
Citation: Martin Wisniewski, L.;

Bec, J.-M.; Boguszewski, G.;

Gamatié, A. Hardware Solutions for

Low-Power Smart Edge Computing.

J. Low Power Electron. Appl. 2022, 12,

61. https://doi.org/10.3390/

jlpea12040061

Academic Editor: Orazio Aiello

Received: 28 October 2022

Accepted: 21 November 2022

Published: 25 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Low Power Electronics
and Applications

Article

Hardware Solutions for Low-Power Smart Edge Computing
Lucas Martin Wisniewski 1,† , Jean-Michel Bec 1,† , Guillaume Boguszewski 1 and Abdoulaye Gamatié 2,*,†

1 CYLEONE S.A.S. Company, 34090 Montpellier, France
2 LIRMM, University Montpellier, CNRS, 34095 Montpellier, France
* Correspondence: abdoulaye.gamatie@lirmm.fr
† These authors contributed equally to this work.

Abstract: The edge computing paradigm for Internet-of-Things brings computing closer to data
sources, such as environmental sensors and cameras, using connected smart devices. Over the last
few years, research in this area has been both interesting and timely. Typical services like analysis,
decision, and control, can be realized by edge computing nodes executing full-fledged algorithms.
Traditionally, low-power smart edge devices have been realized using resource-constrained systems
executing machine learning (ML) algorithms for identifying objects or features, making decisions, etc.
Initially, this paper discusses recent advances in embedded systems that are devoted to energy-
efficient ML algorithm execution. A survey of the mainstream embedded computing devices for
low-power IoT and edge computing is then presented. Finally, CYSmart is introduced as an in-
novative smart edge computing system. Two operational use cases are presented to illustrate its
power efficiency.

Keywords: smart edge computing; energy-efficiency; Internet-of-Things; low-power embedded
systems; machine learning; CYSmart

1. Introduction

The edge computing paradigm [1] is an emerging paradigm for Internet-of-Things
systems where computations are distributed across a variety of compact devices in order
to bring computing capability closer to data sources, such as environmental sensors and
cameras. We can mention the following advantages of edge computing over the traditional
centralized computing paradigm found in cloud systems:

• reduced communication bandwidth and power costs as a result of reduced data
transfers to centralized cloud servers;

• physical proximity of data and devices facilitates real-time data processing, such as
for self-driving cars;

• in-situ processing at the edge devices ensures privacy regarding sensitive data, and pre-
vents their offloading to remote locations;

• as the system is distributed, failure of some nodes can be easily overcome with a
minimal impact on the global system and new devices can be added in a modular
fashion to increase computing power.

Figure 1 illustrates the hierarchical layers of a typical edge computing infrastructure.
Sensors in Layer 0 collect data from the environment first. In subsequent layers, the data
are processed with appropriate devices based on the complexity of the processing. To meet
the edge computing requirements, devices are placed close to sensors.

J. Low Power Electron. Appl. 2022, 12, 61. https://doi.org/10.3390/jlpea12040061 https://www.mdpi.com/journal/jlpea

https://doi.org/10.3390/jlpea12040061
https://doi.org/10.3390/jlpea12040061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0001-7534-1270
https://orcid.org/0000-0003-3667-2848
https://orcid.org/0000-0002-6657-3421
https://orcid.org/0000-0002-8326-3257
https://doi.org/10.3390/jlpea12040061
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea12040061?type=check_update&version=2

J. Low Power Electron. Appl. 2022, 12, 61 2 of 24

Figure 1. Hierarchical smart edge computing.

1.1. Machine Learning at the Edge

For edge computing nodes, implementing data analytics, particularly machine learn-
ing (ML), is a major challenge. Applications that leverage ML techniques at the edge are
numerous. In essence, they deal with the inference problem. Real-time video analytics
is a prominent application found in systems such as video surveillance, traffic control,
and autonomous vehicles. Another notable application is feature extraction from images,
for example, detecting areas and objects, identifying handwritten characters, and monitor-
ing healthcare. To ensure people’s safety (for instance, in the event of a fire) or to minimize
energy consumption by utilizing renewable resources, smart homes and cities incorporate
devices that use ML techniques for sensing and controlling the environment. Amazon’s
Alexa has made automatic speech recognition popular due to its success.

Based on the richness of ML techniques, three main families can be distinguished [2].
In supervised learning, classification and regression tasks are often achieved with algorithms
such as support vector machines (SVM), artificial neural networks (ANNs), and linear
regression. With the use of algorithms like k-means or x-means, unsupervised learning can be
used for clustering and prediction tasks. Reinforcement learning focuses on decision-making
through Q-learning. The majority of machine learning algorithms implemented on edge
devices currently utilize inference (i.e., the process of directly solving ML problems with
pre-trained ANNs) rather than training (i.e., the process of minimizing error as a function
of ANN parameters, given an ML problem). One reason cited in [3] is the high bandwidth
and latency costs involved in exchanging network updates across multiple edge devices
(centralized model training might be more efficient since updated networks would be
transferred directly to devices). Another concern in the design of edge nodes is energy and
hardware costs. Structured labeled data is usually used for inference. The case is different
for deep learning [4], which is used for training tasks in which precision is critical. In this
process, complex multi-layer ANNs are applied along with huge amounts of raw data.
Edge devices lack the computing power and data storage capacity needed for this.

1.2. Motivation and Contribution of This Study

Smart edge devices rely on embedded systems with limited resources to process sensor
data. For ML workloads requiring high computing power, energy-efficient systems are
necessary. In recent years, many research efforts have been focused on energy-efficient
embedded system designs to solve ML problems [5–9]. These systems are primarily de-
signed to make inferences. However, embedded systems, especially at edge nodes, are
likely to require online learning, control, and optimization capabilities. In autonomous cars,
for example, using remote cloud-based training could lead to long communication delays.
Therefore, embedded training devices are preferred. However, after being trained offline,

J. Low Power Electron. Appl. 2022, 12, 61 3 of 24

ML inference models tend to diverge once in production. The retraining of such models
will therefore require online training capabilities.

To understand how low-power embedded computing devices might help fill the afore-
mentioned demand, this paper reviews the main design approaches for energy-efficient ML
algorithm execution. In the following sections, it surveys candidates that meet both smart
edge computing and Internet of Things requirements for low-power devices. CYSmart is
a flexible and low-power smart edge computing system that we present as an example.
A few working scenarios are used to evaluate the power efficiency of CYSmart.

1.3. Outline of the Paper

First, we discuss energy-efficient computing systems dedicated to executing machine
learning algorithms in Section 2. Section 3 provides a classification of low-power devices for
IoT and smart edge computing on the basis of hardware resources and power dissipation
constraints. This classification is then used to present a panorama of popular devices.
The CYSmart low-power edge computing system is described in Section 4. Moreover, it
is briefly compared with selected industrial edge computing technologies. Finally, some
concluding remarks are provided in Section 5.

2. A Quick Journey in the Landscape of Energy-Efficient Compute Systems for
ML Tasks

Design principle-wise, embedded machine learning can be implemented through a
central processing unit (CPU), graphics processing unit (GPU), application-specific inte-
grated circuit (ASIC), and field-programmable gate array (FPGA). There is a wide range of
outcomes in terms of power and accuracy of prediction for these implementations [10].

Figure 2 roughly illustrates this tradeoff. With the ASIC implementations [11,12],
execution latency is optimized, but ML model accuracy is lower as the model is customized
with approximations like quantization of ANN weights (i.e., reducing numerical precision
by reducing the number of bits). Contrary to ASIC chip designs, CPUs and GPUs often
support high-precision numerical representations, which improve prediction accuracy
at the expense of power consumption. ASICs are more energy-efficient than CPUs and
GPUs since they use less computing, I/O bandwidth, and memory resources. However,
their development can be time-consuming and expensive. FPGAs offer a flexible and
cost-effective implementation, allowing better balancing of power consumption, response
latency, and prediction accuracy, as evidenced by recent studies [13,14]. Nevertheless, this
comes at the expense of programmability, e.g., when compared to CPUs and GPUs.

Figure 2. Power and prediction error for four hardware designs (based adapted from [10])—higher
is worse.

In Figure 3, another perspective on existing machine learning systems is summa-
rized [7]. Inference is addressed by systems with dissipation less than 100W. Among them
are Google’s Edge Tensor Processing Unit (TPUEdge) [15] and Intel’s MovidiusX proces-
sors [16], embedded GPU-based neural engines such as the Apple A12 processor [17] and
Huawei Kirin 980 [18], FPGA co-processors like the Zynq-020 [19] and the Stratix-V [20]
chips, as well as mobile system-on-chips (SoCs) from Nvidia like Jetson-TX2 [21] and
Xavier [22]. Training systems at high performance levels consume more than 100 watts.
Typically, they consist of data center chips like the Google TPU3 [23] and the Intel Ner-
vana2 [24] and data center systems like the Nvidia DGX-2 server system [25].

J. Low Power Electron. Appl. 2022, 12, 61 4 of 24

Figure 3. Computing landscape for ML: power vs. performance (adapted from [7]).

2.1. Focus on ML Accelerators, GPUs and FPGAs

Mobile phone SoCs, for example, use ML acceleration to address vector and matrix
operations [26]. Various neural processing units and GPUs may be combined to achieve this,
as in Qualcomm Snapdragon [27], HiSilicon 600 and 900 series chips [18] and MediaTek
Helio P60 [28].

A typical approach toward efficient edge devices is to design hardware accelerators for
machine learning models. This is already the case for ANNs for improved energy efficiency
and throughput. By minimizing data access costs across the memory hierarchy, these
accelerators can enable specialized processing dataflow that better exploits the memory
characteristics. In [29], authors highlight several key design specializations tailored to
machine learning accelerators: instruction sets that perform linear algebra operations like
matrix multiplication and convolutions; on-chip buffers and on-board high-bandwidth
memory to efficiently feed data; and high-speed interconnects that enable efficient commu-
nication between multiple cores. Additional hardware specializations for inference-only
designs include Winograd convolution [30] and non-digital computing [12]. Although accel-
erators improve the execution performance of individual ML kernels, they may have some
negative impact on the overall ML model performance because of costly communications
between them and the associated system-on-chip (SoC).

Embedded GPUs and FPGAs are further alternatives for accelerating ML algorithms.
As shown in Figure 4, several solutions exist. We only report devices with maximum power
consumption of 50W, from the exhaustive list presented in [7]. The selected devices are
compared w.r.t. their performance, power consumption and computational precision levels.
Accelerators generally offer better precision and power consumption tradeoff, e.g., Google’s
tensor processing unit for edge computing (TPUEdge) [15] and Eyeriss [31]. On the other
hand, GPUs and FPGAs globally provide better performance. The higher their computing
precision, the higher their consumption, e.g., Xavier GPU [22] and ZCU102 FPGA [32].

For accelerating ML algorithms, embedded GPUs and FPGAs can also be used.
Figure 4 shows several solutions. As part of the exhaustive list presented in [7], we report
only devices with a maximum power consumption of 50W. We compare the selected devices
in terms of performance, power consumption, and computational precision. There is gener-
ally a better tradeoff between precision and power consumption with accelerators, such
as Google’s tensor processing unit for edge computing (TPUEdge) [15] and Eyeriss [31].
In contrast, GPUs and FPGAs provide better performance globally. In general, the higher
the precision of the computation, the more power it consumes, as in Xavier GPU [22] and
ZCU102 FPGA [32].

A comprehensive survey on hardware accelerators has been proposed very recently
in [33]. The reader can refer to this survey for a full coverage of the state of the art.

J. Low Power Electron. Appl. 2022, 12, 61 5 of 24

Figure 4. Accelerators, GPUs and FPGAs for embedded ML (adapted from [7])—he darker color,
the higher the metric value.

2.2. From Software-Hardware Codesign to Emerging Computing Paradigms

Weight compression [34], parameter pruning, and weight quantization [35] are well-
known ML optimization techniques for ANNs. Their goal is to improve energy efficiency
by lowering computing complexity, data volume, and hardware resources used during
the execution of the networks. Pruning involves gradually suppressing the connections
between neurons in an ANN. Quantization involves reducing the number of bits in binary
words. It is similar to approximate computing [36], where floating-point representations
are converted to fixed-point representations. This reduces the precision of weight values
in connections but speeds up execution. Another key aspect is developing compilers and
runtime systems [37] that abstract away hardware details. This makes it easier to deploy
and train ML models on mobile devices. The extensive software development environment
made available to users by Nvidia contributes to the success of Nvidia GPUs for ML.

In the widely adopted von Neumann architectures, ML workloads based on ANNs
frequently perform multiply-accumulate operations, which generate multiple data move-
ments between memory and processors. As a result of these exchanges, there is a high
execution time and power consumption, and this is known as the “memory wall”. Modern
ML commodity chips combine CPUs with High-Bandwidth Memory (HBM) via efficient
interconnects to address this problem. In parallel, an emerging paradigm, called near-data
processing [38], has been studied to address the memory wall issue. Computing capability
is built into the memory or storage, enabling data stored there to be processed. Mixed-
signal circuit design and advanced memory technologies were used to accomplish this.
Other near-data processing techniques include in-memory processing [39] and in-storage
processing [40]. Integrated 3D technologies and emerging Non-Volatile Memory (NVM)
technologies enable such realizations. In comparison to DRAM, NVMs [41,42] like Spin
Torque Transfer RAM (STT-RAM) and Resistive RAM (ReRAM) have lower leakage and
higher cell density. By using them, edge nodes can mitigate their idle power draw concerns.
In Hybrid Memory Cube (HMC) [43], several DRAM dies are stacked above the logic layer
using Through-Silicon-Vias (TSV) to address the memory access issue.

3. Classification of Low-Power Devices for IoT and Smart Edge Computing

As IoT and edge computing grow in popularity, multiple sophisticated tiny embed-
ded computing devices have emerged over the last decade. A general and systematic
way of assisting designers in choosing low power IoT and smart edge computing devices
does not exist. In a recent paper, Neto et al. [5] proposed a classification for IoT devices
aimed at smart cities and smart buildings. We revised this classification to better reflect a
broader class of edge computing devices encountered beyond smart cities and smart build-
ings. This includes hardware architectures used by mobile devices such as smartphones.
The enhanced classification takes into account the hardware characteristics, including both

J. Low Power Electron. Appl. 2022, 12, 61 6 of 24

computing and memory components (which reflect the potential device performance),
and the total power dissipated. The resulting classes are accompanied by some typical
target algorithms that the corresponding device family can handle.

Our proposed extension of the classification from Neto et al. [5] is represented in
Table 1. A total of six device classes are distinguished. The Class 0 devices are based
on microcontrollers with limited memory capacity and power consumption. In general,
the processed dataset is very small; for example, temperature and humidity measurements.
Nevertheless, such devices can perform lightweight inference tasks using simple pre-
trained models. Hence, all the subsequent device classes can be used for inference. A
Class 1 device is one that can store data in addition to collecting and processing data. Such
devices generally run on monocore microcontrollers or application cores with larger storage
and memory capacities. Typically, such devices process only some basic statistics, such as
noise reduction.

Table 1. Device classification for smart and low-power embedded systems (adapted with permission
from [5]).

Class Storage Memory Compute
Unit Types Power Typical

Algorithms

0 ≤512 MB ≤512 kB Microcontrollers ≤1 W
Basic computations

(lightweight inference)

1 ≤4 GB ≤512 MB
Microcontrollers/
Application cores ≤2 W

Basic statistics
(inference)

2 ≥4 GB ≤2 GB Application cores ≤4 W
Classification/Regression

(inference)

3 ≥4 GB ≤8 GB Application cores ≤16 W
Prediction/Decision-making

(inference)

4 ≥4 GB ≤16 GB Application cores ≥16 W Deep learning,
auto-encoders, etc.

(inference & training)5 ≥4 GB ≥16 GB Application cores ≥16 W

From Class 2, all devices are considered to have one or more application cores.
The presence of SD card slots in the majority of these devices makes storage capacity
more scalable. Devices of Class 2 are powerful enough to enable CNN inference, such as in
image analysis. Their performance is good enough to execute lightweight IoT and edge
workloads, as well as more intensive workloads such as training and inference.

In class 3, embedded GPUs make it possible to run lightweight training tasks. It is the
first class with sufficient resources to enable real-time video analysis without any special
ML accelerators.

In class 4 and class 5, we find devices that can be used in (quasi)autonomous sys-
tems such as smartphones or self-driving cars. The devices should be able to withstand
environmental changes, while delivering the performance to process large datasets using
high-performance accelerators, such as Nvidia GPUs found in server-class systems. A class
4 device is often intended for smartphones and is often more energy-efficient than a class 5
device, which is mostly designed for training and inference purposes.

Quick Survey of Typical Embedded Devices

Following the above classification, we now look at the most popular low-power
devices used for IoT and edge computing recently. As shown in Tables 2–4, the devices
identified fall into three application families:

• the first application family includes ultra-low-power devices with limited resources
suitable for lightweight IoT and edge applications. This applies to all class 0 and class
1 devices;

J. Low Power Electron. Appl. 2022, 12, 61 7 of 24

• the second application family consists of the most popular devices encountered in
average edge computing and IoT applications. All devices in class 2 and part of
devices in class 3 are included in this class;

• the third application family includes devices with the most powerful hardware re-
sources for performing machine learning and inference tasks. It covers a significant
portion of devices in classes 3 and 4 and 5.

We categorize each application family by its device classes, its execution unit (CPU,
GPU, accelerator, etc.), the most appropriate ML task (inference vs. training), and some
domain application examples. Following the three application families outlined above, we
will briefly discuss an application-driven panorama of key IoT and edge devices. We rely
on [6] in part for this survey.

Table 2. Ultra low-power devices for IoT and edge computing.

Device Class GPU/Accel. CPU ML Usage Application
Examples

Arduino
Mega 0 -

Microcontroller
ATmega 8-bit

@16 MHz
inference
(ANN)

domotic [44],
robotics [45]

Arduino
RP2040 0 -

2xARM Cortex-M0+
@133 MHz
(RP2040)

inference
(ANN)

parking traffic [46],
virtual reality [47]

MSP430G2553
LaunchPad 0 -

MSP430 16-Bit
RISC Architecture

@16 MHz
inference
(ANN)

activity
recognition [48]

Sony
Spresense 0 - 6xARM Cortex-M4F

@156 MHz
inference
(ANN)

object
detection [49]

SparkFun
Edge 0 -

32-bit ARM
Cortex-M4F

@48 MHz
inference
(ANN)

speech
recognition [50]

STM32F103 0 - ARM Cortex-M3
@72 MHz

inference
(CNN)

image
recognition [51]

STM32F765VI 0 - ARM Cortex-M7
@216 MHz

inference
(CNN)

image
recognition [52]

Tiny Eats 0 - ARM Cortex-M0+
@48 MHz

inference
(DNN)

audio
recognition [53]

Beaglebone
Black 1 PowerVR

SGX530 GPU
ARM Cortex-A8

single-core @1 GHz
inference
(ANN)

robotics [54],
camera

drones [55]

Hello-Edge 1 - ARM Cortex-M7
(STM32F746G)

inference
(DNN)

keyword
spotting [56]

MAX78000 1 Deep CNN
Accelerator

ARM Cortex-M4
@100 MHz

RISC-V coprocessor
@60 MHz

inference
(DNN)

object
detection [57]

ZedBoard
Dev. Board 1 FPGA accel. 2x ARM Cortex-A9

@667 MHz
inference

(DNN,CNN)
image

recognition [58]

The first application family, shown in Table 2, deals with lightweight data processing.
Display devices are usually located close to data sources and are used primarily for do-
motics. The Arduino board is typically found in smart houses to monitor lightning [44].
Meanwhile, the most powerful devices may come with a compute accelerator integrated
into them. Using its CNN accelerator, the MAX78000 device executes a light and optimized
object detection algorithm on camera data [57]. Generally, the devices in Table 2 are afford-
able. They use programming models that are often closer to the hardware, i.e., at a low
abstraction level, like assembly code.

Due to its inherent energy-efficiency, ARM technology is often adopted for embedded
systems. Cortex-M microcontrollers and Cortex-A application processors are examples.
In addition to ARM cores, a few designs use Intel technology, such as the Movidius Myriad
2 vision processing unit (VPU). Using them, deep neural networks (DNNs) can be run in
smart cameras, for example. Also worth noting is the emerging GAP8 device, based on

J. Low Power Electron. Appl. 2022, 12, 61 8 of 24

the RISC-V open Instruction Set Architecture (ISA) [59]. It paves the way for a new era of
processor innovation sustained by a collaborative and dynamic ecosystem.

There are a number of devices that combine ARM CPUs with embedded GPUs (see
Tables 3 and 4), except for the Beaglebone Black system (see Table 2). In the powerful Jetson
TX series and Tegra X1 systems, Nvidia’s Pascal and Maxwell GPUs are combined with
ARM Cortex-A57 cores. In both cases, the resulting systems can consume up to 15W of
power. Since GPUs are present, they provide higher computing performance at the expense
of more power consumption.

GPUs such as those reported in Table 3 are capable of executing the second application
family. With Raspberry Pi, this involves image processing to detect tomato disease [60]
or image super-resolution [61] or image classification [62] with smartphones. Other ap-
plications involve robotics, such as robotic perception [63] implemented using the Robot
Operating System (ROS). As a result, the devices used here can support higher abstraction
levels of programming.

According to Table 4, all devices in the third application family combine a GPU with
at least four application cores, except for the RZ/V2M board. Applications primarily focus
on image and video processing. With the Jetson Nano, real-time vehicle object detection is
possible [64]. Furthermore, these devices are used in smartphones, such as the Huawei P40
Pro, which is equipped with powerful video super-resolution. Additionally, they can be
used with ROS in the robotics field [65] for navigation, perception, and control.

Table 3. Low-power devices at the frontier of IoT and edge computing.

Device Class GPU/Accel. CPU ML Usage Application
Examples

BeagleBone
AI 2 -

2x ARM Cortex-A15
@1,5 GHz

2x ARM Cortex-M4
SoC with 4 EVEs

inference
(CNN)

computer
vision [66]

Intel
Movidius 2 - Myriad-2 VPU inference

(SVM)
computer
vision [67]

Raspberry
Pi 3 2

400 MHz
VideoCore IV

GPU
4xARM A53

@1.2 GHz
inference

(SVM, CNN)

video
analysis [68]
medical data

processing [69]

Raspberry
Pi Z2 W 2

400 MHz
VideoCore IV

GPU
4xARM Cortex-A53

@1 GHz
inference

(CNN)
object

detection [70]

RISC-V
GAP8 2 -

8 RISC-V 32-bit
@250 MHz +

HW ConvolutionEngine
inference

(CNN)
image, audio

processing [71]

Samsung
Galaxy S3

(Exynos 4412 SoC)
2 Mali-400 MP

GPU
4xARM Cortex-A9

quad-core @1.4 GHz
inference

(CNN)
image

classif. [72]

Khadas VIM 3 2,3 4xARM Mali-G52
@800 MHz

4xARM Cortex-A73
@2.2 GHz

2xARM Cortex-A53
@1.8 GHz

inference
(CNN) robotics [63]

Raspberry
Pi 4 2,3

500 MHz
VideoCore VI

GPU
4xARM Cortex-A72

@1.5 GHz
inference

(SVM, CNN)
image

analysis [60]

Motorola
Z2 Force

(Snapdragon 835
SoC)

2, 3 Qualcomm
Adreno 540 GPU

4x Kryo 280 @ 2.45 GHz
4x Kryo 280 @ 1.9 GHz

inference
(CNN)

image
classif. [62]

recognition [73]

Xiaomi
Redmi 4X

(Snapdragon 435
SoC)

2, 3 Qualcomm
Adreno 505 GPU

8xARM Cortex-A53
@1.4 GHz

inference
(CNN)

image super
resolution [61]

J. Low Power Electron. Appl. 2022, 12, 61 9 of 24

Table 4. Powerful embedded devices for ML at the edge.

Device Class GPU / Accel. CPU ML Usage Application
Examples

Coral
Development Board 3

GC7000 Lite GPU
+

TPUEdge accel.

NXP i.MX 8M SoC
(4x ARM Cortex-A53 +

Cortex-M4F)
inference

(CNN)

image
processing

[74]

Google Pixel C
(Tegra X1 SoC) 3 256-core

Maxwell GPU
4x ARM Cortex-A57

+
4x ARM Cortex-A53

inference
(SVM)

pedestrian
recognition

[75]

Jetson Nano 3 128-core
Maxwell GPU 4x ARM Cortex-A57 inference

(CNN)
video image
recognition

[64]

Jetson TX1 3 256-core
Maxwell GPU

4x ARM Cortex-A57
2x MB L2

inference
(CNN)

video, image
analysis [76],
robotics [77]

Odroid-XU4
(Exynos 5422 SoC) 3

ARM
Mali-T628 MP6

GPU
4x ARM Cortex-A15 +

4x ARM Cortex-A7
inference/

training
(ANN)

urban flooding,
automobile
traffic [78]

RZ/V2M
Evaluation Board 3 DRP-AI 1x ARM Cortex-A53

@996 MHz
inference

(CNN)
image

processing [79]

Samsung
Galaxy S8

(Exynos 8895 SoC)
3

ARM
Mali-G71

GPU

4x ARM Cortex-A53
@ 1.7 GHz

4x Exynos M2 @2.5 GHz
inference

(CNN)

image
recognition

[73]

Odroid-M1 3,4 4xARM Mali-G52
@ 650 MHz

4xARM Cortex-A55
@2 GHz

inference
(CNN)

video image
recognition [80]

Huawei P40 PRO
(Kirin 990) 4 16xARM Mali-G76

@600 MHz

2x ARM Cortex-A76
@2.86 GHz

2x ARM Cortex-A76
@2.09 GHz

4x ARM Cortex-A55
@1.86 GHz

inference
(CNN)

video super
resolution

[81]

Jetson TX2 4 256-core
Pascal GPU

2x Denver2, 2 MB L2 +
4x ARM Cortex-A57,

2 MB L2

inference
(CNN, DNN,

SVM)

video, image
analysis [76],
robotics [82]

One Plus 9 Pro
(Snapdragon 888) 4 Adreno 660 GPU

1x ARM Cortex-X1
@ 2.84 GHz

3x ARM Cortex-A78
@2.42 GHz

4x ARM Cortex-A55
@1.80 GHz

inference
(CNN)

image
classification

[83]

Jetson AGX Orin 5
2048xCUDA cores

64xTensor cores
@1.3 GHz

12xARM Cortex-A78
@2.2 GHz

inference
(CNN) robotics [65]

Jetson AGX Xavier 5 512xVolta GPU 8xNVIDIA Carmel inference
(CNN)

real-time
object detection

[84]

A few devices, however, combine CPUs with specific ML accelerators. ZedBoard and
Coral Dev Board both integrate an FPGA-based accelerator and Google’s TPUEdge [15].
Based on the computing complexity of algorithm execution, this diversity of cores enables
maximizing the efficiency of the combined processing elements.

Homogeneous multicore devices appear mostly in devices for the first application
family (Table 2), and in a few cases for the second application family (Table 3). These devices
dissipate only a few milliwatts or a few Watts, such as SparkFun Edge and Hello-Edge.
They, however, deliver less performance than heterogeneous devices.

Lastly, it is worth noting that most of the devices reported in Tables 2 and 3 are used
for inference tasks rather than training (which is more expensive) due to their limited com-
puting resources. Only some devices listed in Table 4 has been considered for lightweight
training tasks, e.g., Odroid-XU4 board.

4. Low-Power Smart Edge Computing with CYSmart Solution

CYSmart is an edge computing system that gathers, processes, and displays locally
measured data with minimal power consumption. It is capable of providing real-time
feedback to domain experts. There are a number of low-power devices in this system, called

J. Low Power Electron. Appl. 2022, 12, 61 10 of 24

CYComs, which collect data from sensors at points of interest, pre-process it, and transmit
it to the CYEdge via LoRa networks, as illustrated in Figure 5.

Figure 5. Overview of the CYSmart solution.

A CYCom implements the services provided by Layers 0 and 1 in Figure 1. As a
result, CYSmart is able to perform some preliminary lightweight analyses on the collected
data. This analysis can be performed to filter it before sending the result to the other
components of the system. The outputs CYComs can then be processed and displayed
by the CYEdge component, which typically implements Layers 2 and 3 of Figure 1. Data
processing algorithms can determine which device class is appropriate for implementation
of a CYEdge. For energy-efficient and secure computations, the latter is deployed close
to CYComs.

• Measurement identifier and name of the point of interest
• Type of measurement performed
• Unit of measurement used
• Range of measurement desired
• Operating mode of the module (continuous measurement, on demand, sleep. . .)
• Time range of system activity
• Battery level of CYComs
• Limit ranges of expected values
• Alert generation
• Transmission signal strength

Every measure is stored in the CYEdge internal memory and remains accessible at any
time through:

• a visualization tool that displays the measurement curves versus time;
• a download of all the information stored on a USB flash drive, computer, or server.

Depending on the needs of the customer or the third party software used, the file type
and format are adapted.

Figure 6 presents a more detailed technical presentation of CYSmart. The CYCom
and CYEdge components are detailed in the next two sections, followed by some use
case scenarios.

Figure 6. Detailed view of CYSmart solution.

J. Low Power Electron. Appl. 2022, 12, 61 11 of 24

4.1. Data Acquisition Device: CYCom

A CYCom is a device used to acquire data in the CYSmart system. Physical data can be
recovered using this low-power technology running on an external battery. Data can come
from digital sensors with serial communication (SPI, UART, I2C) or from analog sensors
with a 16-bit Analog to Digital Converter (0–10V, 4–20 mA, or thermal resistance input).
An STM32 microcontroller allows the CYCom to pre-process data (threshold detection,
filtering, conversion. . .) before sending it by LoRa to the CYEdge. Each device can be
physically configured to communicate with the CYEdge unit using one of two frequency
bands (433 MHz or 866 MHz), each with four transmission channels. In the event the
receiving device is not reachable, the sent frame can be stored on the receiving device’s
internal flash memory (8 MB) or SD card and sent back when the connection is restored.
The device can also make use of other modules, such as a micro-USB port (currently used
for CYCom updates), Bluetooth module, 3-axis inertial measurement unit (IMU) module
(acceleration, angular, magnetic), or GPS module directly integrated within the device.

4.2. Centralized Early Data Processing: CYEdge

Data centralisation and setup of the sensor network is achieved with the CYEdge
technology. It is a box that can be connected to an external battery or to the socket.
The technology consists of two parts. The first one is a Raspberry Pi 4 (Processing Unit)
and the second one is a proprietary shield developed by CYleone that enables LoRa
communication with CYComs. This shield is a LoRa gateway that allows the processing of
AT commands sent by the Raspberry Pi. These commands are sent to setup the CYComs
but also to retrieve the data frames from the CYComs. The Raspberry Pi acts mainly as a
data processing and graphic display unit. It reads, processes, saves and displays data from
the shield on the graphical user interface. The interface allows the configuration of the
sensor network and the retrieval of all the data and configurations of each CyCom. It can
be accessed by connecting via WiFi or Ethernet to the local network created by the board
itself, or to an existing network. The Raspberry can also be used for other parallel tasks
such as GPS measurements, digital data retrieval and synchronization of this data with that
received via LoRa.

4.3. Use Case Evaluation of CYSmart

One use case application of CYSmart is to collect data from different points of interest
every interval of ten minutes, in a critical environment. As shown in Figure 6, the CYComs
collect data from sensors where it is difficult to take and transmit measurements, such as
aeraulic measurements in basements or bunkers. Data can be stored in the CYComs and
sent to the CYEdge after lightweight processing, such as threshold detection or filtering.
By sending only useful and ready-to-use data, this application minimizes LoRa communi-
cation. On the CYEdge, complementary data processing can be performed. A diagram of
the CYCom’s operations is shown in Figure 7.

A second use case application relies on LoRa to wirelessly transmit raw data from
a CYCom directly to the CYEdge. The latter performs all data processing and displays
the evolution of the values. This scenario is used to track the evolution of a process or a
physical value in time, such as a refrigerator temperature in catering. Here, in most cases,
the interval between two measures is around a few seconds, e.g., four seconds in our case.
In addition, a CYEdge can only be paired with one to five CYComs. Figure 8 shows the
corresponding flow diagram.

J. Low Power Electron. Appl. 2022, 12, 61 12 of 24

Figure 7. Operational diagram of the first application use case (Case I).

Figure 8. Operational diagram of the second application use case (Case II).

CYSmart devices are now ready to be evaluated according to the above use cases. As a
processing unit, CYEdge utilizes a Raspberry PI 4 device with a LoRa shield. The CYCom
uses a homogeneous architecture based on a STM32L496 microcontroller and ARM Cortex-
M4 CPU (class 0 device hardware). The CYCom has a storage capacity of 1 MB from the
STM32 and 8 MB from an external flash memory (class 0 device storage), as well as an SD
card slot. There is also 320 KB memory in the STM32, corresponding to a class 0 memory.

According to the different steps of the two operational diagrams, the evaluation
of CYCom is presented in Table 5. During each step, the power is measured using the
generator voltage (constant 15V) and the CYCom current draw. A CYCom is connected
to a generator through an ampere-meter to measure the current draw with the greatest
precision between the generator value and the ampere-meter display.

J. Low Power Electron. Appl. 2022, 12, 61 13 of 24

Table 5. Power consumption and duration of each steps in the use case scenarios.

Step Labels Detailed of the Step Power Consumption Time Duration

1 Wait pairing and
synchronizing from the CYEdge 412.5 mW 20 s

2 Setting up measurement
parameters from the CYEdge 468 mW 7 s

3 Measuring digital and
analog data from sensor 357 mW 10 s (Case I)

200 ms (Case II)

4 Data processing
(filtering, conversion) 387 mW 50 ms

5 Sending stored and measured
data to the CYEdge (LoRa) 377.5 mW 2–10 s

6 Waiting acknowledgement
from the CYEdge 252 mW 1–25 s

7 Sleep until
next measuring 177 mW 1 s–1 min

8 Storing not sent data
in RAM memory 256.5 mW 50 ms

From Figures 7 and 8, we note two parts in the operational diagram. The first part,
with steps 1 and 2, concerns the setup of a CYCom. Both steps are performed only once
during the setup of the entire system and the CYComs. The latter retain their configuration
in memory until they are reinitialized by the use of a hardware reset (push button inside).
The second part relates to the execution routine of the device. In this routine, the device is
woken up, a measurement is taken, data is processed and sent (depending on the use case),
before returning to sleep until the next measurement. Steps 3 to 8 also belong to the routine
and are executed in an infinite loop.

Figure 9 shows the duration distribution for the steps in one routine iteration, con-
sidering a worst-case scenario. In Case I (see Figure 9a), the worst case scenario occurs
when there is 1 min between each data measure in the CYCom and there are frequent con-
nection issues between the CYCom and CYEdge (i.e., low communication quality). In this
worst-case scenario, (i) the CYCom transmits data to the CYEdge during 2 s and waits
for an acknowledgement during 5 s; (ii) if no acknowledgment is received, the CYCom
repeats phase (i) up to five times, otherwise it moves on to step 7. After five attempts (about
35 s), if no acknowledgement is received, the CYCom stores the data in its local memory,
and proceeds to step 7.

(a) (b)

Figure 9. Time distribution between the different steps in the worst-case scenario, for two use cases.
(a) Use case I; (b) Use case II.

For Case II in Figure 9b, we assume that the CYEdge and CYCom are close to each
other. This minimizes the loss of communication between both components during data
exchanges. It enables the CYCom to send data to the CYEdge only once during 2 s and wait
for the corresponding acknowledgement during 1 s. If no acknowledgement is received,
the data is stored in the local memory of the CYCom. The worst-case scenario requires 3 s
to reach step 7.

J. Low Power Electron. Appl. 2022, 12, 61 14 of 24

Despite their high power consumption, steps 1 and 2 only consist of system setup
functions executed during installation. For this reason, as shown in Figures 10a,b, various
components are activated during these steps to set them up.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. Power consumption breakdown for the different steps occurring in Figures 7 and 8. (a) Step
1; (b) Step 2; (c) Step 3; (d) Step 4; (e) Step 5; (f) Step 6; (g) Step 7; (h) Step 8.

During the execution of the routine, the sensor power management is activated only
during steps 3 and 4. Figures 10c,d show that it is the second most power consuming
function after the CPU. It is activated for 10 s, as in Case I. This represents 9% of the routine
execution duration in Figure 9a and only 5% in Figure 9b. This allows for stable data
collection from analog sensors. To provide the most precise data, it is necessary to have
so much time. However, digital sensors can take less time to acquire data than analog
sensors in Case II. This explains the shorter duration in Case II. The complexity of the data
processing affects the processing time, but not the power consumption.

The CYCom sends data to CYEdge in steps 5 and 6. Here, the duration depends on the
communication load between both devices. The CYCom will attempt to send data to the
CYEdge five times before storing it (step 8). During steps 5 and 6, Figure 10e,f shows that

J. Low Power Electron. Appl. 2022, 12, 61 15 of 24

the LoRa communication is activated and represents up to 38% of the power consumption
during the data transmission, i.e., the third most power consumer function.

Lastly, the process performs the sleep function, i.e., step 7. In Figure 10g, it is the step
with the least activated functions: only the CPU is activated, resulting in the lowest power
consumption. According to the use case, this function can be more or less time consuming.
Figure 9a shows that in the worst-case scenario in Case I, CYCom is in this state 57% of the
execution routine. Additionally, depending on the frequency of the data measurement, this
step can be repeated and reach more than 95% of the process duration. In some cases, this
duration can be shortened depending on the measuring frequency and the total number of
CYComs deployed in the network to improve the bandwidth. With 1 s sleep duration in
Case II, the routine spends 25% of its time in the worst-case scenario.

4.4. Gained Insights and Discussion

As a representative ultra-low-power device of the CYSmart system, the CYComs were
the primary focus of the above use cases. There is also another component, the CYEdge,
which embeds a Raspberry Pi 4 and a LoRa communication shield. Based on the power
measurements of the CYEdge under normal operating conditions, it can be classified as
a class 3 device, as described in Table 1. Below are some insights regarding CYSmart’s
current implementation and potential improvements.

Gained insights. The CYCom component of the CYSmart system utilizes a commercial-
off-the-shelf (COTS) microcontroller manufactured by STMicroelectronics. Choosing this
approach reduces the cost of the component as well as the development time. A CYCom’s
CPU is the primary energy consumer in the aforementioned use cases, followed by the
LoRa module and the sensor power supply. Each of these three modules can be improved.

STM32 boards are based on von Neumann microarchitecture, leading to costly data
movement between different hardware units. As a result, future improvements could
include designing a customized solution that meets the requirements of the domain ap-
plications. This is consistent with the notion of domain-specific hardware accelerators as
described in [85]. There is a lot of power consumed during one routine iteration in the
second use case from the previous section without any data processing being performed.
This unnecessary power consumption must be eliminated in order to improve the energy
efficiency of the system. This problem may be solved by means of power gating, for ex-
ample. A customized solution that incorporates such a mechanism is therefore desirable.
Suitable design approaches should be considered for design space exploration by selecting
high-level methodologies, e.g., [86–88], covering different abstraction levels: high-level ana-
lytical modeling [89–92], transaction-level modeling [93–95], cycle-accurate design [96–98],
or register transfer level [99]. As surveyed in this paper, it is possible to implement the
architecture using FPGA or ASIC designs at the expense of higher costly implementation
efforts. As for CYComs, the CYEdge power consumption can be reduced by applying the
same design methods.

Sensor power consumption is difficult to reduce since it is heavily dependent on the
type of sensor being used. A wide range of digital and analog sensors can be interfaced
with the CYCom. External 24 V lithium-ion batteries are currently used to power the
integrated sensors. Instead of analog sensors, digital sensors with internal 3.3 V batteries
could be considered here to reduce power consumption. Depending on the measurement
environment, LoRa modules consume varying amounts of power. In both Cases I and II,
the system can communicate across a reinforced concrete wall 90 cm thick with the initial
parameters. In the case of a 15 dBm data transmission capacity and a spreading factor of
12, the maximum transmission delay is 2 s. Therefore, its maximum power consumption is
166 mW. These parameters can be adjusted according to the operational environment in
order to reduce the LoRa module’s power consumption.

J. Low Power Electron. Appl. 2022, 12, 61 16 of 24

Comparison of CYSmart w.r.t. selected industrial solutions. As a mature low-power edge
computing solution, the CYSmart system can be compared with a number of industrial
technologies. For this purpose, we consider some relevant criteria, described as follows:

• Device classes: supported device classes as defined in Table 1. This criterion implicitly
suggests a range of power consumption;

• Sensor diversity: diversity of sensor types supported by a technology, such as digital
versus analog sensors, as well as sensor voltage ranges. The criterion is qualitative in
nature and can be rated on three levels: high, average, and low.

• Transmission speed: the speed of data transmission between the sensors at the edge
frontier and the gateway or centralized system that is responsible for pre-processing
the data. Generally, it is measured in terms of the number of samples per second
(S/sec) or bits per second (b/sec);

• Communication distance: the distance over which a technology communicates wirelessly.
It is essential in critical environments, such as basements, bunkers, and nuclear power
plants;

• Number of edge layers: the number of layers considered in the hierarchical edge com-
puting implementation, as shown in Figure 1;

• Measurement points: the number of data measurement points (i.e., sensors) managed
by a single gateway or centralized system;

• Dimension of measurement device: the form factor of a device that incorporates sensors
to collect data during the deployment of a technology;

• Dimension of gateway/central device: the form factor of a gateway or centralized system
that manages sensor data;

• Easy deployment: the effort required for an easy deployment of a technology. This is a
qualitative criterion;

• Application diversity: it refers to the variety of applications that can be leveraged by a
technology, such as smart-home, smart-industry, and smart-city. The criterion is also
qualitative in nature.

In light of the aforementioned criteria, Table 6 provides a comparison of CYSmart w.r.t.
the industrial edge computing technologies summarized in the sequel. The TMI-Orion
company proposes a solution for the design and manufacture of high level technologies
that target harsh environments. A key component of its edge computing technology is a
network of smart sensors such as NanoVACQ Fullradio [100], which communicate via a
2.4 GHz radio protocol with a Radio Transceiver [101]. Using a serial protocol, the latter
transmits data to a host computer that manages and displays data from a sensor network.
The Gravio company develops an IoT platform that is capable of connecting several sensors.
Using the ZigBee wireless protocol, these sensors communicate with the Gravio Hub [102].
Data can be viewed and managed by users.

The moneo appliance is an edge solution manufactured by IFM company [103]. It con-
sists of a dedicated software toolbox that allows for the management of sensor parameters
as well as data display. Templates are provided in the toolbox for defining network con-
figurations. Sensors are connected to the moneo appliance via an IO-Link Master, which
serves as an interface between the appliance and the gateway computer.

The Advantech company developed an IoT solution that relies on data measurement
devices named WISE (e.g., WISE-4060 [104]) and an intelligent edge server (e.g., EIS-
D150 [105]). By using the WiFi protocol, the WISE devices send data from the sensors to the
edge server. Users are provided with a real-time dashboard for managing WISE devices.
The InHand Networks company has defined a specific gateway [106], which provides data
optimization in the IoT infrastructure and provides real-time response times. The gateway
device can be connected to a local network. It is compatible with real-time Ethernet
protocols and supports the Docker software system.

The MCM200 series components (e.g., MCM-204 [107]) are edge computing solutions
designed by the Adlink company. They are standalone data acquisition devices (i.e., no host

J. Low Power Electron. Appl. 2022, 12, 61 17 of 24

computer is required) that can monitor, analyze, and execute real-time actions. WiFi or
Ethernet ports are available for communication.

Finally, the Analog Devices company offers the SmartMesh Wireless HART technology
which consists of a small network manager (LTP5903-WHR [108]) that communicates with
a number of sensor nodes called “motes” (e.g., LTP5900-WHR [109]). The network manager
and motes must be programmed by the user. The network manager is responsible for
centralizing data and communicating it to the host computer. Using analog data from
sensors, the motes transmit data to the network manager.

Table 6 globally illustrates that CYSmart and Advantech technologies offer several
advantages over other solutions. There are many similarities between these two technolo-
gies; however, CYSmart is capable of supporting a larger wireless communication distance
than Advantech’s solution. Because of this, CYSmart is well suited to critical environments,
such as nuclear power plants.

J. Low Power Electron. Appl. 2022, 12, 61 18 of 24

Table 6. Comparison of CYSmart with similar edge computing technologies.

CYSmart
TMI

Orion
[100,101]

Gravio
[102]

Moneo
Appliance

[103]

Advantech
[104,105]

InHand
Networks

[106]

ADLINK
[107]

Smartmesh
WirelessHART

[108,109]

Device
classes 0 and 3 0 and 2 2 4 0 and 3 2 2 0 and 2

Sensor
diversity high low low average high low high average

Transmission
speed 0.3 S/sec 10 S/sec - 2500 S/sec - 1000 Mb/sec 256 KS/sec 250 Kb/sec

Communication
distance (in meters) 800 30 100 wired 110 wired wired 200

Number of
edge layers 2 2 2 2 3 2 2 2

Measurement
points 20 4 64 16 - 6 20 500

Dimension of
measurement device

(in millimeters)
170 × 90 × 65 31 × 129 × 79 36 × 36 × 9 - 80 × 98 × 25 - - 39 × 24 × 8

Dimension of
gateway/central device

(in millimeters)
245 × 110 × 85 127 × 8 × 46 97 × 97 × 29 35 × 105 × 150 260 × 140 × 54 180 × 115 × 45 110 × 40 × 126 103 × 56 × 20

Easy
deployment average average high high average low average low

Application
diversity high low average low high average average high

J. Low Power Electron. Appl. 2022, 12, 61 19 of 24

5. Summary

Embedded architectures for future edge devices likely will need to support training,
control, and optimization capabilities, according to the current trends in edge computing.
In this paper, we discuss recent efforts regarding energy-efficient hardware solutions for
machine learning at the edge. We reviewed current design approaches and devices tar-
geted at implementing IoT and smart edge computing with limited computing and power
capabilities. Candidate low-power devices that could meet IoT and smart edge computing
requirements have been surveyed. CYSmart, a flexible low-power edge computing system,
was demonstrated as an interesting solution. To evaluate its power efficiency, a few work-
ing scenarios have been considered. Finally, a brief comparison of CYSmart with selected
industrial edge computing technologies was presented.

Author Contributions: Conceptualization, L.M.W., J.-M.B., G.B. and A.G.; methodology, L.M.W.,
J.-M.B. and A.G.; software, L.M.W. and J.-M.B.; validation, L.M.W., J.-M.B. and A.G.; writing—original
draft preparation, L.M.W., J.-M.B., G.B. and A.G.; writing—review and editing, L.M.W. and A.G.;
supervision, J.-M.B., G.B. and A.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to thank Guillaume Devic and Gilles Sassatelli for their
feedback in early discussions on part of the current work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ANN Artificial Neural Network
ASIC Application-Specific Integrated Circuit
CNN Convolution Neural Network
COTS Commercial-Of-The-Shelf
CPU Central Processing Unit
DRAM Dynamic Random Access Memory
FPGA Field-Programmable Gate Array
GPU Graphics Processing Unit
HBM High-Bandwidth Memory
HMC Hybrid Memory Cube
I/O Input/Output
IMU Inertial Measurement Unit
IoT Internet of Thing
ISA Instruction Set Architecture
LoRa Long Range
ML Machine Learning
NVM Non-Volatile Memory
RAM Random Access Memory
ReRAM Resistive RAM
ROS Robot Operating System
SoC System-on-Chip
STT-RAM Spin Transfer Torque RAM
SVM Support Vector Machines
TPU Tensor Processing Unit
TSV Through-Silicon-Vias

J. Low Power Electron. Appl. 2022, 12, 61 20 of 24

References
1. Satyanarayanan, M. The Emergence of Edge Computing. Computer 2017, 50, 30–39. [CrossRef]
2. Qiu, J.; Wu, Q.; Ding, G.; Xu, Y.; Feng, S. A survey of machine learning for big data processing. EURASIP J. Adv. Signal Process.

2016, 2016, 67. [CrossRef]
3. Kukreja, N.; Shilova, A.; Beaumont, O.; Huckelheim, J.; Ferrier, N.; Hovland, P.; Gorman, G. Training on the Edge: The why and

the how. In Proceedings of the IEEE IPDPS Workshops,Rio de Janeiro, Brazil, 20–24 May 2019; pp. 899–903.
4. LeCun, Y.; Bengio, Y.; Hinton, G.E. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
5. Neto, A.R.; Soares, B.; Barbalho, F.; Santos, L.; Batista, T.; Delicato, F.C.; Pires, P.F. Classifying Smart IoT Devices for Running

Machine Learning Algorithms. In Proceedings of the XLV Integrated SW and HW Seminar, Natal, Brazil, 14–19 July 2018.
6. Murshed, M.G.S.; Murphy, C.; Hou, D.; Khan, N.; Ananthanarayanan, G.; Hussain, F. Machine Learning at the Network Edge: A

Survey. ACM Comput. Surv. 2022, 54, 1–37. [CrossRef]
7. Reuther, A.; Michaleas, P.; Jones, M.; Gadepally, V.; Samsi, S.; Kepner, J. Survey and Benchmarking of Machine Learning

Accelerators. In Proceedings of the 2019 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA,
24–26 September 2019.

8. Andrade, L.; Prost-Boucle, A.; Pétrot, F. Overview of the state of the art in embedded machine learning. In Proceedings of the
DATE Conference, Dresden, Germany, 19–23 March 2018; pp. 1033–1038.

9. Gamatié, A.; Devic, G.; Sassatelli, G.; Bernabovi, S.; Naudin, P.; Chapman, M. Towards Energy-Efficient Heterogeneous Multicore
Architectures for Edge Computing. IEEE Access 2019, 7, 49474–49491. [CrossRef]

10. Deng, Y. Deep Learning on Mobile Devices—A Review. Proc. SPIE 2019, 109930A. [CrossRef]
11. Chen, T.; Du, Z.; Sun, N.; Wang, J.; Wu, C.; Chen, Y.; Temam, O. DianNao: A Small-footprint High-throughput Accelerator for

Ubiquitous Machine-learning. In Proceedings of the 19th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’14), Salt Lake City, UT, USA, 1–5 March 2014; pp. 269–284. [CrossRef]

12. Shafiee, A.; Nag, A.; Muralimanohar, N.; Balasubramonian, R.; Strachan, J.P.; Hu, M.; Williams, R.S.; Srikumar, V. ISAAC: A
Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars. In Proceedings of the 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA), Seoul, Republic of Korea, 18–22 June 2016; pp. 14–26.
[CrossRef]

13. Nurvitadhi, E.; Venkatesh, G.; Sim, J.; Marr, D.; Huang, R.; Ong Gee Hock, J.; Liew, Y.T.; Srivatsan, K.; Moss, D.; Subhaschandra, S.;
et al. Can FPGAs Beat GPUs in Accelerating Next-Generation Deep Neural Networks? In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA’17), Monterey, CA, USA, 22–24 February 2017; pp. 5–14.
[CrossRef]

14. Lacey, G.; Taylor, G.W.; Areibi, S. Deep Learning on FPGAs: Past, Present, and Future. arXiv 2016, arXiv:1602.04283.
15. Google. Edge TPU. Available online: https://coral.ai/products (accessed on 27 October 2022).
16. Marantos, C.; Karavalakis, N.; Leon, V.; Tsoutsouras, V.; Pekmestzi, K.; Soudris, D. Efficient support vector machines implementa-

tion on Intel/Movidius Myriad 2. In Proceedings of the International Conference on Modern Circuits and Systems Technologies
(MOCAST), Thessaloniki, Greece, 7–9 May 2018; pp. 1–4.

17. Peng, T. AI Chip Duel: Apple A12 Bionic vs Huawei Kirin 980. Available online: https://syncedreview.com/2018/09/13/ai-
chip-duel-apple-a12-bionic-vs-huawei-kirin-980 (accessed on 27 October 2022).

18. HiSilicon. Kirin. 2019. Available online: https://www.hisilicon.com/en/SearchResult?keywords=Kirin (accessed on 27 October
2022).

19. Guo, K.; Sui, L.; Qiu, J.; Yu, J.; Wang, J.; Yao, S.; Han, S.; Wang, Y.; Yang, H. Angel-Eye: A Complete Design Flow for Mapping
CNN Onto Embedded FPGA. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 35–47. [CrossRef]

20. Podili, A.; Zhang, C.; Prasanna, V. Fast and efficient implementation of Convolutional Neural Networks on FPGA. In Proceedings
of the IEEE 28th International Conference on Application-specific Systems, Architectures and Processors (ASAP), Seattle, WA,
USA, 10–12 July 2017; pp. 11–18. [CrossRef]

21. NVIDIA. Jetson TX2. 2019. Available online: https://www.nvidia.com/fr-fr/autonomous-machines/embedded-systems/jetson-
tx2 (accessed on 27 October 2022).

22. Hruska, J. Nvidia’s Jetson Xavier Stuffs Volta Performance Into Tiny Form Factor. 2018. Available online: https://www.
extremetech.com/computing/270681-nvidias-jetson-xavier-stuffs-volta-performance-into-tiny-form-factor (accessed on 27
October 2022).

23. Teich, P. Tearing Apart Google’s TPU 3.0 AI Coprocessor. 2018. Available online: https://www.nextplatform.com/2018/05/10
/tearing-apart-googles-tpu-3-0-ai-coprocessor/ (accessed on 27 October 2022).

24. Rao, N. Beyond the CPU or GPU: Why Enterprise-Scale Artificial Intelligence Requires a More Holistic Approach. 2018. Available
online: https://newsroom.intel.com/editorials/artificial-intelligence-requires-holistic-approach/ (accessed on 27 October 2022).

25. Cutress, I. NVIDIA’s DGX-2: Sixteen Tesla V100s, 30TB of NVMe, Only $400K. 2018. Available online: https://www.anandtech.
com/show/12587/nvidias-dgx2-sixteen-v100-gpus-30-tb-of-nvme-only-400k (accessed on 27 October 2022).

26. Ignatov, A.; Timofte, R.; Chou, W.; Wang, K.; Wu, M.; Hartley, T.; Gool, L.V. AI Benchmark: Running Deep Neural Networks on
Android Smartphones. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany,
8–14 September 2018.

http://doi.org/10.1109/MC.2017.9
http://dx.doi.org/10.1186/s13634-016-0355-x
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1145/3469029
http://dx.doi.org/10.1109/ACCESS.2019.2910932
http://dx.doi.org/10.1117/12.2518469
http://dx.doi.org/10.1145/2541940.2541967
http://dx.doi.org/10.1109/ISCA.2016.12
http://dx.doi.org/10.1145/3020078.3021740
https://coral.ai/products
https://syncedreview.com/2018/09/13/ai-chip-duel-apple-a12-bionic-vs-huawei-kirin-980
https://syncedreview.com/2018/09/13/ai-chip-duel-apple-a12-bionic-vs-huawei-kirin-980
https://www.hisilicon.com/en/SearchResult?keywords=Kirin
http://dx.doi.org/10.1109/TCAD.2017.2705069
http://dx.doi.org/10.1109/ASAP.2017.7995253
https://www.nvidia.com/fr-fr/autonomous-machines/embedded-systems/jetson-tx2
https://www.nvidia.com/fr-fr/autonomous-machines/embedded-systems/jetson-tx2
https://www.extremetech.com/computing/270681-nvidias-jetson-xavier-stuffs-volta-performance-into-tiny-form-factor
https://www.extremetech.com/computing/270681-nvidias-jetson-xavier-stuffs-volta-performance-into-tiny-form-factor
https://www.nextplatform.com/2018/05/10/tearing-apart-googles-tpu-3-0-ai-coprocessor/
https://www.nextplatform.com/2018/05/10/tearing-apart-googles-tpu-3-0-ai-coprocessor/
https://newsroom.intel.com/editorials/artificial-intelligence-requires-holistic-approach/
https://www.anandtech.com/show/12587/nvidias-dgx2-sixteen-v100-gpus-30-tb-of-nvme-only-400k
https://www.anandtech.com/show/12587/nvidias-dgx2-sixteen-v100-gpus-30-tb-of-nvme-only-400k

J. Low Power Electron. Appl. 2022, 12, 61 21 of 24

27. Qualcomm. Neural Processing SDK for AI. 2019. Available online: https://developer.qualcomm.com/software/qualcomm-
neural-processing-sdk (accessed on 27 October 2022).

28. MediaTek. Helio P60. 2019. Available online: https://www.mediatek.com/products/smartphones/mediatek-helio-p60
(accessed on 27 October 2022).

29. Ananthanarayanan, R.; Brandt, P.; Joshi, M.; Sathiamoorthy, M. Opportunities and Challenges Of Machine Learning Accelerators
In Production. In Proceedings of the USENIX Conference on Operational Machine Learning, Santa Clara, CA, USA, 20 May 2019;
pp. 1–3.

30. Lavin, A.; Gray, S. Fast Algorithms for Convolutional Neural Networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [CrossRef]

31. Chen, Y.H.; Yang, T.J.; Emer, J.; Sze, V. Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices.
IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 9, 292–308. [CrossRef]

32. Xilinx. Tearing Apart Google’s TPU 3.0 AI Coprocessor. 2019. Available online: https://www.xilinx.com/products/boards-and-
kits/ek-u1-zcu102-g.html (accessed on 27 October 2022)

33. Peccerillo, B.; Mannino, M.; Mondelli, A.; Bartolini, S. A survey on hardware accelerators: Taxonomy, trends, challenges, and
perspectives. J. Syst. Archit. 2022, 129, 102561. [CrossRef]

34. Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and
Huffman Coding. In Proceedings of the 4th International Conference on Learning Representations, ICLR, San Juan, Puerto Rico,
2–4 May 2016.

35. Marculescu, D.; Stamoulis, D.; Cai, E. Hardware-aware Machine Learning: Modeling and Optimization. In Proceedings of the
International Conference on Computer-Aided Design (ICCAD ’18), San Diego, CA, USA, 5–8 November 2018; pp. 137:1–137:8.

36. Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; Narayanan, P. Deep Learning with Limited Numerical Precision. In Proceedings of
the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015. [CrossRef]

37. C4ML organizers. Compilers for ML. 2019. Available online: https://www.c4ml.org/ (accessed on 27 October 2022).
38. Balasubramonian, R.; Chang, J.; Manning, T.; Moreno, J.H.; Murphy, R.; Nair, R.; Swanson, S. Near-Data Processing: Insights

from a MICRO-46 Workshop. IEEE Micro 2014, 34, 36–42. [CrossRef]
39. Liu, J.; Zhao, H.; Ogleari, M.A.; Li, D.; Zhao, J. Processing-in-Memory for Energy-Efficient Neural Network Training: A

Heterogeneous Approach. In Proceedings of the IEEE/ACM MICRO Symposium, Fukuoka, Japan, 20–24 October 2018;
pp. 655–668.

40. Choe, H.; Lee, S.; Park, S.; Kim, S.J.; Chung, E.; Yoon, S. Near-Data Processing for Machine Learning. 2017. Available online:
https://openreview.net/pdf?id=H1_EDpogx (accessed on 27 October 2022).

41. Endoh, T.; Koike, H.; Ikeda, S.; Hanyu, T.; Ohno, H. An Overview of Nonvolatile Emerging Memories—Spintronics for Working
Memories. IEEE JETCAS 2016, 6, 109–119. [CrossRef]

42. Senni, S.; Torres, L.; Sassatelli, G.; Gamatié, A.; Mussard, B. Exploring MRAM Technologies for Energy Efficient Systems-On-Chip.
IEEE J. Emerg. Sel. Top. Circuits Syst. 2016, 6, 279–292. [CrossRef]

43. Pawlowski, J.T. Hybrid memory cube (HMC). In Proceedings of the IEEE Hot Chips Symposium (HCS), Stanford, CA, USA,
17–19 August 2011; pp. 1–24.

44. Kusriyanto, M.; Putra, B.D. Smart home using local area network (LAN) based arduino mega 2560. In Proceedings of the 2nd
International Conference on Wireless and Telematics (ICWT), Yogyakarta, Indonesia, 1–2 August 2016; pp. 127–131.

45. Drgoňa, J.; Picard, D.; Kvasnica, M.; Helsen, L. Approximate model predictive building control via machine learning. Appl.
Energy 2018, 218, 199–216. [CrossRef]

46. Sousa, R.d.S. Remote Monitoring and Control of a Reservation-Based Public Parking. Ph.D. Thesis, Universidade de Coimbra,
Coimbra, Portugal, 2021.

47. Brun, D.; Jordan, P.; Hakkila, J. Demonstrating a Memory Orb—Cylindrical Device Inspired by Science Fiction. In Proceedings of
the 20th International Conference on Mobile and Ubiquitous Multimedia, Leuven, Belgium, 5–8 December 2021; pp. 239–241.

48. Stolovas, I.; Suárez, S.; Pereyra, D.; De Izaguirre, F.; Cabrera, V. Human activity recognition using machine learning techniques in
a low-resource embedded system. In Proceedings of the 2021 IEEE URUCON, Montevideo, Uruguay, 24–26 November 2021;
pp. 263–267.

49. Edge Impulse. Detect objects with centroids (Sony’s Spresense). Available online: https://docs.edgeimpulse.com/docs/
tutorials/detect-objects-using-fomo (accessed on 27 October 2022).

50. SparkFun Electronics. Edge Hookup Guide. 2019. Available online: https://learn.sparkfun.com/tutorials/sparkfun-edge-
hookup-guide/all (accessed on 27 October 2022).

51. Jin, G.; Bai, K.; Zhang, Y.; He, H. A Smart Water Metering System Based on Image Recognition and Narrowband Internet of
Things. Rev. D’Intelligence Artif. 2019, 33, 293–298. [CrossRef]

52. Alasdair Allan. Deep Learning at the Edge on an Arm Cortex-Powered Camera Board. 2018. Available online: https:
//aallan.medium.com/deep-learning-at-the-edge-on-an-arm-cortex-powered-camera-board-3ca16eb60ef7 (accessed on 27
October 2022).

53. Nyamukuru, M.T.; Odame, K.M. Tiny eats: Eating detection on a microcontroller. In Proceedings of the 2020 IEEE Second
Workshop on Machine Learning on Edge in Sensor Systems (SenSys-ML), Sydney, Australia, 21 April 2020; pp. 19–23.

https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk
https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk
https://www.mediatek.com/products/smartphones/mediatek-helio-p60
http://dx.doi.org/10.48550/ARXIV.1509.09308
http://dx.doi.org/10.1109/JETCAS.2019.2910232
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
http://dx.doi.org/10.1016/j.sysarc.2022.102561
http://dx.doi.org/10.48550/ARXIV.1502.02551
https://www.c4ml.org/
http://dx.doi.org/10.1109/MM.2014.55
https://openreview.net/pdf?id=H1_EDpogx
http://dx.doi.org/10.1109/JETCAS.2016.2547704
http://dx.doi.org/10.1109/JETCAS.2016.2547680
http://dx.doi.org/10.1016/j.apenergy.2018.02.156
https://docs.edgeimpulse.com/docs/tutorials/detect-objects-using-fomo
https://docs.edgeimpulse.com/docs/tutorials/detect-objects-using-fomo
https://learn.sparkfun.com/tutorials/sparkfun-edge-hookup-guide/all
https://learn.sparkfun.com/tutorials/sparkfun-edge-hookup-guide/all
http://dx.doi.org/10.18280/ria.330405
https://aallan.medium.com/deep-learning-at-the-edge-on-an-arm-cortex-powered-camera-board-3ca16eb60ef7
https://aallan.medium.com/deep-learning-at-the-edge-on-an-arm-cortex-powered-camera-board-3ca16eb60ef7

J. Low Power Electron. Appl. 2022, 12, 61 22 of 24

54. Sharad, S.; Sivakumar, P.B.; Narayanan, V.A. The smart bus for a smart city—A real-time implementation. In Proceedings of
the IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Bangalore, India, 6–9
November 2016; pp. 1–6.

55. Nayyar, A.; Puri, V. A Review of Beaglebone Smart Board’s-A Linux/Android Powered Low Cost Development Platform Based
on ARM Technology. In Proceedings of the 9th International Conference on Future Generation Communication and Networking
(FGCN), Jeju Island, South Korea, 25–28 November 2015; pp. 55–63.

56. Zhang, Y.; Suda, N.; Lai, L.; Chandra, V. Hello Edge: Keyword Spotting on Microcontrollers. arXiv 2017, arXiv:1711.07128.
57. Wang, G.; Bhat, Z.P.; Jiang, Z.; Chen, Y.W.; Zha, D.; Reyes, A.C.; Niktash, A.; Ulkar, G.; Okman, E.; Hu, X. BED: A Real-Time

Object Detection System for Edge Devices. arXiv 2022, arXiv:2202.07503.
58. Wang, C.; Yu, Q.; Gong, L.; Li, X.; Xie, Y.; Zhou, X. DLAU: A Scalable Deep Learning Accelerator Unit on FPGA. IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst. 2016, 36, 513–517. [CrossRef]
59. RISC-V Foundation. RISC-V: The Free and Open RISC ISA. 2019. Available online: https://riscv.org/ (accessed on 27 October

2022).
60. Gonzalez-Huitron, V.; León-Borges, J.A.; Rodriguez-Mata, A.; Amabilis-Sosa, L.E.; Ramírez-Pereda, B.; Rodriguez, H. Disease

detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4. Comput. Electron. Agric. 2021,
181, 105951. [CrossRef]

61. Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-
Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

62. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and Training of Neural
Networks for Efficient Integer-Arithmetic-Only Inference. In Proceedings of the The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018.

63. Rodríguez-Gómez, J.P.; Tapia, R.; Paneque, J.L.; Grau, P.; Eguíluz, A.G.; Martínez-de Dios, J.R.; Ollero, A. The GRIFFIN perception
dataset: Bridging the gap between flapping-wing flight and robotic perception. IEEE Robot. Autom. Lett. 2021, 6, 1066–1073.
[CrossRef]

64. Valladares, S.; Toscano, M.; Tufiño, R.; Morillo, P.; Vallejo-Huanga, D. Performance Evaluation of the Nvidia Jetson Nano Through
a Real-Time Machine Learning Application. In Proceedings of the Intelligent Human Systems Integration 2021; Russo, D., Ahram, T.,
Karwowski, W., Di Bucchianico, G., Taiar, R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 343–349.

65. Chemel, T.; Duncan, J.; Fisher, S.; Jain, R.; Morgan, R.; Nikiforova, K.; Reich, M.; Schaub, S.; Scherlis, T. Tartan Autonomous
Underwater Vehicle Design and Implementation of TAUV-22: Kingfisher. 2020. Available online: https://robonation.org/app/
uploads/sites/5/2022/06/RS2022_Carnegie_Mellon_University_TartanAUV_TDR.pdf (accessed on 27 October 2022).

66. Long, C. BeagleBone AI Makes a Sneak Preview. 2019. Available online: https://beagleboard.org/blog/2019-05-16-beaglebone-
ai-preview (accessed on 27 October 2022).

67. Hochstetler, J.; Padidela, R.; Chen, Q.; Yang, Q.; Fu, S. Embedded Deep Learning for Vehicular Edge Computing. In Proceedings
of the IEEE/ACM Symposium on Edge Computing (SEC), Bellevue, WA, USA, 25–27 October 2018; pp. 341–343.

68. Xu, R.; Nikouei, S.Y.; Chen, Y.; Polunchenko, A.; Song, S.; Deng, C.; Faughnan, T. Real-Time Human Objects Tracking for Smart
Surveillance at the Edge. In Proceedings of the International Conference on Communications (ICC), Kansas City, MO, USA,
20–24 May 2018; pp. 1–6.

69. Triwiyanto, T.; Caesarendra, W.; Purnomo, M.H.; Sułowicz, M.; Wisana, I.D.G.H.; Titisari, D.; Lamidi, L.; Rismayani, R. Embedded
Machine Learning Using a Multi-Thread Algorithm on a Raspberry Pi Platform to Improve Prosthetic Hand Performance.
Micromachines 2022, 13, 191. [CrossRef] [PubMed]

70. Willems, L. Detect People on a Device that Fits in the Palm of Your Hands. Bachelor’s Thesis, University of Twente, Enschede,
The Netherlands, 2020.

71. Flamand, E.; Rossi, D.; Conti, F.; Loi, I.; Pullini, A.; Rotenberg, F.; Benini, L. GAP-8: A RISC-V SoC for AI at the Edge of the IoT. In
Proceedings of the International Conference on Application-Specific Systems, Architectures and Processors (ASAP), Milan, Italy,
10–12 July 2018; pp. 1–4.

72. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

73. Kang, D.; Kang, D.; Kang, J.; Yoo, S.; Ha, S. Joint optimization of speed, accuracy, and energy for embedded image recognition
systems. In Proceedings of the 2018 Design, Automation Test in Europe Conference Exhibition (DATE), Dresden, Germany, 19–23
March 2018; pp. 715–720. [CrossRef]

74. Cass, S. Taking AI to the edge: Google’s TPU now comes in a maker-friendly package. IEEE Spectr. 2019, 56, 16–17. [CrossRef]
75. Campmany, V.; Silva, S.; Espinosa, A.; Moure, J.; Vázquez, D.; López, A. GPU-based Pedestrian Detection for Autonomous

Driving. Procedia Comput. Sci. 2016, 80, 2377–2381. [CrossRef]
76. Liu, Q.; Huang, S.; Han, T. Fast and Accurate Object Analysis at the Edge for Mobile Augmented Reality: Demo. In Proceedings

of the 2nd ACM/IEEE Symposium on Edge Computing, SEC’17, San Jose/Fremont, CA, USA, 12–14 October 2017; pp. 33:1–33:2.
77. Ezra Tsur, E.; Madar, E.; Danan, N. Code Generation of Graph-Based Vision Processing for Multiple CUDA Cores SoC Jetson

TX. In Proceedings of the International Symposium on Embedded Multicore/Many-core SoC (MCSoC), Hanoi, Vietnam, 12–14
September 2018; pp. 1–7.

http://dx.doi.org/10.1109/TCAD.2016.2587683
https://riscv.org/
http://dx.doi.org/10.1016/j.compag.2020.105951
http://dx.doi.org/10.1109/LRA.2021.3056348
https://robonation.org/app/uploads/sites/5/2022/06/RS2022_Carnegie_Mellon_University_TartanAUV_TDR.pdf
https://robonation.org/app/uploads/sites/5/2022/06/RS2022_Carnegie_Mellon_University_TartanAUV_TDR.pdf
https://beagleboard.org/blog/2019-05-16-beaglebone-ai-preview
https://beagleboard.org/blog/2019-05-16-beaglebone-ai-preview
http://dx.doi.org/10.3390/mi13020191
http://www.ncbi.nlm.nih.gov/pubmed/35208315
http://dx.doi.org/10.23919/DATE.2018.8342102
http://dx.doi.org/10.1109/MSPEC.2019.8701189
http://dx.doi.org/10.1016/j.procs.2016.05.455

J. Low Power Electron. Appl. 2022, 12, 61 23 of 24

78. Beckman, P.; Sankaran, R.; Catlett, C.; Ferrier, N.; Jacob, R.; Papka, M. Waggle: An open sensor platform for edge computing. In
Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3.

79. Morishita, F.; Kato, N.; Okubo, S.; Toi, T.; Hiraki, M.; Otani, S.; Abe, H.; Shinohara, Y.; Kondo, H. A CMOS Image Sensor and an
AI Accelerator for Realizing Edge-Computing-Based Surveillance Camera Systems. In Proceedings of the 2021 Symposium on
VLSI Circuits, Kyoto, Japan, 13–19 June 2021; pp. 1–2. [CrossRef]

80. Hardkernel. Odroid-M1. 2022. Available online: https://www.hardkernel.com/2022/03/ (accessed on 27 October 2022).¶
81. Liu, S.; Zheng, C.; Lu, K.; Gao, S.; Wang, N.; Wang, B.; Zhang, D.; Zhang, X.; Xu, T. Evsrnet: Efficient video super-resolution with

neural architecture search. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 2480–2485.

82. Chinchali, S.; Sharma, A.; Harrison, J.; Elhafsi, A.; Kang, D.; Pergament, E.; Cidon, E.; Katti, S.; Pavone, M. Network Offloading
Policies for Cloud Robotics: A Learning-based Approach. Auton. Robot. 2021, 45, 997–1012. [CrossRef]

83. Pouget, A.; Ramesh, S.; Giang, M.; Chandrapalan, R.; Tanner, T.; Prussing, M.; Timofte, R.; Ignatov, A. Fast and accurate camera
scene detection on smartphones. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Virtual, 19–25 June 2021; pp. 2569–2580.

84. Dextre, M.; Rosas, O.; Lazo, J.; Gutiérrez, J.C. Gun Detection in Real-Time, using YOLOv5 on Jetson AGX Xavier. In Proceedings
of the 2021 XLVII Latin American Computing Conference (CLEI), Cartago, Costa Rica, 25–29 October 2021; pp. 1–7. [CrossRef]

85. Dally, W.J.; Turakhia, Y.; Han, S. Domain-Specific Hardware Accelerators. Commun. ACM 2020, 63, 48–57. [CrossRef]
86. Apvrille, L.; Bécoulet, A. Prototyping an Embedded Automotive System from its UML/SysML Models. In Proceedings of the

Embedded Real Time Software and Systems (ERTS2012), Toulouse, France, 29 January–1 February 2012.
87. Dekeyser, J.L.; Gamatié, A.; Etien, A.; Ben Atitallah, R.; Boulet, P. Using the UML Profile for MARTE to MPSoC Co-Design. Avail-

able online: https://www.researchgate.net/profile/Pierre-Boulet/publication/47363143_Using_the_UML_Profile_for_MARTE_
to_MPSoC_Co-Design/links/09e415083fb08c939b000000/Using-the-UML-Profile-for-MARTE-to-MPSoC-Co-Design.pdf (ac-
cessed on 27 October 2022).

88. Yu, H.; Gamatié, A.; Rutten, É.; Dekeyser, J. Safe design of high-performance embedded systems in an MDE framework. Innov.
Syst. Softw. Eng. 2008, 4, 215–222. [CrossRef]

89. Parashar, A.; Raina, P.; Shao, Y.S.; Chen, Y.H.; Ying, V.A.; Mukkara, A.; Venkatesan, R.; Khailany, B.; Keckler, S.W.; Emer, J.
Timeloop: A Systematic Approach to DNN Accelerator Evaluation. In Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), Madison, WI, USA, 24–26 March 2019; pp. 304–315. [CrossRef]

90. An, X.; Boumedien, S.; Gamatié, A.; Rutten, E. CLASSY: A Clock Analysis System for Rapid Prototyping of Embedded
Applications on MPSoCs. In Proceedings of the 15th International Workshop on Software and Compilers for Embedded Systems,
SCOPES’12; Association for Computing Machinery: New York, NY, USA, 2012; pp. 3–12. [CrossRef]

91. Caliri, G.V. Introduction to analytical modeling. In Proceedings of the 26th International Computer Measurement Group
Conference, Orlando, FL, USA, 10–15 December 2000; pp. 31–36.

92. Corvino, R.; Gamatié, A.; Geilen, M.; Józwiak, L. Design space exploration in application-specific hardware synthesis for
multiple communicating nested loops. In Proceedings of the 2012 International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation, SAMOS XII, Samos, Greece, 16–19 July 2012; pp. 128–135. [CrossRef]

93. Ghenassia, F. Transaction-Level Modeling with SystemC: TLM Concepts and Applications for Embedded Systems; Springer: New York,
NY, USA, 2006.

94. Mello, A.; Maia, I.; Greiner, A.; Pecheux, F. Parallel simulation of systemC TLM 2.0 compliant MPSoC on SMP workstations. In
Proceedings of the Design, Automation Test in Europe Conference Exhibition (DATE’10), Dresden, Germany, 8–12 March 2010;
pp. 606–609. [CrossRef]

95. Schirner, G.; Dömer, R. Quantitative Analysis of the Speed/Accuracy Trade-off in Transaction Level Modeling. ACM Trans.
Embed. Comput. Syst. 2009, 8, 1–29. [CrossRef]

96. Binkert, N.; Beckmann, B.; Black, G.; Reinhardt, S.K.; Saidi, A.; Basu, A.; Hestness, J.; Hower, D.R.; Krishna, T.; Sardashti, S.; et al.
The Gem5 Simulator. SIGARCH Comput. Archit. News 2011, 39, 1–7. [CrossRef]

97. Butko, A.; Gamatié, A.; Sassatelli, G.; Torres, L.; Robert, M. Design Exploration for next Generation High-Performance Manycore
On-chip Systems: Application to big.LITTLE Architectures. In Proceedings of the ISVLSI: International Symposium on Very
Large Scale Integration; Montpellier, France, 8–10 July 2015; pp. 551–556. [CrossRef]

98. Butko, A.; Garibotti, R.; Ost, L.; Lapotre, V.; Gamatié, A.; Sassatelli, G.; Adeniyi-Jones, C. A trace-driven approach for fast and
accurate simulation of manycore architectures. In Proceedings of the 20th Asia and South Pacific Design Automation Conference,
Chiba, Japan, 19–22 January 2015; pp. 707–712. [CrossRef]

99. Breuer, M.; Friedman, A.; Iosupovicz, A. A Survey of the State of the Art of Design Automation. Computer 1981, 14, 58–75.
[CrossRef]

100. TMI Orion nano Vacq FUll Radio. Available online: https://www.tmi-orion.com/medias/pdf/en/NanoVACQ-PT-FullRadio-
EN.pdf (accessed on 27 October 2022).

101. TMI Orion Transceiver. Available online: https://www.tmi-orion.com/medias/pdf/en/Radio-transceiver-en.pdf (accessed on
27 October 2022).

102. Gravio Hub. Available online: https://doc.gravio.com/manuals/gravio4/1/en/topic/gravio-hub (accessed on 27 October
2022).

http://dx.doi.org/10.23919/VLSICircuits52068.2021.9492514
https://www.hardkernel.com/2022/03/
http://dx.doi.org/10.1007/s10514-021-09987-4
http://dx.doi.org/10.1109/CLEI53233.2021.9640100
http://dx.doi.org/10.1145/3361682
https://www.researchgate.net/profile/Pierre-Boulet/publication/47363143_Using_the_UML_Profile_for_MARTE_to_MPSoC_Co-Design/links/09e415083fb08c939b000000/Using-the-UML-Profile-for-MARTE-to-MPSoC-Co-Design.pdf
https://www.researchgate.net/profile/Pierre-Boulet/publication/47363143_Using_the_UML_Profile_for_MARTE_to_MPSoC_Co-Design/links/09e415083fb08c939b000000/Using-the-UML-Profile-for-MARTE-to-MPSoC-Co-Design.pdf
http://dx.doi.org/10.1007/s11334-008-0059-y
http://dx.doi.org/10.1109/ISPASS.2019.00042
http://dx.doi.org/10.1145/2236576.2236577
http://dx.doi.org/10.1109/SAMOS.2012.6404166
http://dx.doi.org/10.1109/DATE.2010.5457136
http://dx.doi.org/10.1145/1457246.1457250
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/ISVLSI.2015.28
http://dx.doi.org/10.1109/ASPDAC.2015.7059093
http://dx.doi.org/10.1109/C-M.1981.220210
https://www.tmi-orion.com/medias/pdf/en/NanoVACQ-PT-FullRadio-EN.pdf
https://www.tmi-orion.com/medias/pdf/en/NanoVACQ-PT-FullRadio-EN.pdf
https://www.tmi-orion.com/medias/pdf/en/Radio-transceiver-en.pdf
https://doc.gravio.com/manuals/gravio4/1/en/topic/gravio-hub

J. Low Power Electron. Appl. 2022, 12, 61 24 of 24

103. Moneo Appliance. Available online: https://www.ifm.com/us/en/us/moneo-us/moneo-appliance (accessed on 27 October
2022).

104. Advantech WISE-4060. Available online: https://advdownload.advantech.com/productfile/PIS/WISE-4060/file/WISE-4060-B_
DS(122121)20221020155553.pdf (accessed on 27 October 2022).

105. Advantech EIS-D150. Available online: https://advdownload.advantech.com/productfile/PIS/EIS-D150/file/EIS-D150_DS(05
0922)20220509111551.pdf (accessed on 27 October 2022).

106. inHand Networks Edge Gateway. Available online: https://inhandnetworks.com/upload/attachment/202210/19/InHand%20
Networks_InGateway902%20Edge%20Gateway_Prdt%20Spec_V4.1.pdf (accessed on 27 October 2022).

107. Adlink MCM Edge DAQ. Available online: https://www.adlinktech.com/Products/Download.ashx?type=MDownload&
isDatasheet=yes&file=1938%5cMCM-210_Series_datasheet_20210412.pdf (accessed on 27 October 2022).

108. SmartMesh WirelessHART Network Manager. Available online: https://www.analog.com/media/en/technical-documentation/
data-sheets/5903whrf.pdf (accessed on 27 October 2022).

109. SmartMesh WirelessHART 5900. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/
5900whmfa.pdf (accessed on 27 October 2022).

https://www.ifm.com/us/en/us/moneo-us/moneo-appliance
https://advdownload.advantech.com/productfile/PIS/WISE-4060/file/WISE-4060-B_DS(122121)20221020155553.pdf
https://advdownload.advantech.com/productfile/PIS/WISE-4060/file/WISE-4060-B_DS(122121)20221020155553.pdf
https://advdownload.advantech.com/productfile/PIS/EIS-D150/file/EIS-D150_DS(050922)20220509111551.pdf
https://advdownload.advantech.com/productfile/PIS/EIS-D150/file/EIS-D150_DS(050922)20220509111551.pdf
https://inhandnetworks.com/upload/attachment/202210/19/InHand%20Networks_InGateway902%20Edge%20Gateway_Prdt%20Spec_V4.1.pdf
https://inhandnetworks.com/upload/attachment/202210/19/InHand%20Networks_InGateway902%20Edge%20Gateway_Prdt%20Spec_V4.1.pdf
https://www.adlinktech.com/Products/Download.ashx?type=MDownload&isDatasheet=yes&file=1938%5cMCM-210_Series_datasheet_20210412.pdf
https://www.adlinktech.com/Products/Download.ashx?type=MDownload&isDatasheet=yes&file=1938%5cMCM-210_Series_datasheet_20210412.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/5903whrf.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/5903whrf.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/5900whmfa.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/5900whmfa.pdf

	Introduction
	Machine Learning at the Edge
	Motivation and Contribution of This Study
	Outline of the Paper

	A Quick Journey in the Landscape of Energy-Efficient Compute Systems for ML Tasks
	Focus on ML Accelerators, GPUs and FPGAs
	From Software-Hardware Codesign to Emerging Computing Paradigms

	Classification of Low-Power Devices for IoT and Smart Edge Computing
	Low-Power Smart Edge Computing with CYSmart Solution
	Data Acquisition Device: CYCom
	Centralized Early Data Processing: CYEdge
	Use Case Evaluation of CYSmart
	Gained Insights and Discussion

	Summary
	References

