L.; Neri, I.; Vocca, H. Nonlinear oscillators for vibration energy harvesting. Appl. Phys. Lett. 2009, 94, 164102.

[CrossRef]
11. Cai, W.; Harne, R.L. Vibration energy harvesters with optimized geometry, design, and nonlinearity for robust direct current

power delivery. Smart Mater. Struct. 2019, 28, 075040. [CrossRef]
12. Zhou, S.; Lallart, M.; Erturk, A. Multistable vibration energy harvesters: Principle, progress, and perspectives. J. Sound Vib.

2022, 116886. [CrossRef]

http://doi.org/10.1109/ACCESS.2019.2928523
http://dx.doi.org/10.1088/1361-665X/ab36e4
http://dx.doi.org/10.1177/1045389X10365094
http://dx.doi.org/10.1007/s00158-013-0889-6
http://dx.doi.org/10.1109/JSEN.2016.2546684
http://dx.doi.org/10.1088/1361-665X/ab9149
http://dx.doi.org/10.1007/s11071-019-05091-6
http://dx.doi.org/10.1177/1045389X11432656
http://dx.doi.org/10.1063/1.3486519
http://dx.doi.org/10.1063/1.3120279
http://dx.doi.org/10.1088/1361-665X/ab2549
http://dx.doi.org/10.1016/j.jsv.2022.116886


J. Low Power Electron. Appl. 2023, 13, 8 17 of 17

13. Hegendörfer, A.; Steinmann, P.; Mergheim, J. An implicitly coupled finite element—electronic circuit simulator method for
efficient system simulations of piezoelectric energy harvesters. J. Intell. Mater. Syst. Struct. 2023, accepted.

14. Arndt, D.; Bangerth, W.; Clevenger, T.C.; Davydov, D.; Fehling, M.; Garcia-Sanchez, D.; Harper, G.; Heister, T.; Heltai, L.;
Kronbichler, M.; et al. The deal.II library, Version 9.1. J. Numer. Math. 2019, 27, 203–213. [CrossRef]

15. Hegendörfer, A.; Steinmann, P.; Mergheim, J. Nonlinear finite element system simulation of piezoelectric vibration-based energy
harvesters. J. Intell. Mater. Syst. Struct. 2022, 33, 1292–1307. [CrossRef]

16. Wood, W.; Bossak, M.; Zienkiewicz, O. An alpha modification of Newmark’s method. Int. J. Numer. Methods Eng. 1980,
15, 1562–1566. [CrossRef]

17. Hibbitt, H.; Karlsson, B. Analysis of Pipe Whip; Technical Report; Hibbitt and Karlsson: RI, USA, 1979. Available online:
https://inis.iaea.org/search/search.aspx?orig_q=RN:11538109 (accessed on 19 December 2022).

18. Erturk, A.; Inman, D.J. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base
excitations. Smart Mater. Struct. 2009, 18, 025009. [CrossRef]

19. Berlincourt, D.; Krueger, H.; Near, C. Properties of Morgan Electro Ceramic Ceramics; Technical Publication TP-226; Morgan Electro
Ceramics: Cleveland, OH, USA, 2000.

20. Qiu, J.; Jiang, H.; Ji, H.; Zhu, K. Comparison between four piezoelectric energy harvesting circuits. Front. Mech. Eng. China 2009,
4, 153–159. [CrossRef]

21. Abidin, N.A.K.Z.; Nayan, N.M.; Azizan, M.M.; Ali, A. Analysis of voltage multiplier circuit simulation for rain energy harvesting
using circular piezoelectric. Mech. Syst. Signal Process. 2018, 101, 211–218. [CrossRef]

22. MATLAB. Version 9.12.0 (R2022a); The MathWorks Inc.: Natick, MA, USA, 2022.
23. Chimeh, H.E.; Nabavi, S.; Al Janaideh, M.; Zhang, L. Deep-Learning-Based Optimization for a Low-Frequency Piezoelectric

MEMS Energy Harvester. IEEE Sens. J. 2021, 21, 21330–21341. [CrossRef]
24. Nabavi, S.; Zhang, L. Design and optimization of a low-resonant-frequency piezoelectric MEMS energy harvester based on

artificial intelligence. Multidiscip. Digit. Publ. Inst. Proc. 2018, 2, 930.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1515/jnma-2019-0064
http://dx.doi.org/10.1177/1045389X211048222
http://dx.doi.org/10.1002/nme.1620151011
https://inis.iaea.org/search/search.aspx?orig_q=RN:11538109
http://dx.doi.org/10.1088/0964-1726/18/2/025009
http://dx.doi.org/10.1007/s11465-009-0031-z
http://dx.doi.org/10.1016/j.ymssp.2017.08.019
http://dx.doi.org/10.1109/JSEN.2021.3102537

	Introduction
	Accurate System Simulations of the PEH
	FEM Simulation
	ECS Simulation
	FEM-ECS Coupling

	Definition of the Optimization Problem
	DNN Models to Approximates the System Simulations
	Generation of Training Data
	Training of the DNNs
	Performance Evaluation of the DNNs

	Optimization Results
	Discussion of the Results
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

