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Abstract: A generalized structure for implementing fractional-order controllers is introduced in this
paper. This is achieved thanks to the consideration of the controller transfer function as a ratio of
integer and non-integer impedances. The non-integer order impedance is implemented using RC
networks, such as the Foster and Cauer networks. The main offered benefit, with regards to the
corresponding convectional implementations, is the reduced active and, also, passive component
count. To demonstrate the versatility of the proposed concept, a controller suitable for implementing
a cardiac pacemaker control system is designed. The evaluation of the performance of the system
is performed through circuit simulation results, using a second-generation voltage conveyor as the
active element.

Keywords: fractional-order controllers; fractional-order integrators; fractional-order capacitors; curve
fitting approximation; pacemakers; second generation voltage conveyors

1. Introduction

The functional block diagram of a fractional-order proportional-integral-derivative
(PIλDµ) controller is demonstrated in Figure 1. Assuming that Kp, Ki and Kd are con-
stants associated with the proportional, integral, and derivative stages, respectively, and
0 < λ, µ < 1, being the order of the integration and differentiation stages, respectively, then
the transfer function of a PIλDµ controller is given by (1)

C(s) = Kp +
Ki

sλ
+ Kdsµ . (1)

The extra degrees of freedom, originating from the non-integer order of the integration
and differentiation stages of fractional-order controllers, offer the capability of easily and
accurately adjusting the shape of the open-loop frequency response of control systems
in order to meet the specifications related to the phase margin and settling time. This is
in contrast to their integer-order counterparts, where only the associated time constants
of the integration and differentiation stages can be adjusted [1–8]. A detailed discussion
about the performance of the fractional-order controllers with regards to their integer-order
counterparts has been provided in [9–11].
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Figure 1. Typical functional block diagram of a fractional-order PIλDµcontroller.

The realization of the functional block diagram in Figure 1 can be performed by the
following ways:

(a) utilizing RC networks (e.g., Cauer or Foster type) for approximating the behavior of
fractional-order capacitors of the corresponding integration and/or differentiation
stages, which are derived form their integer-order ones through the substitution of
conventional capacitors by fractional-order capacitors [12]. This has been followed
in [1,13–15]. The problem is that each-one of the required fractional-order capacitors
must be substituted by a RC network, resulting in complicated structures in terms
of passive component count. Although this is an easy procedure, in the sense that
just only one design step is required for deriving the structure of the fractional-order
controller, there is not capability of electronic adjustment of the characteristics of
the controller.

(b) utilizing approximation tools, such as Oustaloup [16], continued fraction expansion
etc., of the fractional-order Laplacian operator in order to approximate the behavior of
the intermediate fractional-order transfer functions of the controller (i.e., integrator and
differentiator). The resulting integer-order rational transfer functions are implemented
using conventional filter design techniques, such as the employment of multi-feedback
or cascaded structures. This procedure has been followed in [17–20]. Considering an
n th–order approximation of the Laplacian operator sr, with 0 < r < 1 being the order
of the operator, the resulting transfer function has the form of (2)

sr ' Pnsn + Pn−1sn−1 + . . . + P1s + P0

sn + Qn−1sn−1 + . . . + Q1s + Q0
, (2)

with Pi and Qj (i = 0 . . . n, j = 0 . . . n− 1) being positive and real coefficients. Taking
into account that a PIλDµ controller is constructed from stages of different orders,
the resulting transfer function that describes the behavior of the controller will have
an order equal to 2n, where n is the order of the approximation. Therefore, this
solution suffers from the increased active and passive component count, worsening
the performance of the system in terms of circuit complexity and power dissipation.
On the other hand, it might be useful in the case where electronic adjustment of the
characteristics of the controller would be required.

The motivation of this work is the development of PIλDµ controllers structures, which
have almost halved circuitry of that required in the cases where the conventional synthesis
methods are followed. The main contributions made in this work can be summarized
as follows: (a) the consideration of the controller’s transfer function as a ratio of integer
and non-integer impedances, instead as a sum of the outputs of scaling, integration, and
differentiation stages, and (b) the approximation of the frequency behavior of the fractional-
order impedance using a curve-fitting based approximation tool available in MATLAB. The
approximation impedance function can be implemented by Cauer or Foster RC networks.
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An attractive feature is that only one RC network is required for implementing the whole
structure of the controller.

With regards to our previously published paper in [21] the enhancements are the
following: (a) a detailed comparison of the proposed structure with the conventional im-
plementations is performed, (b) possible RC networks for approximating fractional-order
impedances are considered, (c) possible implementations of the introduced concept are
presented, and (d) the implementation of the controller has been performed using an alter-
native active element and, therefore, new simulation results are presented. The employed
active element is the second generation voltage conveyor (VCII), which contributes to fur-
ther reduce the power dissipation of the circuits, because of its relatively simple structure.
As an application design example, a heart rate control system suitable for pacemakers is
designed, and its performance is evaluated using the Cadence IC Design suite and MOS
transistor models provided by the Austria Mikro Systeme (AMS) 0.35 µm CMOS process.

This work is organized as follows: the conventional implementations as well as the
proposed one, using various types of active elements, are presented in Section 2, where the
offered benefits are also discussed. The application example is provided in Section 3, while
its behavior is evaluated in Section 4 through simulation results.

2. Proposed Implementation of Generalized Controller
2.1. Conventional Topologies

A typical implementation of the functional block diagram in Figure 1, using opera-
tional amplifiers (op-amps) as active elements, is demonstrated in Figure 2a [1]. As the
impedance of a fractional-order capacitor is given by the general expression in (3)

Zα(s) =
1

Cαsα
, (3)

with 0 < α < 1 being the order of the element and Cα being the pseudo-capacitance (in
Farad/s1-α) [22], the realized transfer function is

C(s) =
Rp2

Rp1

+
1

RλCλsλ
+ RµCµsµ . (4)

Equalizing the coefficients of (1)–(4) the design equations, summarized in (5), are readily
obtained

Kp =
Rp2

Rp1

, Ki =
1

RλCλ
, Kd = RµCµ . (5)

Another alternative is the employment of second-generation current conveyors (CCIIs)
as active elements, and the resulting structure is shown in Figure 2b. Considering the
basic properties of the terminals of CCII (i.e., υX = υY, iY = 0, iX = ±iZ), the realized
transfer function as well as the design equations are the same as those in (4) and (5). A
drawback of this structure is the requirement of employing extra voltage buffers, in order
to avoid the effect of loading from subsequent stages. This can be resolved using Current
Feedback Operational Amplifiers (CFOAs), which are actually CCIIs with an extra buffer
internally embedded in their structure. The behavior of CFOAs is described by the formulas:
υX = υY, iY = 0, iX = iZ, υZ = υO and, therefore, the topology in Figure 2c implements the
transfer function in (4).

The last active element which will be considered is the second-generation voltage conveyor
(VCII), which is described by the following set of equations: υY = 0, iX = ±iZ, υZ = υX.
In other words, it can be considered as a special case of a CFOA with its Y terminal
grounded, offering the aforementioned benefits of the CFOA. In addition, thanks to its
internal structure constructed from one voltage and one current buffer, in contrast to the
CFOA where 2 voltage buffers and one current buffer are required, its circuitry is simpler
to that of the CFOA, offering also reduced power consumption [23–28]. The topology
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depicted in Figure 2d, realizes the same transfer function as the aforementioned ones and,
consequently, the design equations in (5) are still valid.
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Figure 2. Typical implementations of a PIλDµ controller using (a) op-amps, (b) CCIIs, (c) CFOAs,
and (d) VCIIs as active elements.

Due to the absence of fractional-order capacitors in the market, their behavior will be
emulated through the utilization of appropriately configured Foster or Cauer RC networks.
Following this procedure and choosing among a variety of approximation tools, such
as the Oustaloup, continued fraction expansion etc., the expression of the impedance of
a fractional-order capacitor (Cα) is approximated by an nth–order rational integer-order
impedance function of the form in (6)

Zapprox(s) '
Bnsn + Bn−1sn−1 + . . . + B1s + B0

sn + An−1sn−1 + . . . + A1s + A0
, (6)

with Ai (i = 0 . . . n− 1) and Bj (j = 0 . . . n) being positive and real coefficients.
The impedance function in (6) can be implemented by the Cauer or Foster networks

depicted in Figure 3. In the case of the Cauer type-I and type-II networks, the associated
design equations are summarized in (7) and (8) respectively.

R0 = q0 Ri = qi Cj = qj, i = 2, 4 . . . 2n j = 1, 3 . . . 2n− 1 , (7)
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R0 =
1
q0

Ri =
1
qi

Cj =
1
qj

, i = 2, 4 . . . 2n j = 1, 3 . . . 2n− 1 , (8)

where qi(j) are the coefficients of the continued fraction expansion of the Zapprox(s) in
(6) [22].

Accordingly, the design equations of the Foster type-I and type-II networks are given
by (9) and (10)

R0 = Bn Ri =
ri
|pi|

Ci =
1
ri

, (i = 1, 2 . . . n) , (9)

R0 =
1

Bn
Ri =

1
ri

Ci =
ri
|pi|

, (i = 1, 2 . . . n) , (10)

with ri and pi being the residues and poles of Zapprox(s).
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≈R4
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Figure 3. RC networks for approximating the behavior of the fractional-order capacitors, which are
required for implementing the controllers in Figure 2. (a) Cauer type-I, (b) Cauer type-II, (c) Foster
type-I, and (d) Foster type-II.

Considering an nth–order approximation, the number of required active and passive
elements for implementing a PIλDµ controller following the conventional methods are
summarized in Table 1. It is obvious that the complexity of the structure rapidly increases
with the order of the approximation.

Table 1. Passive and active component count for implementing the controllers in Figure 2, employing
an nth–order approximation for emulating the behavior of the fractional-order capacitors.

Topology
Number of

Active Elements
Number of
Resistors

Number of
Capacitors

Figure 2a 4 2n + 10 2n
Figure 2b 4 (plus 3 buffers) 2n + 10 2n
Figure 2c 4 2n + 10 2n
Figure 2d 4 2n + 11 2n
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2.2. Proposed Generalized Structure

In order to overcome the aforementioned problem, the transfer function in (1) is
written as

C(s) =
Rex ·

(
Kp +

Ki
sλ + Kdsµ

)
Rex

, (11)

with Rex being an arbitrary value resistance.
The associated design equations are provided in (12)

Z1 = Rex Z2(s) = Rex · C(s) , (12)

with C(s) given by (1).
Another option is writing the transfer function in (1) as

C(s) =
Rex
Rex

Kp+
Ki
sλ +Kdsµ

, (13)

with the associated design equations summarized in (14)

Z1(s) = Rex/C(s) Z2 = Rex . (14)

Generalizing, the transfer function of the controller can be expressed as a ratio of two
impedances Z1 and Z2

C(s) =
Z2

Z1
. (15)

The choice of the impedance which will have fractional-order form depends on the behavior
of the frequency response of the controller. Taking into account that the frequency behavior
of the RC networks in Figure 3 is capacitive (i.e., the magnitude of the impedance decreases
with the frequency) because they intend to approximate the behavior of fractional-order
capacitors, then Z2(s) = Rex · C(s) in the case that the controller has such behavior. In the
opposite case, Z1(s) = Rex/C(s) in order to ensure that the fractional-order impedance is
realizable by the RC networks in Figure 3.

The implementation of (15), using op-amps, CCIIs, CFOAs, and VCIIs as active
elements is demonstrated in Figure 4a–d.
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Figure 4. Proposed implementations of a PIλDµ controller using for (a) op-amps, (b) CCIIs, (c) CFOAs
and (d) VCIIs as active elements.
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The implementation of the fractional-order impedance function can be performed by
the following techniques:

(a) Approximating the intermediate terms that form the impedance using suitable tools
such as the Oustaloup and the continued fraction expansion methods. Considering a
nth–order approximation, the resulting order of the impedance Z1(s) or Z2(s) will be
equal to 2n and therefore the number of passive components of the RC networks will
be equal to 4n + 2.

(b) Approximating the magnitude and phase frequency characteristics of the impedance.
The approximation is performed using the Sanathanan-Koerner (S-K) least square
iterative method based on the following steps [21,29].

• Obtain the frequency response data of the impedance, within the desired frequency
range, using the MATLAB freqresp and frd functions.

• Assuming an approximation order, obtain the state-space model of the data using the
command fitfrd, and then convert this model to a transfer function using the MATLAB
command ss2tf.

The resulting integer-order rational impedance function will be given by (6) and, conse-
quently it always has an order equal to the order of the employed approximation (i.e.,
equal to n). Therefore, the number of passive components of the RC networks will be equal
to 2n + 1. In other words, the number of resistors and capacitors required for construct-
ing the Cauer of Foster networks is halved, compared to those required by employing
the approximation of the intermediate terms of the impedance. In order to compare the
implementations depicted in Figure 4a–d, in terms of complexity, Table 2 is established.

Table 2. Passive and active component count for implementing the controllers in Figure 4a–d,
employing an nth–order approximation for emulating the behavior of a fractional-order impedance.

Topology
Number of

Active Elements
Number of
Resistors

Number of
Capacitors

Figure 4a 2 n + 4 n
Figure 4b 1 (plus 1 buffer) n + 2 n
Figure 4c 1 n + 2 n
Figure 4d 1 n + 2 n

Inspecting Tables 1 and 2, it is readily concluded that the proposed concept offers
significant reduction in terms of active and passive component count, making it attractive
for implementing control systems with reduced circuit complexity and, also, power dissipa-
tion. According to the results of Table 2, it seems that CFOAs and VCIIs implementations
are the most beneficial ones. Taking into account that the internal structure of a CFOA is
constructed by two voltage buffers and a current follower, while the VCII is formed by
only one voltage buffer and a current follower, the VCII will be utilized in the next Section,
where a design example will be provided, due to its simpler structure.

3. Design Example: Controlling the Heart Rate in a Pacemaker

A pacemaker is a battery-operated implantable device used to overcome arrhythmia
situation, and uses slow electrical pulses for sustaining the heart rhythm at a normal rate.
It is constructed from the sensing unit which senses the patient’s heart rate, and the output
unit, which sends out electrical signals to heart muscles. In the case of bradycardia (the
heart rate becomes slow) the output unit starts sending excitation signals to the heart
muscles for maintaining the heart rate at the normal rhythm.

Let us consider for example the closed-loop system of the cardiac pacemaker, where
C(s) is the transfer function of the controller, P(s) is the product of the transfer functions
which describe the dynamics of the pacemaker and the heart [30–32]. The transfer function
of the controller in [32] has been derived using the Particle Swarm Optimization (PSO)
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algorithm. The objective of the PSO algorithm is to minimize systems’ several error
functions, including integral absolute error (IAE), integral time absolute error (ITAE),
integral square error (ISE), and integral time square error (ITSE), subject to time or frequency
domain constraints, such as the maximum overshoot, rise time and settling time, or system’s
gain and phase margins. The resulting transfer function is given by the expression in (16)

C(s) = 0.72594 +
0.1

s0.01 + 0.1s0.9786 , (16)

while the dynamics of the heart and pacemaker are described by (17)

P(s) =
1352

s(s + 20.8)(s + 8)
. (17)

The transfer function C(s) has such behavior that the choice Z2 = Rex and Z1(s) = Rex/C(s)
is the suitable one, according to the discussion provided in Section 2.2.

Assuming that Rex = 10 kΩ and utilizing a 3rd–order Oustaloup approximation in the
range [10−1, 102] rad/s, then the resulting expression of Z1(s) is the following

Z1(s) =
15.76 s3 + 1.114 · 105s2 + 4.958 · 106 s + 2.199 · 107

s3 + 55.96 s2 + 626.8 s + 1822
. (18)

The magnitude and phase responses obtained through the MATLAB software are provided
in the plots of Figure 5, where the corresponding ideal ones are also plotted by dashes.
In addition, the accuracy of the utilized approximation is evaluated at transfer function
level and the results are provided in Table 3, where it is evident that a satisfactory level of
accuracy is achieved.
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Figure 5. Magnitude and phase frequency responses of the impedance Z1(s), approximated by (18).
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Table 3. Comparison of the theoretical and approximated open and closed-loop performances of the
control system [21].

Parameter Theoretical Approximation

Phase margin (◦) 70.39 70.34
Gain crossover frequency (rad/s) 6.34 6.34

Rise-time (ms) 308.1 236.4
Settling-time (ms) 472.7 355.4

4. Simulation Results

The performance of the controller will be evaluated using the Cadence IC design suite
and the design kit provided by the AMS 0.35 µm CMOS process. The circuitry of the
employed VCII- is depicted in Figure 6 [26]. The dc power supply voltages are VDD =
−VSS = 1.5 V, and the dc bias current (I0) is equal to 20 µA. The dc power dissipation of
the controller is 613 µW. The aspect ratios of the MOS transistors are summarized in Table 4.

IB

VSS

VSS

Mn10 Mn11

Mn1 Mn2 Mn3

Mn5

Mn4

VDD

Mp1 Mp2 Mp3

Mn8

Mn6

Mn7

Mn12 Mn13
Mn9

Mp4 Mp5 Mp8 Mp9

ZXY

Mp6 Mp7

Figure 6. Internal structure of the VCII- employed in simulations [26].

Table 4. MOS transistors aspect ratios of the VCII- topology in Figure 6.

Transistor Aspect Ratio (µm /µm )

Mp1–Mp9 200/2
Mn1–Mn4 20/2
Mn5–Mn6 20/0.4
Mn7–Mn11 2/2
Mn12–Mn13 4/2

The values of the passive elements of the RC networks in Figure 3 calculated using
(7)–(10), rounded to the E96 series defined in IEC 60063 standard, are summarized in
Tables 5 and 6.

Table 5. Passive elements of Cauer networks in Figure 3a,b, for approximating the impedance
Z1(s) = Rex/C(s).

Element Cauer Type-I Cauer Type-II

R0 15.8 Ω 12.1 kΩ
R2 1 kΩ 931 Ω
R4 1.96 kΩ 118 Ω
R6 215 Ω 18.7 Ω
C1 9.09 µF 9.76 µF
C3 15.8 µF 178 µF
C5 953 µF 196 µF
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Table 6. Passive elements of Foster networks in Figure 3c,d, for approximating the impedance
Z1(s) = Rex/C(s).

Element Foster Type-I Foster Type-II

R0 15.8 Ω 12.1 kΩ
R1 187 Ω 15.8 Ω
R2 10.7 kΩ 60.4 kΩ
R3 1.24 kΩ 511 kΩ
C1 127 µF 9.09 µF
C2 10.2 µF 0.412 µF
C3 174 µF 0.392 µF

Choosing, for demonstration purposes, the Foster type-I network in order to imple-
ment the impedance Z1(s), the obtained magnitude and phase responses are demonstrated
in Figure 7, where the theoretically predicted ones are also plotted as dashes. The sensi-
tivity performance of the RC network is evaluated using the Monte-Carlo analysis tool
offered by the Analog design Environment of the IC design suite. The obtained statistical
plots of the magnitude and phase of the impedance at the gain crossover frequency (i.e.,
6.34 rad/s), for N = 500 runs and 10% random tolerances of the passive elements values,
are demonstrated in Figure 8. As the values of the standard deviation of the magnitude
and phase are 6.8 Ω and 0.04◦, and the associated mean values are 9.72 kΩ and −35.2◦, it is
verified the robustness of the employed network.
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Figure 7. Simulated gain and phase responses of the Foster type-I network, realized using the values
in Table 6, for approximating the impedance Z1(s).
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Figure 8. Monte Carlo analysis results about the (a) magnitude, and (b) phase of the impedance
Z1(s), approximated by a Foster type-I network.

The magnitude and phase frequency responses of the controller are provided in
Figure 9, with the corresponding theoretically predicted ones given as dashes, confirming
the accurate operation of the introduced scheme of the controller. The open-loop responses
of the controller-plant system are demonstrated in Figure 10.

The closed-loop behavior of the system is evaluated by stimulating it by a step voltage
and the derived output waveform is provided in Figure 11. The derived performance
simulation results for both open-loop and closed-loop configuration are given in Table 7,
where it is readily obtained that the system behaves in a satisfactory level of accuracy.
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Figure 9. Simulated gain and phase responses of the proposed controller.
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Figure 10. Open-loop gain and phase responses of the system controller-plant.
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Figure 11. Step response of the system controller-plant.

Table 7. Comparison of the approximated and simulated open and closed-loop performances of the
control system.

Parameter Approximation Simulation

Phase margin (◦) 70.34 71.14
Gain crossover frequency (rad/s) 6.34 6.42

Rise-time (ms) 236.4 230.6
Settling-time (ms) 355.4 341.5

The sensitivity of the system is evaluated using the Monte-Carlo analysis tool and con-
sidering the effect of mismatching of MOS transistors, as well as of the process parameters
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variations. The obtained statistical plots of the phase margin and gain crossover frequency
are demonstrated in Figure 12a,b, where the associated values of the standard deviation
are 0.2◦, and 0.07 rad/s. Taking into account that the corresponding mean values are
71.14◦ and 6.42 rad/s, it is concluded that the proposed implementation offers reasonable
sensitivity characteristics.

In addition, a corner analysis is performed considering ±10% variation of the dc
power supply voltages, corners of the temperature equal to 0 ◦C and 40 ◦C, and worst case
transistor models determines as slow NMOS and slow PMOS. The derived step responses
are demonstrated in Figure 13, where the worst case values of the rise-time and settling-time
are 226 ms and 320.3 ms, with the nominal values being 230.6 ms and 341.5 ms, respectively.
The above results confirm the robustness of the designed system.
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Figure 12. Monte-Carlo analysis results of the (a) phase margin, and (b) gain crossover frequency of
the control system (N = 500 runs).
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Figure 13. Output waveforms for a step input equal to 100 mV, obtained through corner analysis.

5. Conclusions

The novel concept, where the transfer function of a PIλDµ controller is expressed as
an impedance ratio has been presented in this paper. The main offered benefit is that the
resulting structures are very simple, in the sense that the number of active and passive
components is minimized, with regards to the conventional procedure where each one of the
fractional-order Laplacian operator terms is approximated. This is achieved because, in the
presented procedure, the whole impedance transfer function is approximated instead of the
intermediate terms of the transfer function. Thanks to this approach, the resulting rational-
order transfer function has half of the order of that derived by the conventional approach.

As a demonstration example, a heart rate control system for pacemakers has been
realized and the derived simulation results confirm the correct operation of the controller
and, also, its attractive sensitivity performance. A 3rd–order approximation has been
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chosen for implementing the resulting approximation function; generally, the order of the
approximation depends on the frequency range of interest and a trade-off between the
level of accuracy and the circuit complexity is performed for choosing the optimal value of
the order.

It must be also mentioned at this point that the presented procedure is general and,
therefore, future research steps could include the following: (a) application of the pro-
cedure in other types of fractional-order controllers, such as PIλ, PDµ, (b) application of
the procedure in the case of power-law controllers, and (c) exploitation of possible Field
Programmable Gate Array (FPGA) or Field Programmable Analog Array based (FPAA) im-
plementations [33–37] of the controller, where digital programmability will be offered. Last
point is the following: the presented procedure is oriented to the MATLAB software and
the exploitation of the suitability of open-source software, such as the SciLab software [7] or
the development of a Python language based routine, might be useful for further enhancing
its versatility and availability.
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1. Podlubny, I.; Petráš, I.; Vinagre, B.M.; O’leary, P.; Dorčák, L. Analogue realizations of fractional-order controllers. Nonlinear Dyn.

2002, 29, 281–296. [CrossRef]
2. Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu-Batlle, V. Fractional-Order Systems and Controls: Fundamentals and Applications;

Springer Science & Business Media: Berlin, Germany, 2010.
3. Xue, D. Fractional-order control systems. In Fractional-Order Control Systems; de Gruyter: Berlin, Germany, 2017.
4. Azar, A.T.; Radwan, A.G.; Vaidyanathan, S. Fractional Order Systems: Optimization, Control, Circuit Realizations and Applications;

Academic Press: Cambridge, MA, USA, 2018.

http://doi.org/10.1023/A:1016556604320


J. Low Power Electron. Appl. 2023, 13, 13 15 of 16

5. Dastjerdi, A.A.; Vinagre, B.M.; Chen, Y.; HosseinNia, S.H. Linear fractional order controllers; A survey in the frequency domain.
Annu. Rev. Control 2019, 47, 51–70. [CrossRef]

6. Petráš, I. Applications in Control; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2019.
7. Bingi, K.; Ibrahim, R.; Karsiti, M.N.; Hassan, S.M.; Harindran, V.R. Fractional-Order Systems and PID Controllers; Springer: Berlin,

Germany, 2020.
8. Muresan, C.I.; Birs, I.; Ionescu, C.; Dulf, E.H.; De Keyser, R. A Review of Recent Developments in Autotuning Methods for

Fractional-Order Controllers. Fractal Fract. 2022, 6, 37. [CrossRef]
9. Chevalier, A.; Francis, C.; Copot, C.; Ionescu, C.M.; De Keyser, R. Fractional-order PID design: Towards transition from state-of-art

to state-of-use. ISA Trans. 2019, 84, 178–186. [CrossRef]
10. Tepljakov, A.; Alagoz, B.B.; Yeroglu, C.; Gonzalez, E.; HosseinNia, S.H.; Petlenkov, E. FOPID controllers and their industrial

applications: A survey of recent results. IFAC-PapersOnLine 2018, 51, 25–30. [CrossRef]
11. Tepljakov, A.; Alagoz, B.B.; Yeroglu, C.; Gonzalez, E.A.; Hosseinnia, S.H.; Petlenkov, E.; Ates, A.; Cech, M. Towards industrializa-

tion of FOPID controllers: A survey on milestones of fractional-order control and pathways for future developments. IEEE Access
2021, 9, 21016–21042. [CrossRef]

12. Buscarino, A.; Caponetto, R.; Graziani, S.; Murgano, E. Realization of fractional-order circuits by a constant phase element. Eur. J.
Control 2020, 54, 64–72. [CrossRef]

13. Domansky, O.; Sotner, R.; Langhammer, L.; Jerabek, J.; Psychalinos, C.; Tsirimokou, G. Practical design of RC approximants of
constant phase elements and their implementation in fractional-order PID regulators using CMOS voltage differencing current
conveyors. Circuits Syst. Signal Process. 2019, 38, 1520–1546. [CrossRef]

14. Kapoulea, S.; Psychalinos, C.; Baranowski, J.; Bauer, W. CCII based realization of fractional-order PD controller for a position
servo. In Proceedings of the 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), Budapest,
Hungary, 1–3 July 2019; pp. 102–105. [CrossRef]

15. George, M.A.; Kamat, D.V.; Kurian, C.P. Electronically tunable ACO based fuzzy FOPID controller for effective speed control of
electric vehicle. IEEE Access 2021, 9, 73392–73412. [CrossRef]

16. Oustaloup, A.; Levron, F.; Mathieu, B.; Nanot, F.M. Frequency-band complex noninteger differentiator: Characterization and
synthesis. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2000, 47, 25–39. [CrossRef]

17. Dimeas, I.; Petras, I.; Psychalinos, C. New analog implementation technique for fractional-order controller: A DC motor control.
AEU-Int. J. Electron. Commun. 2017, 78, 192–200. [CrossRef]

18. Sotner, R.; Jerabek, J.; Kartci, A.; Domansky, O.; Herencsar, N.; Kledrowetz, V.; Alagoz, B.B.; Yeroglu, C. Electronically
reconfigurable two-path fractional-order PI/D controller employing constant phase blocks based on bilinear segments using
CMOS modified current differencing unit. Microelectron. J. 2019, 86, 114–129. [CrossRef]

19. Bauer, W.; Baranowski, J. Fractional PIλD Controller Design for a Magnetic Levitation System. Electronics 2020, 9, 2135. [CrossRef]
20. George, M.A.; Kamat, D.V.; Indiran, T. OTA-C Realization of An Optimized FOPID Controller for BLDC Motor Speed Control.

IETE J. Res. 2021, 1–19. [CrossRef]
21. Nako, J.; Psychalinos, C. Heart Rate Controller Design for Cardiac Pacemaker. In Proceedings of the 2022 Panhellenic Conference

on Electronics & Telecommunications (PACET), Tripolis, Greece, 2–3 December 2022; pp. 1–4.
22. Tsirimokou, G. A systematic procedure for deriving RC networks of fractional-order elements emulators using Matlab. AEU-Int.

J. Electron. Commun. 2017, 78, 7–14. [CrossRef]
23. Safari, L.; Barile, G.; Ferri, G.; Stornelli, V. High performance voltage output filter realizations using second generation voltage

conveyor. Int. J. RF Microw.-Comput.-Aided Eng. 2018, 28, e21534. [CrossRef]
24. Safari, L.; Barile, G.; Stornelli, V.; Ferri, G. An overview on the second generation voltage conveyor: Features, design and

applications. IEEE Trans. Circuits Syst. II Express Briefs 2018, 66, 547–551. [CrossRef]
25. Safari, L.; Barile, G.; Ferri, G.; Stornelli, V. Traditional Op-Amp and new VCII: A comparison on analog circuits applications.

AEU-Int. J. Electron. Commun. 2019, 110, 152845. [CrossRef]
26. Safari, L.; Yuce, E.; Minaei, S.; Ferri, G.; Stornelli, V. A second-generation voltage conveyor (VCII)–based simulated grounded

inductor. Int. J. Circuit Theory Appl. 2020, 48, 1180–1193. [CrossRef]
27. Yesil, A.; Minaei, S. New simple transistor realizations of second-generation voltage conveyor. Int. J. Circuit Theory Appl. 2020,

48, 2023–2038. [CrossRef]
28. Yuce, E.; Safari, L.; Minaei, S.; Ferri, G.; Barile, G.; Stornelli, V. A New Simulated Inductor with Reduced Series Resistor Using a

Single VCII±. Electronics 2021, 10, 1693. [CrossRef]
29. Bingi, K.; Ibrahim, R.; Karsiti, M.N.; Hassam, S.M.; Harindran, V.R. Frequency response based curve fitting approximation of

fractional-order PID controllers. Int. J. Appl. Math. Comput. Sci. 2019, 29, 311–326. [CrossRef]
30. Arunachalam, S.P.; Kapa, S.; Mulpuru, S.K.; Friedman, P.A.; Tolkacheva, E.G. Intelligent fractional-order PID (FOPID) heart rate

controller for cardiac pacemaker. In Proceedings of the 2016 IEEE Healthcare Innovation Point-of-Care Technologies Conference
(HI-POCT), Cancun, Mexico, 9–11 November 2016; pp. 105–108.

31. Bajpai, S.; Alam, M.; Ali, M. Intelligent Heart Rate Controller using Fractional Order PID Controller Tuned by Genetic Algorithm
for Pacemaker. Int. J. Eng. Res. Technol. 2017, 6, 715–720.

http://dx.doi.org/10.1016/j.arcontrol.2019.03.008
http://dx.doi.org/10.3390/fractalfract6010037
http://dx.doi.org/10.1016/j.isatra.2018.09.017
http://dx.doi.org/10.1016/j.ifacol.2018.06.014
http://dx.doi.org/10.1109/ACCESS.2021.3055117
http://dx.doi.org/10.1016/j.ejcon.2019.11.009
http://dx.doi.org/10.1007/s00034-018-0944-z
http://dx.doi.org/10.1109/tsp.2019.8768878
http://dx.doi.org/10.1109/ACCESS.2021.3080086
http://dx.doi.org/10.1109/81.817385
http://dx.doi.org/10.1016/j.aeue.2017.03.010
http://dx.doi.org/10.1016/j.mejo.2019.03.003
http://dx.doi.org/10.3390/electronics9122135
http://dx.doi.org/10.1080/03772063.2021.1951380
http://dx.doi.org/10.1016/j.aeue.2017.05.003
http://dx.doi.org/10.1002/mmce.21534
http://dx.doi.org/10.1109/TCSII.2018.2868744
http://dx.doi.org/10.1016/j.aeue.2019.152845
http://dx.doi.org/10.1002/cta.2770
http://dx.doi.org/10.1002/cta.2879
http://dx.doi.org/10.3390/electronics10141693
http://dx.doi.org/10.2478/amcs-2019-0023


J. Low Power Electron. Appl. 2023, 13, 13 16 of 16

32. Momani, S.; Batiha, I.M.; El-Khazali, R. Design of PIλDδ-Heart Rate Controllers for Cardiac Pacemaker. In Proceedings of the
2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Ajman, United Arab Emirates,
10–12 December 2019; pp. 1–5.

33. Tolba, M.F.; AboAlNaga, B.M.; Said, L.A.; Madian, A.H.; Radwan, A.G. Fractional order integrator/differentiator: FPGA
implementation and FOPID controller application. AEU-Int. J. Electron. Commun. 2019, 98, 220–229. [CrossRef]

34. Singh, K. Load frequency regulation by de-loaded tidal turbine power plant units using fractional fuzzy based PID droop
controller. Appl. Soft Comput. 2020, 92, 106338.

35. Silva-Juárez, A.; Tlelo-Cuautle, E.; De La Fraga, L.G.; Li, R. FPAA-based implementation of fractional-order chaotic oscillators
using first-order active filter blocks. J. Adv. Res. 2020, 25, 77–85. [CrossRef]

36. Tlelo-Cuautle, E.; Pano-Azucena, A.D.; Guillén-Fernández, O.; Silva-Juárez, A. Analog/Digital Implementation of Fractional Order
Chaotic Circuits and Applications; Springer: Berlin/Heidelberg, Germany, 2020.

37. Gude, J.J.; García Bringas, P. A Novel Control Hardware Architecture for Implementation of Fractional-Order Identification and
Control Algorithms Applied to a Temperature Prototype. Mathematics 2022, 11, 143. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.aeue.2018.10.007
http://dx.doi.org/10.1016/j.jare.2020.05.014
http://dx.doi.org/10.3390/math11010143

	Introduction
	Proposed Implementation of Generalized Controller
	Conventional Topologies
	Proposed Generalized Structure

	Design Example: Controlling the Heart Rate in a Pacemaker
	Simulation Results
	Conclusions
	References

