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Abstract: This paper presents a general method, called “self-parameterization”, for designing one-
dimensional (1-D) chaotic maps that provide wider chaotic regions compared to existing 1-D maps. A
wide chaotic region is a desirable property, as it helps to provide robust performance by enlarging the
design space in many hardware-security applications, including reconfigurable logic and encryption.
The proposed self-parameterization scheme uses only one existing chaotic map, referred to as the seed
map, and a simple transformation block. The effective control parameter of the seed map is treated
as an intermediate variable derived from the input and control parameter of the self-parameterized
map, under some constraints, to achieve the desired functionality. The widening of the chaotic region
after adding self-parameterization is first demonstrated on three ideal map functions: Logistic; Tent;
and Sine. A digitized version of the scheme was developed and realized in a field-programmable
gate array (FPGA) implementation. An analog version of the proposed scheme was developed
with very low transistor-count analog topologies for hardware-constrained integrated circuit (IC)
implementation. The chaotic performance of both digital and analog implementations was evaluated
with bifurcation plots and four established chaotic entropy metrics: the Lyapunov Exponent; the
Correlation Coefficient; the Correlation Dimension; and Approximate Entropy. An application of
the proposed scheme was demonstrated in a random number generator design, and the statistical
randomness of the generated sequence was verified with the NIST test.

Keywords: robust chaos, discrete-time map, analog chaotic map, digitized chaos, hardware security

1. Introduction

Chaotic behavior is observed in non-linear deterministic dynamic systems [1]. For
a specific parameter range, the system generates an aperiodic sequence, where the time
trajectory of the sequence shows high sensitivity to the initial value. In chaotic conditions,
even if the system starts from two very close initial states, the output sequence becomes
drastically different [2,3]. The inception of chaos theory was marked by Henri Poincaré’s
observation of non-periodic orbits, in his study on the three-body problem in the 1880s
(translated in [4]); however, to see further development in chaos theory, the world had to
wait for the invention of digital computers. When repeated iterative computation became
easier by virtue of digital computers, Edward Lorenz made an accidental discovery during
his work on weather prediction [5]. Lorenz’s work was reported in a 1963 publication ([6]),
which is regarded as a seminal work of chaos theory in the modern scientific community.

There is a wide range of variety in chaotic systems. Chaotic systems can be one-
dimensional (1-D), where only one function describes the evolution of a single state variable.
On the other hand, there are multi-dimensional (multi-D) chaotic systems, where the time
evolution of more than one state variable is described with the same number of functions.
Based on the nature of time steps in evolution, chaotic systems can be continuous-time,
where the time steps of the trajectory are continuous. Continuous-time systems require at
least three state variables, where the governing functions contain the time-derivative terms.
Another variant is a discrete-time chaotic system, where the trajectory evolves in discrete
time steps, and the next state of the system is a function of the previous state. Discrete-time
systems can have one or more state variables. Well-known examples of 1-D discrete-time

J. Low Power Electron. Appl. 2023, 13, 18. https://doi.org/10.3390/jlpea13010018 https://www.mdpi.com/journal/jlpea

https://doi.org/10.3390/jlpea13010018
https://doi.org/10.3390/jlpea13010018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0002-8868-5854
https://orcid.org/0000-0002-4792-6236
https://doi.org/10.3390/jlpea13010018
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea13010018?type=check_update&version=1


J. Low Power Electron. Appl. 2023, 13, 18 2 of 23

maps are the Sine map [7], the Tent map [8], and the Logistic map [8], while the Hénon
map [9] (discrete time) and the Lorenz system [10] (continuous time) are examples of
multi-D maps. Each variant has its own advantages and shortcomings: for example, multi-
dimensional chaotic systems are used for generating higher-entropy chaos, in preference to
1-D systems, but with the compromise of the additional hardware cost [11]. Generally, the
hardware implementation of discrete-time systems is simpler than continuous-time systems,
where 1-D discrete-time systems provide the most straightforward designs. Although 1-D
discrete-time chaotic systems are claimed to be vulnerable to signal prediction by many
present-day modeling techniques [12], 1-D discrete-time chaotic systems have proved to
be very efficient choices as the building blocks for complex and highly secure chaotic
systems [11,13]: this is why we find the exploration of a hardware-efficient technique to
improve 1-D chaotic systems to be a potential research direction; hence, we will limit our
discussion to 1-D discrete-time chaotic systems.

The aperiodicity of a chaotic system is different from randomness, as the evolution of
the trajectory through time is deterministic, so that we can always reproduce the identical
chaotic sequence, given the knowledge of all the system parameters and the initial state.
The initial state sensitivity is popularly known as the ‘butterfly effect’: this term was
coined by Lorenz in a lecture [14] illustrating that if a butterfly flaps its wings in Brazil,
then, as a consequence, that minor perturbation could, several weeks later, have changed
sunny weather in Texas into a tornado. This deterministic aperiodicity, and the sensitive
dependence on the initial state, have nominated chaotic systems for a number of hardware
security explorations, including encryption [15–21], random number generation [22–30],
reconfigurable logic [31,32], Physically Unclonable Function (PUF) [33–35], side-channel
attack mitigation [36–38], secure communication [39–42], and logic obfuscation [37,43].

Securing resource-constrained devices, such as IoT (internet of things), has become a
serious concern in this era of connected devices [44]. Generally, vendors prioritize price
and speed over security, for small-sized and battery-powered devices [45]: because of
constrained chip area and power, sophisticated encryption protocols, such as Public Key
Infrastructure (PKI), are not an option for these devices. This creates a serious security
threat, as not only do such devices collect and record sensitive human data, but also, in
most cases, they communicate with a centralized server: as a result, they are at risk of
being physically tampered with, and becoming the target of information theft or being
used as an entry point to the centralized server [45,46]. In this scenario, software-based
security solutions are not suitable, as these hardware-constrained devices lack the required
computing and memory support [45]. Moreover, as software-generated keys are stored in
the file systems, they become vulnerable to different attacks [47]. To address these issues,
hardware-based security systems are being extensively explored for resource-constrained
devices [48]. Familiar examples of hardware-based security protocols include Physically
Unclonable Function (PUF)-based authentication [49], and the use of Hardware Security
Modules (HSM) to add a hardware-based security layer to the system architecture [50].

The building block of most hardware-based security systems is one or more circuit
blocks that generate unpredictable outputs: this unpredictability is generated by different
techniques, including the mismatch between the phase jitter of a pair of ring oscillators [33],
and fluctuation in quantum phenomena [51]. Along with those techniques, chaotic systems
are also being extensively explored as potential candidates for hardware-based security
applications [52]. The aperiodic response, and the extreme initial state-sensitivity of chaotic
circuits, from comparatively simple and hardware-efficient designs, have created the broad
prospect of using chaos-generating circuits as the building blocks of the entropy source in
hardware-based security protocols for resource-constrained devices [33].

Most security applications based on chaotic systems are limited to either software-
based encryption algorithms [39,53] or hardware implementations, either in a purely
digital Field Programmable Gate Array (FPGA) domain [7] or analog circuits using off-the-
shelf components, such as operational amplifiers or multipliers [54]. Digital or discrete-
component-based analog designs are not suitable for hardware-constrained integrated
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circuit (IC) implementations, because of their large area and high power demand. The
analog Complementary Metal Oxide Semiconductor (CMOS)-based designs of classical
chaotic maps, including the Logistic map [55], the Sine map [56], and the Tent map [57],
have been reported; however, in the analog CMOS designs as well, the circuits turned
out to be complex and hardware-hungry. On the other hand, some reported chaotic maps
leveraged the built-in non-linearity in MOS transistors, and proposed simpler 1-D chaotic
maps, with characteristic curves similar to classical mathematical functions, which are
capable of generating discrete-time chaotic sequences [58–60].

1-D chaotic maps are useful, as they offer simplicity of implementation. A downside
of 1-D maps is that chaos occurs for a limited parameter range. Furthermore, a good
chaotic property (with high chaotic entropy) is not persistent over the whole parameter
range of that limited chaotic window: as a result, any inevitable variations in the operating
condition or parameter value degrade the chaotic properties, and may even push the
system out of the desired chaotic region to an undesired periodic (non-chaotic) region [7].
Moreover, a wide chaotic range increases the security performance of the applications, like
reconfigurable logic, by increasing the total functionality space [61]. Multiple schemes
have been reported to widen the chaotic range. Dynamic parameter control is one of
those techniques whereby the output of one map is linearly transformed to the chaotic
parameter range of a second map, and the second map is controlled using the transformed
values. The dynamic parameter control scheme has been explored both on mathematical
maps [7] and on CMOS-based chaotic systems [22]. There is a report in which the output of
multiple 1-D chaotic maps are averaged [62] to get a final map that offers a wider chaotic
region than the constituent maps. These reported schemes offer a wide chaotic range, with
promising chaotic properties, but with additional hardware costs, by involving more than
one chaotic map. To present a hardware-efficient scheme, we introduced, in a conference
publication [63], the idea of self-parameterization, where only one chaotic map was used to
implement a self-parameterized chaotic map (SPM) that provided a wide chaotic range.
This paper is an elaborate extension of [63]. The additional contributions of this paper,
compared to the conference publication, are as follows:

• We present the idea of self-parameterization in more detail.
• At first, similar to the conference paper, the scheme is demonstrated in the case of

three ideal mathematical maps: Logistic, Sine, and Tent maps.
• A general design methodology, in the light of stability analysis, was added to this paper.
• Similar to the conference paper, we present a design for a digitized SPM that can be

implemented in FPGA.
• Then, we show the hardware-efficient CMOS-based designs for the analog imple-

mentation of SPM. In this paper, we present three different topologies of maps, and
introduce the corresponding low transistor-count transformation circuits.

• The chaotic performance of the proposed designs was analyzed with different entropy
metrics, along with one additional entropy metric, in this paper.

• We added an application of the proposed scheme in this paper. The application was
demonstrated in a random number generator design. The cryptographic applicability
of the random number generator was verified with an established statistical tool.

The remaining portion of the paper is organized as follows: Section 2 describes the
SPM scheme; Section 3 discusses SPM implementation with ideal mathematical chaotic
maps; Section 4 presents the digitization and FPGA implementation details of SPMs on
mathematical maps; the CMOS implementation of SPMs is discussed in Section 5; the
hardware efficiency of the proposed design is elaborated in Section 6; an application of the
proposed scheme is presented in Section 7; finally, Section 8 gives the concluding remarks.

2. Proposed Scheme

The schematic of the proposed self-parameterized map (SPM) is presented in Figure 1:
it is a non-linear function ( fSPM) that maps a present-state value (xn) to the following state
(xn+1); the control parameter, C, modulates the characteristic of the non-linear mapping.
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The overall schematic represents an iterative system where, after starting from an initial
state, x0, at each iteration, the SPM output (xn+1) is fed back as the input (xn) for the
following state: in this way, a sequence of discrete-time values is generated. Depending on
the value of C, the sequence will have a finite period or it will be chaotic (infinite period).

Figure 1. Schematic of self-parameterization.

Inside the SPM structure, the transformation block (T) represents a linear transforma-
tion function ( fT). The T-block transforms xn and the control parameter, C, with the help of
a multiplier variable, M, and a biasing constant, B, to generate an intermediate variable,
C′, which acts as the effective control parameter of the seed map (SM) that modulates
the non-linear mapping of the seed map inside the SPM block. The transformation is
designed in such a way that C′ always keeps the seed map in its chaotic region of operation:
in this way, at each iteration, the SPM transforms its input (xn) and control parameter
(C) to parameterize its own non-linear function ( fSM), so as to ensure a nearly “robust”
chaotic operation. A chaotic system is considered robust if there exists no periodic region
in the whole region of operation [64]. If the whole region of operation is divided into
multiple narrow chaotic regions and periodic regions, this is sometimes referred to as “frail
chaos” [39]. Widening the chaotic region is important, because a narrow chaotic region—or,
in other words, the existence of periodic regions—can be detrimental to many chaos-based
applications, because then any run-time perturbation may shift the system out of that
narrow chaotic window [62].

3. Analytical Function-Based Maps
3.1. Design Methodology

We will first explore the SPM technique, using three ideal non-linear map functions: the
Logistic map, the Sine map, and the Tent map. Table 1 shows the mathematical expressions
(2nd column), the ranges of the output (3rd column), the control parameter range (4th
column), and the range of the control parameter values that result in chaotic operations
(5th column).

Table 1. Analytical expression for the three 1-D maps.

Map Analytical Expression Output Range Control Parameter Range Chaotic Range
Name ( fSM) [xnl , xnh] [Cl , Ch] [C′

l , C′
h]

Logistic xn+1 = 4Cxn(1− xn) [0, 1] [0, 1] [0.9, 1]

Sine xn+1 = C sin(πxn) [0, 1] [0, 1] [0.87, 1]

Tent xn+1 =

{
2Cxn ; xn < 0.5
2C(1− xn) ; xn ≥ 0.5

[0, 1] [0, 1] [0.52, 0.99]

Figure 2 shows the transfer characteristics of three ideal seed maps of interest, while
Figure 3 presents the transfer characteristics when two seed maps are connected in series
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(xn+1 = f ( f (C, xn))). In both the single (Figure 2) and the cascaded (Figure 3) cases, the
intersection points of the red dashed lines with the transfer curves represent the fixed
points. Fixed points are those points where the next state (xn+1) of the non-linear map
circuit is equal to the present state (xn). If a fixed point is stable, then when an iterative
sequence reaches that value it will be stuck to that fixed point for consecutive iterations. On
the other hand, an unstable fixed point repels the trajectory, and as a result, the sequence
never reaches that point. The stability of a fixed point depends on the slope of the transfer
curve at the intersection points with the xn = xn+1-line. If the slope is less than 1, then the
fixed point is stable, otherwise it is unstable [2].

(a) Logistic (b) Tent (c) Sine
Figure 2. Transfer curves for ideal seed maps.

(a) Logistic (b) Tent (c) Sine
Figure 3. Transfer curves for the cascaded pairs (two maps connected in series) ideal seed maps.

Figure 4a–c show the plots of steady-state sequence values (truncating the first 1000 from
15,000 iterations) for each seed map at different control parameter values (C). Figure 4d–f
show the plots of the slopes of the transfer curves at the fixed points. Figure 4a–c are called
bifurcation plots: as we can see, for example, in Figure 4a, the steady-state sequence bifurcates
to a period of 2 at C = 0.75, where the C ≤ 0.75 region corresponds to stable fixed points.
With the change of C, consecutive bifurcations happen until it hits the chaotic regions (dark
blue regions in the plots). We can see that the slope of Figure 4d–f that corresponds to the
fixed regions is less than 1.

(a) Logistic (b) Tent (c) Sine
Figure 4. Cont.
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(d) Logistic (e) Tent (f) Sine
Figure 4. (a–c) Bifurcation plots of the seed maps; (d–f) slope of the transfer curve at the intersection
between the transfer curves and xn+1 = xn-line.

Figure 5a–c show the bifurcation plots of the cascaded pairs of the ideal seed maps. The
regions with an even-numbered period in Figure 4a–c are reduced by half in Figure 5a–c: that
means, what is a period of two in the single case, is now a fixed point in the cascaded case.
In the slope plots of Figure 5d–f, also, we can identify the fixed point regions where the slope
(for the cases of multiple intersections, the intersection with the minimum slope is taken) is
less than 1. Hence, to ensure robust chaotic performance, we need to modulate the transfer
characteristics in such a way that we can avoid the fixed points and the periodic regions:

C′ = M× (xn + C) + B (1)

C′l ≤ [M× (xnl + Cl) + B] ≤ C′h (2)

[M× (xnh + Ch) + B] ≥ C′l (3)

[M× (xnh + Ch) + B] ≤ C′h (4)

We propose the linear transformation expressed in (1), to perform the transformation
of the T-block in the SPM schematic (Figure 1). The range of the sequence, [xnl ,xnh], the
range of the control parameter, [Cl ,Ch], and the chaotic range of the corresponding seed
map, [C′l ,C

′
h], are used to form the inequalities shown in (2), (3), and (4). The inequalities are

used to solve for two design parameters, M, and B. The solution ensures that the T-block
maps any combination of xn and C into C′, such that C′l ≥ C′ ≤ C′h.

Figure 6 plots the boundary condition shown in (2), (3), and (4): for example, in the
case of the Tent map, the region above the ’Bound-1’ line in Figure 6b satisfies (3), and the
region below the ’Bound-2’ line satisfies (4); the horizontal-axis limit for Figure 6 satisfies (2).
Hence, the purple region of the plot gives the solution space for M and B. We can pick any
convenient (B,M) point from the solution space to implement the SPM.

(a) Logistic (b) Tent (c) Sine
Figure 5. Cont.
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(d) Logistic (e) Tent (f) Sine
Figure 5. (a–c) Bifurcation plots of the cascaded pairs of the seed maps; (d–f) slope of the cascaded
transfer curve at the intersection between the transfer curves and xn+1 = xn-line.

(a) Logistic (b) Tent (c) Sine
Figure 6. Solution-spaces for ideal maps.

Table 2. Analytical expression for the three SPMs.

Map Selected Parameter Values Analytical Expression
Name M, B fSPM(C, xn)

SPM-
Logistic M = 0.01, B = 0.975 xn+1 = [0.04(xn + C) + 3.9]xn(1− xn)

SPM-Sine M = 0.01, B = 0.96 xn+1 = [0.01(xn + C) + 0.96] sin(πxn)

SPM-Tent M = 0.125, B = 0.74 xn+1 =

{
[0.25(xn + C) + 1.48]xn ; xn < 0.5
[0.25(xn + C) + 1.48](1− xn) ; xn ≥ 0.5

Table 2 presents the analytical expressions for the three SPMs with ideal seed maps.
The table shows selected values for two design parameters, M and B. Figure 7 shows the
transfer curves of the three SPMs. The slopes of the single and cascaded pairs in Figure 8
show that the slope is greater than 1 for any value of C, indicating that the SPMs do not have
fixed points or a period of 2 anywhere in the whole design space. For cascaded maps, there
are multiple intersecting points and the shown slope is the minimum intersection slope.
The bifurcation plots in Figure 9 show wider chaotic regions compared to the corresponding
seed maps.

(a) Logistic (b) Tent (c) Sine
Figure 7. Transfer curves for self-parameterized maps (SPMs). The transformation parameters for the
SPMs are: Logistic: B = 0.975, M = 0.01; Tent: B = 0.74, M = 0.125; Sine: B = 0.96, M = 0.01.
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(a) Logistic (b) Tent (c) Sine

(d) Logistic (e) Tent (f) Sine
Figure 8. Slopes of the (self-parameterized map) SPMs’ transfer curves at the intersections between
the transfer curves and xn+1 = xn-line: (a–c) single map; (d–f) cascaded pairs.

(a) Logistic (b) Tent (c) Sine
Figure 9. Bifurcation plots of the self-parameterized maps, generated from ideal seed maps—Logistic,
Tent, and Sine.

3.2. Chaotic Performance Evaluation

The chaotic performance was analyzed with four established entropy matrices: the
Lyapunov Exponent (LE); the Correlation Coefficient (CC); the Correlation Dimension
(CD); and Approximate Entropy (AE).

3.2.1. The Lyapunov Exponent

The Lyapunov Exponent (LE) is one of the most widely used chaotic entropy metrics to
quantify sensitive dependence on the initial state. The LE defines the average separation rate
of two trajectories starting from two very close initial states. A positive LE value indicates
chaotic behavior, while a 0 or negative LE indicates a finite period [65]. The analytical
expression for the LE of a 1-D system is shown in (5) [2]:

LE = lim
N→∞

1
N

N−1

∑
i=0

ln
∣∣∣∣d f (C, Xn)

dX |Xi

∣∣∣∣ (5)

Here, f (C, Xn) denotes the transfer function of a 1-D map, and N is the total iteration
count. The LE of the seed chaotic map and the SPM are calculated with 14,000 steady-state
discrete-time values for each C, and then plotted, as shown in Figure 10. Compared to the
seed maps (SM), the corresponding SPMs provide a positive LE across a wider range of C.
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(a) Logistic (b) Tent (c) Sine
Figure 10. Lyapunov Exponent (LE) comparison of seed maps (SM) to corresponding self-parameterized
maps (SPM).

3.2.2. Correlation Coefficient

We used the Correlation Coefficient (CC) measurement as our second entropy metric,
to verify the sensitive dependence on the initial state and the control parameter. We per-
formed two sets of CC measurements: one for the initial state dependence (CCx0 ), and the
other one for the control parameter dependence (CCC). To measure the sensitivity of the
system output on the initial state (x0), we generated two sets of discrete-time sequences,
one with x0 and another with x0 +∆, where ∆ denoted a small variation. We chose ∆ = 10−5

in this case. Then, we measured the correlation between those two sequences, using (6).

CCx0 =
E
[(

f (C, Xn|X0
)− µ f|X0

)(
f (C, Xn|(X0+∆))− µ f|(X0+∆)

)]
σf|X0

σf|(X0+∆)

(6)

Here, the operator E[.] calculates the expectation, µ denotes the mean, and σ is the stan-
dard deviation. Similarly, we used (7) to calculate the correlation coefficient between two
sequences—one generated with the control parameter, C, and another with C + ∆.

CCC =
E
[(

f (C, Xn)− µ f|C

)(
f (C + ∆, Xn)− µ f|(C+∆)

)]
σf|C σf|(C+∆)

(7)

We performed the CC measurements for a range of C values, and compared the results
between the seed maps and the corresponding SPMs in Figure 11. As we can see, in the case
of the seed maps, the periodic regions of each map show a perfect correlation of 1, while
in the chaotic regions, even that small ∆ variation resulted in two very different chaotic
sequences, and we obtained CC values close to 0, indicating almost no correlation. In both
measurements, for all three maps, the SPM versions offer a CC ≈ 0 almost throughout the
whole C range, indicating a wider chaotic region compared to the corresponding seed maps.

(a) Logistic (b) Tent (c) Sine
Figure 11. Cont.
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(d) Logistic (e) Tent (f) Sine
Figure 11. Comparison of seed maps (SM) to corresponding self-parameterized maps (SPM), in terms
of the Correlation Coefficient measurement, by varying the initial state (CCx0 ), and by varying the
control parameter (CCC).

3.2.3. Correlation Dimension

The Correlation Dimension (CD) was our third metric, which was used to measure
the space dimensionality occupied by a time series. We followed the algorithm proposed
in [66], to calculate the CD of a time series (discrete-time sequence in our case). For a
generated discrete-time sequence {Si|i = 1, 2, . . . , N}, with an embedding dimension of e,
the CD could be calculated using (8):

CD = lim
Vc→0

lim
N→∞

log Ce(Vc)

log Vc
(8)

Here , Ce is the correlation integral, which is defined as shown (9):

Ce = lim
N→∞

1
[N − (e− 1)l][N − (e− 1)l − 1]

×
N−(e−1)l

∑
i=1

N−(e−1)l

∑
j=i+1

θ(Vc − |S̄i − S̄j|) (9)

In (9), θ(α) denotes the unit step function; θ(α) = 1 if α ≥ 0 and θ(α) = 0 if α < 0: here, l is
the time delay unit, and its value is equal to 1 for the discrete-time system. The time-series
S̄t is defined by:

S̄t = (S̄t, S̄t+l , S̄t+2l , . . . , S̄t+(e−1)l);

t ∈ 1, 2, . . . , N − (e− 1)l. (10)

If S̄t exists, then the CD can be calculated from the slope of the log−log plot of Ce(Vc)
versus Vc, as defined by (11):

CD = lim
Vc→0

lim
N→∞

d(log Ce(Vc))/dVc

d(log Vc)/dVc
(11)

The value of the CD is large for a dynamic system that can generate outputs with a large
number of dimensionality and irregular attractors. The CD is close to zero when the attractors
have a low degree of freedom. Figure 12 shows the calculated CD results where we used
e = 2 on 14, 000 steady-state discrete-time values. The periodic regions show CD ≈ 0, and the
chaotic areas show CD ≈ 1. The wider chaotic window from the SPM can also be identified
from this measurement.

3.3. Approximate Entropy

The last entropy metric that we want to employ for examining chaotic complexity is
called Approximate Entropy (AE). AE was developed to quantify the regularity in time-
series data [67]. The unpredictability of fluctuation in a time series is returned as a scalar
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value in AE measurements. A higher AE value indicates a better (than previous observa-
tions) unpredictability of the next point in a time series. A MATLAB-provided built-in
function ([68]) is used to calculate the AE for three ideal maps, and are plotted in Figure 13.
Similar to the previous measurements, 14,000 steady-state discrete-time values are used to
compute AE at each control parameter, C. The chaotic regions of the plots correspond to
higher AE values than the periodic regions, and the SPM traces show consistently high AE
values over a wide range.

(a) Logistic (b) Tent (c) Sine
Figure 12. Comparison of seed maps (SM) to corresponding self-parameterized maps (SPM), in terms
of the Correlation Dimension (CD) measurement.

(a) Logistic (b) Tent (c) Sine
Figure 13. Comparison of seed maps (SM) to corresponding self-parameterized maps (SPMs), in
terms of the Approximate Entropy (AE) measurement.

4. Design for FPGA Implementation

In this section, we present a general framework of the digital design for implementing
the SPMs in an FPGA. We picked SPM-Tent for the demonstration. Figure 14 shows the
schematic of the digital implementation of SPM-Tent. Sequence values in the range [0, 1]
are represented with 65-bit binary numbers. Inputs to the digital circuit of Figure 14 are
represented with different bit sizes, as required. The ’SM_Tent’ block in Figure 14 performed
the Tent mapping with the combinational logic operation. ’T’ denotes another combinational
block that transformed the output from every iteration, and fed to the ’SM_Tent’ block as
the control parameter. The sequential operation of the circuit was handled by the ’FSM’
block that passed the output of the present state to be used as the next state input. The clk
signal timed the circuit, and the start input continued the iteration loop when it was ON.
The circuit was written in Verilog, and was simulated in Xilinx/Vivado.

We verified the output from the digital implementation with an analytical model done
in MATLAB: for this verification, two sets of discrete-time sequences were generated—one
with MATLAB (as mentioned in Section 3), and the other one from Vivado, with x0 = 0.92,
C = 0.85, B = 0.74, and M = 0.125. The values of the first 70 iterations from the MATLAB
and FPGA (Vivado simulation result) implementations are compared in Figure 15. The
difference between the number representation and the finite precision numbers resulted in
a divergence after approximately 60 iterations: this divergence was not a deviance from
accuracy because, in terms of application, neither one of the implementations was more
accurate than the other. What is more significant is whether the chaotic entropy values
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were similar in both implementations. We calculated the LE values from the generated
sequences according to [69] and plotted in Figure 16a. The CD values were calculated for
both sequences, as described in Section 3.2.3, and compared in Figure 16b. We can see a
good match from the plots in both cases.

Figure 14. Schematic for the digital implementation of self-parameterized Tent map.

(a)

(b)
Figure 15. Comparison between the simulated trajectory from the digital implementation (FPGA)
and the analytical model (MATLAB).

(a) (b)
Figure 16. Comparison between the results from the digital implementation (FPGA) and the analytical
model (MATLAB): (a) Lyapunov Exponent (LE) (b); Correlation Dimension (CD).
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5. CMOS Implementation

To demonstrate the self-parameterization scheme in CMOS, we picked three CMOS-
based seed maps from the topologies presented in [60]. Figure 17 presents the schematics of
the CMOS seed maps, and Figure 18 shows the corresponding transfer curves. In the CMOS
case, the iterative operation was performed with the chaotic oscillator shown in Figure 19a.
In the schematic, ’Map-A’ and ’Map-B’ represent two identical nonlinear map circuits.
A switch, φ0, was used to feed the initial state, x0, to the system. At each iteration, an
analog voltage, xn, passed through the forward path containing ’Map-A’, and we obtained
the next state output, xn+1. In the feedback path of a general discrete-time oscillator, the
voltage is sampled with switches, and the hold operation is performed with capacitors.
The sampling is done with two switches, φ1 and φ2. Here, the switches, φ0, φ1 and φ2 were
run by non-overlapping clock pulses, as shown in Figure 19. To reduce the hardware cost
from a large holding capacitor, the hold operation of our design was performed with the
capacitance arising from the CMOS gates of the second map, ’Map-B’. An iteration loop
completed when the output of the feedback path, xn+2, was fed back to the forward path,
as the input for the next iteration. At each iteration, we sampled two analog voltages, xn+1,
and xn+2. The discrete-time analog voltages were recorded for 15,000 iteration loops. Then,
we obtained the steady-state output, by discarding the first 1000 iterations. The steady-state
discrete-time values were used for analyzing the chaotic performance. Steady-state output
voltage sequences were generated for a range of control voltage (C) values, and were
plotted with respect to C, to generate the bifurcation plots in Figure 20, where the dark-blue
regions in the bifurcation plots indicate chaotic operation.

As we can see from the bifurcation plots of Figure 20, the chaotic regions did not cover
the whole design space, 0 V ≤ C ≤ 1 V. We used these three chaotic maps as the seed map
(SM) for demonstrating three CMOS-based SPM implementations. As the chaotic regions
of SM-I, SM-II, and SM-III were situated at three different regions of the design space (left
for SM-I, at the middle portion for SM-II, and right-aligned for SM-III), we selected these
three as representative examples, to show that SPM can be constructed with any chaotic
map having a chaotic range anywhere in the design space.

(a) SM-I (b) SM-II (c) SM-III

Figure 17. Schematics of the CMOS seed maps (SM).

(a) SM-I (b) SM-II (c) SM-III
Figure 18. Transfer curves for the CMOS seed maps (SM).
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(a)

(b)
Figure 19. (a) Chaotic oscillator (b) Clocking scheme.

(a) SM-I (b) SM-II (c) SM-III
Figure 20. Bifurcation of the CMOS seed maps (SM).

The circuits shown in Figure 21 were used for the transformation blocks of the CMOS
seed maps. The topology used for each T-block depended on the position of the chaotic
region in the design space. Each T-block topology had two design parameters, B and M.
Here, B was used as the gate voltage of one transistor, and M as the multiplication factor
with the width of that MOS. We used the stability analysis of fixed points to design for B
and M. We extensively explored a pool of reasonable design choices for B and M, until we
obtained a slope for single and cascaded SPM greater than 1 (the condition for avoiding fixed
points) across the whole design space. Figure 22 shows the plots of the slopes for the three
SPMs under consideration. The chosen transformation parameters were: SPM-I: B = 1 V,
M = 4; SPM-II: B = 0.73 V, M = 1; and SPM-III: B = 0 V, M = 2. The transfer characteristics
of the T-block with the chosen design parameter values are shown in Figure 23. T-blocks
transform any combination of the global control parameter, C, and the input, xn, to generate
a transformed control parameter, C′, that ensures chaotic operation for a particular seed
map. Figure 24 shows the transfer characteristics of the three SPMs.
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(a) T-I (b) T-II
(c) T-III

Figure 21. Schematics of the MOS-based non-linear transformation (T)-blocks.

(a) SPM-I (b) SPM-II (c) SPM-III

(d) SPM-I (e) SPM-II (f) SPM-III
Figure 22. Slopes of the self-parameterized map (SPM) transfer curves at the intersections between
the transfer curves and xn+1 = xn-line: (a–c) single SPM; (d–f) cascade of two SPMs.

(a) T-I (b) T-II (c) T-III
Figure 23. Transfer curves of the non-linear transformation (T)-blocks.
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(a) SPM-I (b) SPM-II (c) SPM-III
Figure 24. Transfer curves for the non-linear transformation (T)-blocks.

To generate the sequence from the SPMs, we used the same chaotic oscillator setup as
presented in Figure 19. In this case, ’Map-A’ and ’Map-B’ consisted of two identical SPMs:
for example, the oscillator for SPM-I consisted of two SPM-I maps, where each SPM-I
contained an SM-I and a T-I, as shown in the schematic of the SPM scheme in Figure 1.

The chaotic oscillator was simulated to generate 15,000 sequence values for a range of
C values. The last 14,000 steady-state values were used for chaotic performance analysis.
Figure 25 shows the bifurcation plots for the three SPMs, where we can see that the chaotic
region covered the whole design space. Figures 26–29 present the comparison of LE, CC,
CD, and AE, respectively, between each seed map and the corresponding SPM. Each chaotic
entropy measurement verified the widening of the chaotic range in the SPM.

(a) SPM-I (b) SPM-II (c) SPM-III
Figure 25. Bifurcation plots of the CMOS-based self-parameterized maps (SPMs).

(a) I (b) II (c) III
Figure 26. Lyapunov Exponent (LE) comparison between CMOS-based implementations of seed
maps (SMs) and corresponding self-parameterized maps (SPMs).



J. Low Power Electron. Appl. 2023, 13, 18 17 of 23

(a) I (b) II (c) III

(d) I (e) II (f) III
Figure 27. Comparison between the CMOS-based seed maps (SM) and the corresponding self-
parameterized maps (SPM), in terms of the correlation coefficient measurement by varying the initial
state (CCx0 ) and by varying the control parameter (CCC).

(a) I (b) II (c) III
Figure 28. Comparison between the CMOS-based implementations of seed maps (SM) and the corre-
sponding self-parameterized maps (SPM), in terms of the correlation dimension (CD) measurement.

(a) I (b) II (c) III
Figure 29. Comparison between the CMOS-based implementations of seed maps (SM) and the corre-
sponding self-parameterized maps (SPM), in terms of the approximate entropy (AE) measurement.

6. Hardware Efficiency

The proposed self-parameterization scheme is hardware-efficient in two aspects.
Firstly, to provide a wider chaotic range, it employs only one non-linear map. This hardware
advantage can be leveraged for both digital and analog implementations. All the digital
implementations proposed in [7,39], and [70] used more than one non-linear mapping to get
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a wide chaotic region. Moreover, most proposed techniques use complex transformations,
such as exponential, and sine mapping, to modulate the control parameter. Unlike those
techniques, the proposed digitized SPM method uses a simple linear transformation to
modulate the control parameter: this is the second aspect of the hardware efficiency of
our proposed design, and is more pronounced in the analog implementation. An analog
method of chaotic range widening was proposed in [22]. A linear transformation was
proposed, to modulate the output of one map before using it as the control parameter for a
second map. A linear transformation can involve costly hardware setup, as it requires some
arithmetic operation with operational amplifiers: hence, in the proposed SPM technique for
IC implementation, we have simplified the transformation operation to a simple nonlinear
transformation, comprising only three to four small MOSFETs (Figure 21). This non-linear
transformation is also more cost-effective, compared to the transmission gate-based trans-
formations proposed in the preceding conference paper ([63]). In this way, the proposed
design gives us a significant hardware benefit compared to the previously proposed works.

7. Application

We have seen that the proposed SPM scheme provides a wide chaotic window, while
employing low transistor-count mapping and transformation circuits: as a result, this
chaotic system can be useful in a number of hardware-based security protocols in the IC do-
main, including chaos-based logic generators for side-channel attack mitigation, physically
unclonable systems, and chaotic random number generation. This paper demonstrates the
application of our proposed self-parameterization method in a random number generator
(RNG) circuit.

7.1. Design of RNG

Figure 30 shows the schematic of the RNG. The basic architecture of this RNG was
presented in [22]. A multiplexer (MUX) selects sequentially among three chaotic oscillators
that are constructed with three CMOS-based SPM topologies, as discussed in Section 5. The
analog voltages from the chaotic oscillators are converted to binary with a 4-bit analog-to-
digital converter (ADC), and the least significant bit (LSB) is stored in a 3-bit shift register.
The XOR of those 3 bits generates 1 random bit. Three phase-shifted clocks with a 33.33%
duty cycle run three oscillators, in such a way that we obtain one XOR output at every clock
cycle. To generate a random data set for statistical analysis, we used 100 unique sets of
three initial states. We used each set to provide three initial states for three oscillators, and
generated 1 million binary bits. Three control voltages were used for the three oscillators,
and were kept fixed across the 100 runs. In this way, a data set of 100 million binary bits
was generated and used for the following statistical test.

Figure 30. Schematic of the proposed random number generator.

7.2. NIST

The NIST SP 800-22 Test Suite from the National Institute of Standards and Technology
(NIST) offers 15 statistical sub-tests to measure the randomness in a sequence [71]. The
test is performed with a bit-stream length of 1 million, and a significance level of 0.01.
A sequence with 100 bit-streams (each bit-stream consists of 1 million binary bits) will pass
a particular test if at least 96 out of the 100 bit-streams generate p-values greater than 0.01.
The test suite allocates each one of the 100 generated p-values in 10 sub-intervals from 0 to
1, and evaluates the uniformity in the distribution with a χ2-test. The sequence under test is
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considered uniform if the p-value generated from the χ2-test (refers to p−valueT) is greater
than or equal to 0.0001. The NIST results are presented in Figure 31. The results show
that the generated sequence passed both the pass rate threshold of 96% and the p−valueT
threshold of 0.0001 for all the 15 sub-tests.

Figure 31. Results of the NIST test. Averages of multiple tests were used for the cases of ’*’-marked
test names.

7.3. Hardware Considerations

The most hardware-demanding part of this RNG design is the ADC [22]. The ADC
overhead increases exponentially with the number of bits. The ADC bit length required
for an RNG to pass the NIST test is directly related to the chaotic complexity of the map
used. The stronger the chaotic property of the maps, the lower will be the ADC bit length
that is required to ensure the adequate randomness of the RNG output to pass the NIST
test. The design proposed in [22] required at least an 8-bit ADC to pass the NIST test. The
proposed RNG design of this paper employed a 4-bit ADC, and still passed the NIST test.
This improvement in the design indicates the promising chaotic properties of the proposed
SPM topologies.

The simulation for the CMOS-based implementation was done in the SPICE (Simula-
tion Program with Integrated Circuit Emphasis)-class circuit simulator of Cadence, which
is called Spectre, and a 45 nm CMOS process was used. There was no stochastic component
added to the simulations: as a result, the simulation results were purely deterministic,
which means that, given the same set of system parameters (C, x0, and so on), a chaotic
oscillator will generate an identical chaotic sequence every time we run the simulation.
Hence, the simulated number sequence from the proposed RNG is not truly random,
because the simulation result is reproducible. This aperiodic but reproducible number
sequence is called a pseudo-random sequence, and the circuit is called a pseudo-random
number generator (PRNG) [52]. Our proposed RNG circuit is a PRNG in the simulation;
however, in a physical chip, there will inevitably be cycle-to-cycle perturbations, such as
the noise-driven drift of node voltages, power supply noise, temperature variation over the
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course of operation, and so on. These variations, even if they are small in amplitude, will
eventually be amplified by the chaotic nature of the circuit, and the circuit response will
not be deterministic anymore, making it close to a true random number generator (TRNG)
in practice [60,72]. Apart from cycle-to-cycle run-time variation, the physical chip will be
subjected to another type of variation, which is process variation. Due to process variations,
the response from two different chips, even with the exact same design, will be different.
The advantage of process variation is that we will get physically unclonable random num-
ber generators, and the effect of the variation will be amplified by the chaotic nature of
the circuits [73]. On the other hand, the challenging part is to ensure that the circuit still
remains in the chaotic region, as the location of the chaotic region in the bifurcation plot
may shift from the simulation results, due to the process-driven variations [74,75].

8. Conclusions

In this work, we have presented a hardware-efficient scheme for developing robust
chaotic systems. Unlike traditional schemes requiring more than one chaotic map, the
proposed self-parameterization scheme provides a wide chaotic range, by using only one
chaotic map. The general design methodology was presented, and is applicable to any 1-D
chaotic map. The theoretical aspect of the reasoning behind how self-parameterization is
widening the chaotic range was demonstrated in detail, with the help of a stability analysis.
The self-parameterization idea was first realized in the case of three ideal mathematical
chaotic systems. The digitization of the scheme was presented, to show its applicability
to FPGA-based implementations. The proposed scheme was then implemented with full-
custom CMOS circuits. It was demonstrated that self-parameterization can be realized in
analog CMOS by using hardware-efficient topologies with minimal transistor count. The
chaotic performance of the proposed scheme was analyzed with established chaotic entropy
measures, to justify the performance improvement. An application of the proposed scheme
was demonstrated in a random number generator, and the statistical randomness of the
generated sequence was verified with the NIST test. Depending on the design requirement,
both analog and digital designs are suitable for implementing entropy-generating blocks
for hardware-security applications in hardware-constrained implementations.
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