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Abstract: Computing data-intensive applications on the von Neumann architecture lead to significant
performance and energy overheads. The concept of computation in memory (CiM) addresses the
bottleneck of von Neumann machines by reducing the data movement in the computing system.
Emerging resistive non-volatile memory technologies, as well as volatile memories (SRAM and
DRAM), can be used to realize architectures based on the CiM paradigm. In this paper, we propose a
hybrid cell design to provide the opportunity for CiM by combining the magnetic tunnel junction
(MTJ) and the conventional 6T-SRAM cell. The cell performs CiM operations based on stateful
in-array computation, which has better scalability for multiple operands compared with stateless
computation in the periphery. Various logic operations such as XOR, OR, and IMP can be performed
with the proposed design. In addition, the proposed cell can also operate as a conventional memory
cell to read and write volatile as well as non-volatile data. The obtained simulation results show
that the proposed CiM-A design can increase the performance of regular memory architectures by
reducing the delay by 8 times and the energy by 13 times for database query applications consisting
of consecutive bitwise operations with minimum overhead.

Keywords: computation in memory (CiM); computation in memory within core array (CiM-A);
computation in memory within periphery circuit (CiM-P); static random access memory (SRAM);
spin transfer torque magnetic RAM (STT-MRAM)

1. Introduction

In today’s modern data processing, emerging data-intensive applications such as
the Internet of Things, deep learning, scientific computing, and autonomous driving cars
contribute to the advent of a large amount of data. These data need to be processed to
extract meaningful information by the processing unit (CPU). Conventional computing
platforms are based on the von Neumann architecture, which is defined by separating the
memory storage and computing cores from each other. If these kinds of applications are
run on such a von Neumann design, it can lead to various bottlenecks due to the frequent
transferring of a large volume of data between the CPU and memory.

Therefore, this results in a bandwidth limitation (memory wall), high energy consump-
tion, and performance loss due to frequently moving data from and to the memory. To address
these issues in conventional computing systems, especially for big data applications, there is a
great incentive to perform computational tasks inside or near the memory unit.

The computation in memory (CiM) paradigm provides an opportunity to perform
logical operations within the memory cell or the memory periphery, thus removing the
data transfer of the operands and the results back and forth between the memory and the
processing unit [1–3]. Hence, data can be stored within cell-like conventional memories
with the additional ability to perform CiM logic operations without expensive energy and
delay overheads.

CiM is utilized to reduce the amount of data being accessed by performing computa-
tions inside the memory arrays. There is a wide variety of CiM applications ranging from
scientific computing to low-power edge computing [4]. More specific examples include
XOR encryption kernels, query select kernels, machine learning, and signal processing in
general [5]. These can be used to perform DNA sequence mapping [6], data encryption,
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web searches, and mask initialization for graphic applications [7]. In addition, CiM can
be used in hyperdimensional computing (HDC) [8]. HDC is used in various applications,
including robotics, traditional computing, cognitive computing, and machine learning,
such as for temporal patterns, text classifications, and biomedical signal processing. This
way, the CiM paradigm allows for meeting the demands of energy and performance posed
by recent applications [9].

The CiM paradigm has been realized in various memory technologies such as dy-
namic random-access memory (DRAM) [1], static random-access memory (SRAM) [2],
and resistive memories. Using non-volatile resistive memories (NVMs), CiM allows for
efficient logic implementations. NVMs include spin-transfer torque magnetic RAM (STT-
RAM) [3,10–12], phase-change memory (PCM) [13,14], and resistive random-access mem-
ory (RRAM) [15,16].

STT-MRAM in particular is a promising candidate among all emerging NVMs tech-
nologies to be used in CiM architectures because of its device features, such as its scalability,
fast read access, high density, CMOS compatibility, high immunity to radiation-induced
soft errors, and virtually unlimited endurance [3,17]. In addition, as indicated by many
industrial adoptions, STT-MRAM has reached a comparable mature state [11,18,19].

Apart from the various technologies for CiM, the architectures can be classified
into two categories depending on their computational characteristics and the location
of the calculation within the memory, namely CiM-Array (CiM-A) and CiM-Periphery
(CiM-P) [20]. Both CiM-A and CiM-P are performed inside the memory, in contrast to
processing near memory, where additional circuitry is used to perform the operation in
close proximity to the memory. CiM-A produces results within the core array [21], while
the results in CiM-P are generated in the peripheral part of the memory.

CiM-P architectures usually compute logic or arithmetic operations by using a modi-
fied reading operation. However, the sense margin in CiM-P is much lower than the normal
read operation. The accuracy and correctness of the logic operation results based on CiM-P
degrade due to the limited sense margin. Performing CiM-P (e.g., scouting logic [16]) is
challenging with STT-MRAM compared with other resistive memory technologies. This
is mainly due to the small difference between the resistive levels, which is given as the
tunnel magneto-resistance ratio (TMR) in magnetic tunnel junctions (MTJs). Moreover, this
sense margin reduces when multiple rows need to be activated at the same time to perform
CiM logic operations. On top of that, the impact of temperature and process variations
reduces the sense margin further [22].

As a result, to the alleviate aforementioned issues of CiM-P based on STT-MRAM as
well as use the merits of STT-MRAM technology, we propose a novel logic design style,
called the spintronic 2M/7T computation-in-memory cell, to perform logic operations
inside the memory array. The new cell design is based on the combination of the conven-
tional SRAM cell and spintronic-based MTJs. This cell can perform bitwise operations
such as XOR, OR, and IMP within the cell (CiM-A). More importantly, after the in-memory
operation based on CiM-A is performed, the result is stored within the SRAM part of
the cell.

The main contributions of this paper are as follows:

• A novel cell design is proposed based on the conventional 6T-SRAM cell and MTJs.
Two binary values can be stored in the proposed cell: one in the SRAM and another in
the MTJ parts.

• This proposed cell can operate based on the CiM-A scheme, hence alleviating the
scalability and sense margin limitation issues of CiM-P architectures. In addition,
it also has the ability to perform CiM-P for aggregation functions. Therefore, it is
possible to gain benefits from both the CiM-A and CiM-P types.

• For aggregation functions, our proposed cell can operate as a conventional SRAM as
well as a conventional STT-MRAM cell. Therefore, both conventional memory and
CiM operations are supported.
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• The presence of MTJs enables non-volatile SRAM. It supports storing and restoring
the content from SRAM to STT-MRAM and back.

• We perform extensive circuit-level simulations and evaluations to validate the func-
tionality and verify the robustness of the proposed cell design under three-sigma
process variation and various operating temperatures.

• The effectiveness of using the proposed CiM for multiple high-level applications
is investigated.

The rest of the paper is organized as follows. Section 2 provides the background on
STT-MRAM bit cell organization as well as the motivation behind the proposed design, and
it also includes the related work on both CiM-P and CiM-A aside from non-volatile SRAM.
Section 3 describes the proposed cell design in detail and how various CiM and memory
operations are realized in this cell. In Section 4, the simulation results, including corner
analysis and system-level analysis, are presented. Section 5 demonstrates the effectiveness
of the proposed CiM scheme for multiple applications as well as a comparison with prior
CiM schemes. Finally, Section 6 concludes the paper.

2. Background
2.1. Spin-Transfer Torque Magnetic RAM

MTJs are the main building block of STT-MRAMs. Each MTJ consists of three layers.
Two ferromagnetic layers (e,g., CoFeB) are separated by an oxide layer (e,g, MgO) as shown
in Figure 1a. The magnetic orientation of the reference layer is fixed, whereas the one for
the free layer can be changed. The magnetization orientation of the free layer compared to
the reference layer defines the content of the MTJ.

As shown in Figure 1a, if the magnetic orientation of the free layer is the same as the
reference layer, then the MTJ is in the parallel (P) state; otherwise, it is in the anti-parallel
(AP) state. The data can be stored as resistance states using the MTJ. An MTJ in the P state
has a low resistance (RP) and is used to represent a binary “0”. However, in the AP state, it
has a high resistance (RAP), which is used to represent a binary “1”. These resistances can
be evaluated with a small sensing current. This small current is compared to a reference
current using a sense amplifier (SA) in order to reconstruct the binary value stored in the
MTJ. Moreover, it is also possible to change the magnetic orientation of the free layer from
one state to the other through a bidirectional write current. To this aim, a write current from
the reference to the free layer (or from the free layer to the reference layer) has to be passed
to switch the device from the P to AP state (AP to P state).This write current needs to be
above a device-dependent critical write current, which is much higher than the sensing
current for the read operation.

A typical STT-MRAM bit cell architecture is presented in Figure 1b. It consists of one
NMOS device as an access transistor and one MTJ in a series connection. It is typically
referred to as the 1T-1MTJ configuration.

One parameter which plays a crucial role in STT-MRAM CiM is TMR, which shows
the relative difference between the two resistance states of the MTJ. The TMR of an MTJ
cell is defined as follows [23]:

TMR(%) =
RAP − RP

RP
× 100

where RAP and RP are the resistances of the MTJ in the AP and P magnetization states,
respectively. The TMR of MTJs is orders of magnitude lower than the ON/OFF ratio of
other NVMs, such as Redox-based RAM (ReRAM) and PCM, making the sensing operation
much more susceptible to process and temperature variations.
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Figure 1. STT-MRAM device: (a) MTJ as a storing device for values of 0 and 1 and (b) STT-MRAM cell.

2.2. Motivations and Related Works

In this subsection, first, we explain the limitations and challenges of CiM-P based on
STT-MRAM. Then, we mention the previous related articles.

2.2.1. Motivation of the Proposed Cell

In general, the concept of CiM-P is based on a comparison between the resistance level
of in-memory operands with a corresponding resistance reference to infer the result of a
CiM operation. Although STT-MRAM-based memories gain attention in academia as well
as the industry, they have a low on/off resistance ratio between the resistive states to other
NVMs. Hence, the reliability degrades when STT-MRAM is used to perform CiM-P. This
is caused by the activation of multiple rows simultaneously to perform the desired logic
operations, which contributes to a larger reduction in the sense margin. More importantly,
this margin is influenced by the temperature and process variation. Due to the process
variation, the states of STT-MRAM follow a statistical distribution, which is affected by the
temperature. Figure 2 presents the resistance distributions of the P and AP states under
process variation for two low and high temperatures. As shown, the distribution of P and
AP resistances gets closer to each other at high temperatures, leading to a smaller sense
margin between the P and AP states.

To put this reliability issue of STT-MRAM into perspective, Table 1 presents the
read decision failure (RDF) of STT-MRAM- and ReRAM-based memories for 2-,4-, and
8-operand CiM-P bitwise operations under 25 ◦C and 85 ◦C temperatures and process
variation [24]. As indicated, the RDF of STT-MRAM memories is larger than that of the
ReRAM-based memories. In addition, increasing the inputs of logic operations increases
the RDF considerably. Since CiM-P based on STT-MRAM is dependent on the sense margin,
it is highly vulnerable to failure under temperature and process variations.

Performing the logic operation in the peripheral circuitry not only has scalability issues
but is also susceptible to process- and temperature-induced variations. On the contrary,
the proposed cell has high scalability, and the CiM_Margin in the proposed design can be
increased by activating more rows, which leads to reliable logic operation. Results of the
operation are also produced in the SRAM part without being dependent on other cells in
the crossbar. Furthermore, the proposed approach has the advantage of no extra writing
step requirement, which is commonly used for CiM-P architectures to store produced
results within the cells. This can be beneficial for various applications. However, multiple
MTJ write operations are needed for the STT-MRAM to have the operands and the results
within the memory cell, which imposes a lot of energy and delay overhead compared with
the proposed design. As a result, implementing a reliable logic operation based on CiM-A
with STT-MRAM is promising and effective.
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Figure 2. The impact of temperature on resistance distributions of P and AP for STT-MRAM at
nominal voltage and at 27 ◦C and 85 ◦C.

Table 1. Read decision failure (RDF) for STT-MRAM and ReRAM memories at 25 ◦C and 85 ◦C.
(CiM-X in scouting logic shows the X numbers of operands in a column, which can be activated
together simultaneously.)

Memories STT-MRAM ReRAM

Temperature 25 ◦C 85 ◦C 25 ◦C 85 ◦C

CiM-2 4.24 × −5 1.59 × 10−4 5.57 × 10−10 2.77 × 10−8

CiM-4 3.27 × 10−3 4.49 × 10−3 2.77 × 10−8 1.31 × 10−10

CiM-8 0.2205 0.22107 3.74 × 10−5 1.90 × 10−6

2.2.2. Related Works

Several works with a focus on performing primitive logic operations inside the mem-
ory have been proposed in the recent past. In [15], a review of CiM implementations using
emerging resistive devices is presented. Most of these works consider bitwise operations
such as NAND, AND, OR, NOR, and XOR, but other arithmetic operations such as vector
multiplication and addition would be possible as well [25]. It is also worth mentioning
that CiM can take place either as CiM-A or CiM-P. Hence, according to the place of the
produced results, we classify the papers in the following paragraphs.

Implication logic (IMPLY logic gate) is an effective way to implement logic in memory
architectures based on CiM-A [26,27]. A memristor full adder design based on the IMPLY
logic is presented in [28,29]. Another realization of CiM-A is memristor-aided logic (MAGIC).
Both IMPLY and MAGIC use a voltage divider approach for CiM. However, compared
with IMPLY, MAGIC logic expects an extra memory cell for storing the result so the
input states are not destroyed during the operation. In comparison with other stateful
logic, the MAGIC architecture has significant benefits such as including the possibility to
implement various boolean functions, low supply voltages, and crossbar compatibility for
CiM architectures [21]. It is also possible to perform complex arithmetic operations such as
addition with MAGIC [30,31].

In [32], bipolar resistive switches (BRSs) and complementary resistive switches (CRSs)
are used for different logic operations. These CiM-A approaches allow the implemen-
tation of 14 out of 16 possible boolean functions with 2 input parameters. The authors
of [33,34] described the way crossbars are used to implement logical functions, which
are considered CiM-A schemes. In general, CiM-P schemes have been explored in many
publications. Although most of them are based on non-volatile memories, there are imple-
mentations such as Ambit [7], which uses volatile memory and performs CiM operations
in the peripheral part. CiM-P is performed with the concept of scouting logic [16]. In
scouting-based CiM, a read voltage is applied to multiple cells which share a common
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memory column. Then, the resulting bitline current is compared to a global reference to
categorize the equivalent resistance of the activated cells. For instance, the authors in [10]
proposed a method based on the scouting logic concept. In their paper, they used an
enhanced SA to support boolean logic, basic arithmetic, and vector operations based on
STT-MRAM technology. Other STT-based CiM-P architectures were proposed in [12,35–37].

In addition, there are several papers based on STT for non-volatile SRAM to overcome
its volatility [38–40]. As an example, in [38], MTJs were used to protect the SRAM cell
against unwanted data loss. A similar method to eliminate the limitations of CMOS
technology was presented in [39,41]. However, the specific design choices of all these
designs differ from our proposed cell design. They added MTJs to the cell to provide
backup and restore abilities, whereas our design approach enables the memory cell to
perform CiM operations within the array.

2.2.3. Proposed Cell Compared to Other SRAM-CiM Designs

Different SRAM-CiM architectures which use BL charging to perform CiM operations
are discussed in [42–45]. However, they suffer from volatility. To be more specific, SRAM-
CiM is fast and efficient, but it is not suitable for normally off computing applications.
Emerging non-volatile memories based on STT-MRAM enable energy-efficient normally off
computing architectures. This provides the usage of memory in standby mode with zero
standby power to achieve a low power consumption target. Designing memories based on
these technologies allows for a higher density and lower leakage power compared with
SRAM cells. More importantly, all previously proposed SRAM-based CiM schemes are
based on CiM-P. We therefore present the first SRAM-based CiM-A scheme, which uses
both the advantages of resistive CiM-A schemes and SRAM-based CiM.

3. Proposed Cell Design

We propose a novel cell based on STT-MRAM and SRAM to perform CiM, aiming
at implementing boolean logic operations as well as offering the ability to perform the
normal memory write and read operations. In the following subsection, each ability of the
proposed cell is described in detail. We first describe the overview of our proposed CiM-A
cell design and how the proposed cell is realized at a low-level. Afterward, we go into the
detailed implementation of the cell design and multiple different boolean logic functions. The
possibility of performing CiM-P with the proposed cell is investigated. Finally, conventional
memory operations for each part of the cell (SRAM and STT-MRAM) are studied.

3.1. Overview of the CiM Technique

In general, the proposed cell consists of MTJs and a 6T-SRAM cell, as shown in
Figure 3. The main idea of the proposed CiM is to use MTJs to prolong the SRAM write
operation. The actual impact of the MTJs on the SRAM write depends on the state of
the MTJs. Figure 3 presents the block diagram of the needed modules in our proposed
design. As can be seen, our cell consists of a 6T-SRAM as its core. The two MTJs, MTJ1 and
MTJ2, are added between this core and bitline (BL) and the complementary bitline (BL) ,
respectively. It has an additional transistor N0, which allows a current path from the BL
through the two MTJs to BL, bypassing the SRAM cell. This allows one to read and write
the MTJs without interfering with the SRAM content.

Overall, the cell can store two bits of information. One bit is stored in the pair of
MTJs. The other one is stored in the SRAM cell. We use two differently timed SRAM write
operations as a basic concept of performing CiM:

• The long SRAM write is timed in a way that it is independent of the MTJ states. We
will denote this operation as the MTJ independent write (MIW) operation.

• The short SRAM write is timed in a way that allows for a successful write operation
to the SRAM cell in case the MTJs are in the low-resistance P state. However, the
write operation fails if the MTJs are in the high-resistance AP state. This short write
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operation is therefore dependent on the MTJ state and will be denoted as the MTJ
dependent write (MDW) operation.

The truth table of the stored value in Q, depending on the MTJ states, BL, and the
current state of Q, is given in Table 2 for MIW and MDW. The core of our proposed CiM-A
operations is based on these two different SRAM write operations. Equations (1) and (2)
represent the dependence of Q on the MIW and MDW operation parameters:

MIW : Qnew = f (BL) (1)

MDW : Qnew = f (BL, MTJ, Qold) (2)

We can see that the result of the MIW operation is only dependent on the BL voltage,
whereas the result of the MDW operation is also dependent on the current SRAM state Q
and the MTJ state.

In order to write in the proposed cell, the write driver is used to generate the different
write currents needed for the different SRAM and MTJ write operations. Two different
sense schemes are used to read the SRAM value and MTJ states separately. For the CiM
operations, we take advantage of the MIW and MDW SRAM operations. To perform CiM
operations, we define the operands based on the value written in the MTJs in advance
as well as the values that are written into the SRAM part. Writing in the SRAM cell is
highly dependent on the value stored in the MTJs. Therefore, this dependability of SRAM
write operations on MTJs produces the basic idea to perform the CiM operation. The CiM
operation is performed by defining the proper writing sequence to the MTJs and the SRAM.
In the end, the result of the operation can only be obtained by reading the content of the
SRAM cell.

Table 2. Cell state transitions for MIW and MDW operations.

MTJ BL Qold
Qnew

MIW MDW

P 0 0 0 0
P 0 1 0 0
P 1 0 1 1
P 1 1 1 1

AP 0 0 0 0
AP 0 1 0 1
AP 1 0 1 0
AP 1 1 1 1
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Figure 3. Schematic of a spintronic 2M/7T computation-in-memory cell, where two MTJs always at
the same resistance states are used to store the data bit, and the SRAM part is used to store another
data bit to have CiM. Read and write peripheral modules are shown to read and write the data stored
in both the SRAM and MTJ parts.

3.2. Circuit-Level Hybrid Cell Design

In this subsection, we describe our proposed design at the circuit level. Figure 3 gives
the full schematic of our proposed cell design. The cell is interfaced via BL and BL with
the control signals word line (WL) and word line MTJ (WLM). The circuit includes two
back-to-back inverters (I1 and I2) to store the data and two access transistors N1 and N2.
MTJ1 and MTJ2 are connected between the access transistors and the BL and BL wires. The
free layer of MTJ1 is connected to the BL, whereas the reference layer of MTJ2 is connected
to BL. MTJ1 and MTJ2 are connected via the write transistor N0. The role of this transistor
is to make the cell able to behave as a 2M1T STT-MRAM cell. With the help of transistor
N0, the MTJ can be read and written without destroying the content of the SRAM cell. As
in regular SRAM, the nodes Q and Q hold the SRAM content and its complementary value.
The wiring of the MTJ read/write path ensures that both MTJs are always written to the
same state. Therefore, both MTJs are always either in the P state or both in the AP state.

3.2.1. CiM Operation Principle

The proposed cell performs its logic operation by writing in the SRAM cell part and the
MTJs. As shown in Figure 3, two MTJs are added between the SRAM cell and the BL and
BL. These two MTJs prolong the SRAM write operation. This allows us to implement the
two SRAM write operations, MDW and MIW, as described at the beginning of the section.
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Here, we demonstrate how a few selected bitwise logic operations can be implemented.
Each logic operation is defined as in Equation (3):

v = f (x, y)

f ∈ XOR, OR, IMP
(3)

where x and y are operands of the in-memory operation and v is the result obtained by
performing the logic operation.

As indicated in Equation (3), to perform a supported in-memory operation in our
cell, the first operand x defines the value stored in the MTJs, and the second operand y is
encoded in two consecutive SRAM write operations to the cell. After the second SRAM
write operation, the result of the CiM operation is present in the SRAM part of the cell.

Figure 3 shows how these two operands are defined in our proposed cell. For the
first operand, a “0” is defined with both MTJs in the P state, whereas a “1” is defined
with both MTJs in the AP state. The invariant of both MTJs being in the same state all
the time is enforced by the write operation. The second operand is encoded in two bits
which are written to the SRAM in two consecutive operations. The first SRAM write is
performed using the MIW operation to set the first bit of the encoded second operand to the
SRAM. After that, the second bit of the encoded operand is stored with the MDW operation.
The result in the SRAM cell is therefore dependent on the initially stored MTJ value, the
previously written SRAM content of the MIW, and the operand of the MDW operation.

To put the concept of MIW versus MDW in a more vivid picture, consider Figure 4 as
an example. We define the second operand as 01 (dotted signal in Figure 4a), so the first
SRAM operation is writing “0” (MIW), and the second SRAM operation is using MDW to
write “1”. The first enabled period of WL (the blue signal in Figure 4a) is long, so there is
enough time to write in the cell under both possible MTJ states P and AP. Therefore, a “0”
is present in the cell after WL is disabled the first time. The second enabled period of WL is
shorter, so the state of the MTJs affects the SRAM write operation. When the state of the
MTJs is AP (red signal in Figure 4b), it is not possible to write into the cell, so the previous
content of the cell remains, which is “1”. In case both MTJs are in the P state (blue signal in
Figure 4b), the write operation is successful, and the content of the cell becomes “1”.

(a) (b)

In
p

u
t 

V
o

lt
ag

e(
V

)

MIW Window MDW Window

Delay(ns) Delay(ns)
40 60 80 10020 60 80 100

Figure 4. MDW transitions depend on MTJ states. The short WL pulse allows Q to change from “0”
to “1” only if the MTJ is in the P state. (a) Control signals to perform the operation. (b) Inner node Q
of SRAM part for AP and P MTJ states.

We can easily see that the correct WL-enabled period plays a crucial role in performing
MDW and MIW operations. With a long WL-enabled period, the state of the MTJs has no
impact on the SRAM writing operation, and it is therefore not possible to perform the CiM
operation. In order to use the P and AP states of the MTJs, this margin needs to be defined
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correctly. We name this margin the CiM_Margin, which enables us to perform the in-memory
operation. The CiM_Margin is obtained according to Equation (4) for each operation:

CiM_Margin = DW(AP)− DW(P) (4)

where DW(AP) and DW(P) are the write delays for the SRAM with MTJs in the AP and P
states, respectively.

In general, using the state of the MTJs as the first operand and the MIW and MDW
encoded value as the second operand provides the result of the CiM operation in the
SRAM. Figure 5 shows the overall procedure to perform a CiM operation. To start the
CiM sequence for the proposed cell, we write the first operand into the MTJs. Then, we
define the type of operation that we want to perform. Choosing the operation decides
the encoding of the second operand. Next, the first encoded bit is written with the MIW
operation. Afterward, the second encoded bit is written with the MDW operation. The
content of the SRAM now reflects the result of the selected CiM operation. The encoded
second operand in the two write operations leads to a delay overhead. As the encoding is
rather simple, only a small lookup table and minor adjustments to the controller logic are
needed to perform the operations.

2.Write 1st

operand to MTJs
1. Start CiM operation

3.Calculate
encoding for
2nd operand

4.Use MIW
to store 1st

encoded bit

5.Use MDW
to store 2nd

encoded bit
6.Result is stored in SRAM

Figure 5. The overall procedure to implement logical operations with proposed CiM design.

3.2.2. XOR CiM Operation

Table 3 presents the truth table for XOR operation and the corresponding MTJ states
and encoding for the MIW and the MDW operations. In order to perform the XOR operation,
the first operand is represented by the state of the MTJs (either P for “0” or AP for “1”), and
the second operand is encoded as (“0”→ 10) or (“1”→ 01). In case the first operand is “0”,
both MTJs are in the P state. This allows the second SRAM write operation, the MDW, to
write its content to the SRAM. By design, this is the expected result of the operation. In case
the first operand is “1”, both MTJs are in the AP state. This causes the MDW to fail, and
therefore, the cell retains its initial values from the MIW operation, which is the expected
XOR result. In summary, after the two SRAM write operations, the content of the SRAM
has been set correctly to the result of the XOR operation.

Table 3. The truth table based on encoding operands as used for different logical operations.

Different Logical Operations

XOR Operation OR Operation IMP Operation

x y f (x,y) x y f (x,y) x y f (x,y)

0 (P) 0 (10) 0 0 (P) 0 (10) 0 0 (P) 0 (01) 1

0 (P) 1 (01) 1 0 (P) 1 (11) 1 0 (P) 1 (11) 1

1 (AP) 0 (10) 1 1 (AP) 0 (10) 1 1 (AP) 0 (01) 0

1 (AP) 1 (01) 0 1 (AP) 1 (11) 1 1 (AP) 1 (11) 1
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3.2.3. OR CiM Operation

The next supported operation is the binary OR. We encode the first operand (“0” or “1”)
as the P and AP states of the MTJs. The second operand is again encoded in two consecutive
SRAM write operations. As shown in Table 3, its encoding for OR is (“0”→ 10) and (“1”→
11). The reason behind this encoding is as follows. The SRAM is always initialized to “1”
with the MIW operation. Then, the actual second operand of the OR operation is written
to the cell with the MDW operation. If the MTJs are in the low-resistance P state, and the
second operand is a “0”, then the write operation succeeds, and the SRAM cell stores a “0”.
Otherwise, the cell retains its previous value of “1”. The result in the SRAM after these two
write operations is therefore corresponding to the OR operation.

3.2.4. Implication CiM Operation

The third supported CiM operation of our proposed cell is the implication (IMP)
function. Table 3 shows the truth table for the IMP operation and the corresponding
operand encoding. As shown in the table, the first operand (“0” or “1”) is again encoded as
the P and AP states of the MTJs, and the second operand is encoded in two consecutive
SRAM write operations. Their encoding for IMP is (“0” → 01) and (“1” → 11). This
encoding performs an MIW write operation with ‘0” or “1” values, depending on the input.
Then, a second MDW write operation with the value of “1” is performed on the SRAM cell.
As can be seen, the proposed cell can perform various types of operations.

3.3. Realization of CiM-P with the Proposed Design

In some applications, particularly multiply and accumulate (MAC) in deep learning
applications, it is required to perform logic operations on the content of multiple inputs and
obtain aggregated results. In such cases, CiM-P implementations are desirable. Further-
more, the ability to perform CiM-P with the presented CiM-A cell allows comparison with
previous CiM-P designs. Hence, bitwise operations are also performed with the proposed
cell at both the cell array and periphery part. In Section 5, we evaluate the effectiveness of
the proposed CiM-A cell to be used in a CiM-P sensing scheme.

To add CiM-P capabilities, an asymmetric differential SA with skewed transistors is
used [2]. The sensing process with an asymmetric differential SA is very similar to the
read operation in conventional SRAM. The difference is that multiple cells are needed for
selection as operands to perform bitwise logic operations. Similar to conventional memory,
the logic operations are performed by pre-charging the BL and BL. Then, the corresponding
WLs are enabled. Depending on the values stored in the bit cell, one of the BL or BL values
is discharged. This difference on the BL and BL is sensed by the asymmetric differential SA.
Figure 6 presents the selected cells in two rows of the memory along with the structure of
the asymmetric differential SA.

To be more specific, consider that two values are stored in cell 1 and cell 2. First,
The BL and BL are pre-charged to VDD. Then, the two corresponding WLs (WL1 and
WL2) are activated simultaneously. If “00” (11) values are stored in cell1 and cell2, then
the BL (BL) discharges to 0 while BL (BL) remains in the pre-charged state. For cases of
“01” (10), both the BL and BL discharge at the same time. The differential SA generates
the corresponding outputs. The results and their complements of logical operations are
generated at the asymmetrical differential SA (OUT and OUT). Transistors NBL and NBL in
the asymmetric differential SA are skewed differently to make NAND (AND) and NOR
(OR) possible. For the AND (NAND) operation, the transistor NBL needs to be sized larger
than NBL. However, the transistor NBL is larger than NBL in the case of OR (NOR). The XOR
operation is performed by using a NOR gate to merge the AND and OR outputs together,
as proposed in [2]. To conclude, the proposed scheme uses a conventional SRAM style of
CiM as opposed to the current sum style of scouting logic. It is not required to write in the
STT-MRAM cells two times for the operands, thereby saving energy and delay overhead.
Hence, the proposed scheme saves read and write energy as well as operation delay.



J. Low Power Electron. Appl. 2022, 12, 63 12 of 25

WL1

Proposed 

Cell 1

SA

BL

Proposed 

Cell 2

BL

WL2

VDD

SAE

SAE

BL BL

OUT OUT

NBL NBL

AND (NAND) : X1>X2
OR (NOR) : X1 < X2

X1 X2

Figure 6. Schematic of the proposed cell for performing CiM-P logic, including the asymmetric
differential SA with skewed transistor operations.

3.4. Conventional Memory Operations

Each SRAM and STT-MRAM part of the proposed cell can work as conventional
memory. Hence, we are able to perform read and write operations. In the following, the
normal memory operations of the proposed cell are described.

3.4.1. Conventional SRAM Operation

To perform the SRAM read, we use an SA which is connected to the BLs. The overall
SRAM interfacing is performed exactly as in unmodified SRAM architectures. During the
entire SRAM read and write operations, WLM is inactive. The MIW operation is used to
ensure the storage of the new data in the SRAM part.

3.4.2. Conventional STT-MRAM

One of the considerable features of the proposed cell is the ability to read and write the
STT-MRAM content independently of the SRAM content. The stored value of the SRAM
part is not changed by any MTJ read or write operation. This is accomplished with the help
of the transistors N1 and N2 as shown in Figure 3. These transistors create a separate path
between the MTJs and the SRAM. This path can be used to read and write the MTJs. In order
to read the state of the MTJs, we disconnect the SRAM cell from the BL and BL by disabling
WL. However, we enable WLM to access MTJ1 and MTJ2. Since the states of these two MTJs
are always the same (either P or AP), the sense margin of the read operation is improved
compared with the regular 1T-1MTJ STT-MRAM cell.

We pull BL toward the ground and use a current SA to compare the current flow of
a small read current through the cell to a reference current created by using a reference
resistor. The resistor is sized so that it can be used to distinguish both MTJs in the P state
from both MTJs in the AP state. The result of this comparison is the value of the MTJs’
content. To change the state of the MTJs, WL is disabled, and WLM is activated. Then, the
high (low) voltage level on the BL and the low (high) voltage level on BL is driven to write
AP to P (P to AP). In order to change the state of the MTJs, the write current needs to be
greater than the critical write current. Note that the SRAM content is preserved during the
MTJ writing operation due to its separate write current path.

4. Experimental Results and Evaluation

In this section, detailed circuit-level and array-level analyses are performed. First, the
simulation set-up for the experiments is described. Then, the results related to the different
CiM operations are presented. Finally, our proposed memory cell is compared with the
previous CiM and memory designs at both the circuit and array levels.
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4.1. Simulation Set-Up

Cadence Spectre was used for the circuit-level simulations. We used the 22 nm FinFet
library from GlobalFoundries. There are various types of MTJ models in [46–49], which can
be used for our proposed design. The proposed design needs to be adjusted accordingly
based on the MTJ parameters and characteristics in each model. In this paper, we use
an MTJ model as described in [46]. All simulations were performed using the same
framework and technology node to be comparable. However, our concept was not limited
to this single technology node. For the corner analysis, we considered all typical FinFET
corners for fast- and slow-switching nFET and pFET devices (FF, SS, FS, and SF) and MTJ
corners with ± 3σ variation for the TMR, resistance-area product (RA), and the switching
current. The details of the design parameters and the simulation are shown in Table 4.
We considered 256 cells per BL in all evaluated RAM architectures. For the array-level
evaluation, NVSim [50] was used to gather the delay, area, and energy consumption. To
handle large intermediate results, the data were distributed evenly among the sub-arrays to
minimize the interconnections among different sub-arrays and banks in the case of a huge
volume of data. In addition, we distributed the data over the sub-array in a way where
there was enough space for storing the results of the computation in the same sub-array.

Table 4. Technology parameters for the simulation set-up.

Parameters Value

SRAM, STT-MRAM and proposed Memory
Size 8 MB

Technology Node 22 nm

Supply Voltage and Temperature 0.8 V and 27 ◦C

Radius of MTJ 20 nm

MTJ Barrier Material MgO

Nominal Tunneling Magneto-Resistance Ratio 150%

Resistance-Area Product in MTJ 7.5 Ωµm2

Free/Oxide Layer Thickness 1.31/1.48 nm

‘P”/“AP” Resistance 6 kΩ / 15 kΩ

4.2. CiM Operation Waveform Results
4.2.1. Operand-Encoding Signals for CiM Operations

Figure 7 shows the waveforms of the different possibilities of signal Q for performing
XOR and OR operations with the proposed cell. These signals were obtained by defining the
proper encoding operands for each logical operation based on the SRAM write operation
and MTJ states as discussed in Section 3.2. The proper WL timing parameter was used to
calculate the results of the operation inside the SRAM part.
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(a) (b)

XOR Operation OR Operation

Figure 7. XOR and OR operation signal waveforms. (a) Signal Q for XOR with different SRAM
writing and MTJ states. (b) Signal Q for OR with different SRAM writing and MTJ states.

4.2.2. Robustness of CiM Operations under Variations

Here, the functionality and robustness of the CiM operations are investigated under
different process corners. The CiM_Margin needs to be large enough to ensure the proper
execution of the CiM operation. Therefore, the CiM_Margin for the proposed circuit is
studied under different corners to guarantee the correctness of the cell functionality.

We simulated all combinations of the respective corners for both the FinFET and MTJ
components to find the worst-case CiM_Margin, which affects the needed resolution of
the word 0line signal. Figure 8 shows the result of the CiM_Margin for logical operations
under various corners. According to Figure 8, the lowest CiM_Margin of around 276 ps
can be observed in the slow pFET/slow nFET (SS) corner in combination with the low
switching current corner (LSC-LR-SR-LR).

It is possible to improve CiM_Margin through several methods, which leads to reliable
CiM bitwise logical operations. One way to accomplish this is to change the input signal
voltage to the cell. We swept the BLs and WL voltages from 0.6 V to 0.9 V and calculated
the CiM_Margin. By doing so, we reached the robustness of the CiM_Margin at 0.6 V and
0.8 V on the BLs and WL, respectively. This method increased the CiM_Margin by up to
590 ps. Another evaluated approach is to consider a higher TMR. Because the CiM_Margin
is related to the difference between the states of the MTJs, increasing the TMR directly
raises the CiM_Margin.
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4.2.3. Impact of Temperature on the CiM_Margin

The temperature can adversely affect the functionality of the proposed design. Hence,
we measured the CiM_Margin of the cell at different temperatures (10 ◦C, 27 ◦C, 60 ◦C, and
85 ◦C). Figure 9 demonstrates the CiM_Margin for logical operations in the cell. The black line
is the CiM_Margin for the nominal TMR, while the two other lines present the CiM_Margin
for MTJs at the higher TMR. We evaluated a TMR of up to 2.2 based on the work presented
in [51].

According to this figure, first, the CiM_Margin decreased by increasing the tempera-
ture. Second, the CiM_Margin became larger for a higher TMR over the entire temperature
range. In conclusion, the robustness of the CiM operation decreased by increasing the
temperature, and increasing the TMR could compensate for the impact of the temperature.
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Figure 9. The impact of temperature on the CiM_Margin for various TMR values in the proposed cell.

4.3. Figures of Merits

As our proposed design can work as an SRAM or STT-MRAM cell, we compared its
delay, energy, power, and area against a conventional 6T-SRAM and STT-MRAM (1T-1MTJ)
cell and array. The evaluations also included the delay and energy for the CiM. We used
peripheral circuits such as SA and write-drivers to calculate the merits at the circuit level.
The cell-level analyses for memory operations as well as CiM operations are shown in
Tables 5–7. As shown in Table 5, the read delay of the cell in SRAM mode was roughly
the same compared with the conventional SRAM, but the write delay became around 2.78
times higher because of the presence of the MTJs. Table 6 compares the proposed cell with
the conventional STT-MRAM. The write delay in the STT-MRAM part of the proposed cell
was 2.22 times higher than conventional STT-MRAM, because the write operation had to
change the magnetic state of two MTJs instead of only one in the conventional 1T-1MTJ
memory cell. The size of the access transistor in the STT-MRAM was the same as that of the
transistor connecting MTJs together in the proposed cell. However, due to the capability
of storing two bits per cell, the effective per-bit area of the proposed cell was twice the
size of the conventional memories. Compared with conventional SRAM and conventional
STT-MRAM, the proposed cell had two more MTJs and 5Transistor+1MTJs, respectively.
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Table 5. Circuit-level results for conventional SRAM compared with the proposed cell design.
The technology parameters are set according to Table 4 for the nominal corner.

Parameters Conventional
SRAM

Proposed
Cell

Compared with
SRAM

Read Delay 1.79 ns 1.89 ns 1.01 ×

Read Energy 5.30 fJ 7.67 fJ 1.44 ×

Write Delay
with MTJ

- 3.79 ns

2.78 ×
Write Delay
without MTJ

1.36 ns -

Write Energy
with MTJ

- 104.90 fJ

1.19 ×
Write Energy
without MTJ

16.00 fJ -

Numbers of Transistors
or MTJs 6 Transistors

6 Transistors
+2 MTJs +2 MTJs

Table 6. Circuit-level results for conventional STT-MRAM compared with the proposed cell design.
The technology parameters are set according to Table 4 for the nominal corner.

Parameters Conventional
STT-MRAM

Proposed
Cell

Compared with
STT-MRAM

Read Delay 458 ps 687 ps 1.50 ×

Read Energy 2.80 fJ 3.40 fJ 1.21 ×

Write Delay 5.43 ns 12.1 ns 2.22 ×

Write Energy 190 fJ 400 fJ 2.10 ×

Numbers of Transistors
or MTJs

1 Transistor
+1 MTJ

6 Transistors
+2 MTJs

+2 MTJs

Table 7. Circuit-level results for the proposed CiM. The technology parameters are set according to
Table 4 for the nominal corner.

Parameters MDW Delay MDW Energy MIW Delay MIW Energy

Proposed
CiM 1.71 ns 87.75 fJ 1.82 ns 104.90 fJ

For a reasonable analysis of the proposed cell compared with conventional SRAM and
STT-MRAM, we present the array-level simulation results in Table 8. The parameters were
calculated at the circuit level and then passed to NVSim to evaluate the cell designs in a
complete RAM architecture. We considered 8 MB of memory with a 64-byte data width for
both SRAM and STT-MRAM, as well as the proposed cell.

Similar to other memories, our memory design was also organized in a hierarchical
structure. As shown in Figure 10, each chip was divided into banks. Each bank includes
multiple sub-arrays, which were two-dimensional. To come up with such a structure, we
used NVsim to map the proposed CiM-A cell to the whole memory array organization.
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Figure 10. Memory array organizations considered in this paper for simulation results at circuit
and array level, with number of banks and MATs and sub-array size. In addition, the procedure of
mapping vector and logic operation performance is shown. One of the operands is stored as an MTJ
state, which is shown by a green triangle (AP state) and yellow triangle (P state). Another operand is
based on the SRAM encoded into MIW and MDW presented in two time steps (T1 and T2), and the
result of the operation is produced in the cell based on the state of the MTJ and SRAM in the third
time step (T3). Note: SRAM state at the first time step (T0) is not important, denoted by X.

Table 8. Array-level results for conventional SRAM, STT-MRAM, and the proposed CiM design for
8 MB memory with a 64-byte data width and a subarray organization of 256 rows × 128 columns.

Parameters SRAM STT-MRAM
Proposed Cell
Operating as Overhead to

SRAM STT-MRAM SRAM STT-MRAM

Area 5.67 mm2 4.33 mm2 9.63 mm2 1.69 × 2.22 ×

Read Latency 2.55 ns 4.18 ns 2.57 ns 4.23 ns 1.00 × 1.01×

Write Latency 2.58 ns 7.28 ns 5.01 ns 13.95 ns 1.94 × 1.91×

Read Energy 65.43 pJ 67.25 pJ 65.59 pJ 74.49 pJ 1.00 × 1.10 ×

Write Energy 65.05 pJ 68.96 pJ 66.20 pJ 82.42 pJ 1.01 × 1.19 ×

CiM Latency - - 6.72 ns - -

CiM Energy - - 66.21 pJ - -

Figure 10 shows the detailed memory organization that was used for the array-level
simulation. The read/write latencies, energy, power, and area for conventional SRAM,
STT-MRAM, and the proposed cell extracted from NVSim are presented in Table 8. As
expected, the ability to perform fast CiM operations directly in the memory was paid for
with area, energy, and latency.

It can be seen in Table 8 that the delay and energy of a single CiM operation were well
below the respective sum of multiple conventional read and write operations that would
be needed to replace the CiM operation. In addition, the result of the operation is also
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provided in the cell. For a complete picture, Table 8 also shows the conventional memory
read and write operations.

5. Analysis and Comparison to the State of the Art

In this section, several real-world applications and benchmarks are investigated to
evaluate the efficiency of the proposed CiM design at the system level. Many real data-
intensive applications highly depend on bitwise logic operations such as XOR, OR, and
AND [7]. Table 9 presents the datasets used in this paper. To compute potential applications,
we used the access latencies and energies of conventional memories (SRAM and STT-
MRAM) as well as the proposed design presented in Tables 7 and 8. We also compared the
proposed design in terms of delay and energy consumption with previous existing CiM
designs such as XSRAM [2] and scouting logic [16] with both the CiM-A and CiM-P parts
of our designs.

For simulating scouting logic, we used a pre-charge SA. We changed the reference
side of the pre-charge SA to implement various types of logical operations. SRAM-based
CiM (XSRAM) was considered the same as the architecture presented in [2]. We used the
asymmetric differential SA in SRAM-CiM. For previous CiM designs, first, we simulated the
circuit-level approach to obtain the figures of merit, and then we obtained the array-level
values to be used in the application comparison with the proposed method.

To obtain the energy and delay for each application, first, we calculated the number
and type of operations in the specific application. Then, the number of required operations
was multiplied by the corresponding values from the array level results for all necessary
operations. To consider the complete RAM architecture for the logic operations, we used
NVsim [50] to calculate the efficiency of the application in terms of energy and delay. By
providing cell-level results to NVSIM, the array-level delay and energy results for the store
and load operations in the memory could be obtained. Furthermore, we could use this
for CiM operations based on our circuit simulation results. All evaluated applications
consisted of large vector operations.

The procedure of mapping vectors to our memory organization for all applications
is shown in Figure 10. First, the extracted values for the load, store, and CiM operations
were used to calculate the logic operation for a single bit. Then, this value was multiplied
by the vector size as well as the number of the specific operations in the applications. For
the final result, all operations were summed up.

From the reliability point of view, we considered all possible conventional corners of
transistors and MTJs using Cadence Spectre to confirm the proposed cell worked reliably in all
situations. We used the average of all corner values for our application evaluation for a more
realistic simulation. Each application is described in more detail in the following subsections.

Table 9. Datasets and benchmarks.

Applications Description Implementation Detail

Database Bitmap-based dataset Query to track users’
characteristics and activities

Set Implementing set with N-bit
bit vector

Perform Union and difference
operations on 15-input sets

Vector Pure XOR operation 217vectors, 32 rows of XOR
operations

5.1. Database Query

The first evaluated scenario was a data query application. To analyze the efficiency of
the proposed CiM cell, we evaluated our design on bitmap index-based databases [52] as a
widely used application, which is highly dependent on binary operations.

Bitmap-based indices were adapted by key players of the industry and found their way
into many real-world applications [7]. To evaluate our approach, we used the workload of
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a real-life example from [53]. A database with a specific number of users (m) was given.
Each user had several features (e.g. “gender” or “visited on day X”). These features were
represented by bitmap-based indices. We performed the following two queries: “Number
of unique users visited in the past n weeks?” and “How many male users visited each
of the past n weeks?” This led to 6n bitwise OR, 2n− 1 bitwise AND, and n + 1 bitcount
operations [7]. The m-bit rows of the database were split up into m/64 data words to
be processed by the processor unit’s ALU, which can process 64 bits per read operation.
However, the proposed cell could be performed on 256 bits in parallel, as it only depends
on the memory organization. To perform these queries on a dataset, we assumed the access
latencies and energies of conventional memories (SRAM and STT-MRAM) presented in
Table 8 on a processor unit with a clock frequency of 1 GHz. Different database sizes (m)
and numbers of weeks (n) were evaluated. For calculations invoking the processor unit,
we calculated all overhead based on the data transfer from and to the memory without
considering other resources.

Figure 11 shows the results of the delay and energy improvement for data query
application on a CPU-based (non-CiM) architecture in the proposed CiM-A. To perform this
task with the proposed CiM-A architecture, the 2n− 1 AND operations had to be replaced
by a sequence of inversions (which could be achieved by performing an in-memory XOR)
and CiM OR operations.
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Figure 11. Quantification of the energy and delay for the proposed CiM-A design compared with
conventional SRAM and STT-MRAM for the bitmap index-based database application [7].

According to Figure 11, the presented approach was able to speed up the execution of
the workload significantly (up to four times compared with the SRAM baseline and up to
eight times compared with the STT-MRAM baseline). In addition, energy improvements of
12 and 13 times compared with SRAM and STT-MRAM were achieved, respectively.

Furthermore, Figure 12 presents the comparative analysis of delay and energy con-
sumption among various existing CiM designs. According to the evaluation, the delay
and energy consumption of the proposed CiM-A were less than those of other CiMs in all
evaluated workloads. To observe the proportion of each operation in CiM-A in more detail,
CiM-A was divided into operations such as MIW, MDW, SRAM read, and MTJ write, as
shown in Figure 13. As we can see in Figure 13, the MIW operations dominated the delay
and energy consumption of the complete CiM operation. Since other operations except
MIW were not visible in the energy consumption of the proposed CiM-A, we magnified
some parts of the chart to highlight the other operations. Since all bitmap queries include
various bitwise operations, it was expected that we would find similar performance and
energy efficiency for any applications using bitmap indices.
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Figure 12. Delay and energy consumption comparison between various CiM designs for bitmap
index database queries.

 

0

10

20

30

40

50

60

70

2
-W

ee
k
s

3
-W

ee
k
s

4
-W

ee
k
s

2
-W

ee
k
s

3
-W

ee
k
s

4
-W

ee
k
s

80 millions 160 millions

D
el

ay
 (

m
s)

(a)

MIW MDW MTJ_Read

SRAM_Read MTJ_Write bitcount

0

100

200

300

400

500

600

700

800

2
-W

ee
k
s

3
-W

ee
k
s

4
-W

ee
k
s

2
-W

ee
k
s

3
-W

ee
k
s

4
-W

ee
k
s

80 millions 160 millions

E
n
er

g
y
 (

m
J)

(b)

MIW MDW MTJ_Read

SRAM_Read MTJ_Write bitcount

Figure 13. Breakdown of operations for delay and energy consumption of the proposed CiM-A
architecture. The MIW in the proposed CiM-A is the dominant part compared with other operations
in terms of both delay and energy.

5.2. Bit Vector Set

Another bitwise application scenario is the bit vector set. There are many algorithms
using the set data structure [7,54]. For example, it is used for graph mining. One way of
implementing a set with a fixed size is to use a bit vector [55]. In the bit vector function,
each bit represents a corresponding element. It is possible to perform bitwise operations
among bit vectors for multiple operations such as union, intersections, and difference.

Table 10 presents the energy and delay of the union and the different operations for
various memory designs using CiM-A. For this evaluation, we assumed a bit vector of
512K to represent the set. The union and difference operations were performed on 15
input sets. As is shown, CiM-A could improve the delay and energy by 2.24 and 4 times
compared with XSRAM for union operation, respectively. These numbers for STT-based
scouting logic design could reach 3.48 and 6.23 times the value in terms of delay and energy,
respectively. Figure 14 presents the delay and energy for XSRAM, STT-based scouting,
and the proposed CiM-A and CiM-P. The delay and energy for CiM-A consist of MIW,
MDW, MTJ_read, and SRAM_Read operations. Figure 14 depicts the breakdown of delay
and energy consumption for the proposed CiM-A architecture. As shown in these figures,
most of the delay and energy consumption could be traced back to the MIW. For the
energy evaluation, the MIW operation was the only visible contributor to the total energy
consumption due to its large overall contribution compared with the other operations.
Figure 14 presents the absolute values for the delay and energy. Typically, more complex
operations result in a larger overhead in terms of delay and energy. The difference operation
is more complex, as it includes more logic operations than union operations. Therefore,
performing the difference operation requires more energy and a larger delay compared
with the union operation, as shown in Figure 14. However, both operations profited from
the presented design.
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Table 10. Delay and energy comparison of the proposed CiM-A for union and difference set opera-
tions normalized to our proposed CiM-A.

Parameters Conventional
SRAM

Conventional
STT-MRAM

Scouting Logic
[16]

XSRAM [2] Proposed
CiM-P

Proposed
CiM-A

Union
Operation

Delay (X) 4.79 7.41 3.48 2.24 2.40 1

Energy (X) 11.81 13.73 6.23 4.00 4.00 1

Difference
Operation

Delay (X) 4.91 6.61 3.56 3.00 3.00 1

Energy (X) 10.17 11.56 6.45 5.21 5.17 1
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Figure 14. Delay and energy of union and difference operations for various CiM designs are shown
in (a) and (b), respectively. The proposed CiM-A is broken down into individual operations such as
MTJ_Read, SRAM_Read, MDW, and MIW.

5.3. Pure Bitwise Operation

We also evaluated the proposed design on the pure bitwise operation to measure
its efficiency [56]. Pure bitwise operations are part of many real-world applications such
as graphs and data mining [57,58]. In addition, pure bitwise operations are used in bio-
informatics to implement genetic algorithms [59]. Table 11 presents the delay and the energy
of the pure XOR operation among 32 rows for XSRAM, the scouting CiM design, and con-
ventional memory (STT-MRAM and SRAM) relative to the proposed CiM-A architecture.
Performing XOR with the proposed CiM-A could improve the delay and energy consump-
tion compared with other CiM architectures and conventional memories. Figure 15 presents
the values of this delay and energy consumption for various CiM designs.

Table 11. Delay and energy comparison related to the proposed CiM-A for pure XOR operation,
normalized to our proposed CiM-A.

Parameters Conventional
SRAM STT-MRAM Scouting Logic XSRAM Proposed

CiM-P
Proposed

CiM-A

Delay (X) 4.77 8.84 3.46 2.38 2.40 1

Energy (X) 11.81 12.75 6.02 4.02 4.00 1
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Figure 15. Energy and delay for pure XOR among different CiM designs. Breakdown of the proposed
CiM-A into used operations (MTJ_Read, SRAM_Read, MDW, and MIW).

Moreover, the breakdown of the needed operations for the proposed CiM-A is shown.
As shown in Figure 15, the proposed CiM-A performed XOR operations with less delay and
energy consumption, with MIW being the dominant contributor in the CiM-A operation in
terms of both delay and energy.

6. Conclusions

The computation-in-memory paradigm seems to be a promising approach to tackling
the memory wall and high energy consumption issues. Emerging non-volatile memory
types provides an efficient boolean logic implementation inside the memory. In this
paper, we proposed a hybrid SRAM/STT-MRAM cell that performs logic operations
within the memory array and saves the result of a CiM operation directly within the cell.
A comprehensive evaluation of the cell and the array level were presented to validate the
functionality of the proposed design. The proposed cell can significantly reduce delay
and energy consumption compared with other STT-MRAM- and SRAM-based CiM-P
implementations. We further showed the reliability and correctness of the design under
process and temperature variations. The simulation results show that the proposed CiM
architecture could achieve up to 8 times greater speeds and 13 times less energy consumed
compared with conventional memory types for typical data-intensive applications with
negligible overhead.
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