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Abstract: In this study, a direct-grown helical-shaped tungsten-oxide-based (h-WOx) selection device
is presented for emerging memory applications. The selectivity in the selection devices is from
10 to 103 with a low off-current of 0.1 to 0.01 nA. In addition, the selectivity of volatile switching
in the h-WOx selection devices is reconfigurable with a pseudo RESET process on the one-time
negative voltage operations. The helical-shaped selection devices with the glancing angle deposition
(GLAD) method show good compatibility, low power consumption, good selectivity, and good
reconfigurability for next-generation memory applications.
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1. Introduction

With high-demand computing, the emerging memory with high-density storage and
computational functions attracts attention. An inevitable issue needs to be solved before
enabling the high-density crossbar array, called “sneak path currents (SPC)”, i.e., the
crosstalk effect resulting from the leakage current contributed by the neighboring memory
cells subverting the development of crossbar arrays [1,2]. Currently, the configuration
of one transistor–one memory (1T-1R) is utilized to solve the SPC issue, which relies on
the rectifying behavior of the three-terminal transistor to suppress the SPC and mitigate
the programming errors in the memory array [3–6]. However, this approach with a three-
terminal transistor integration increases the cost and fabrication complexity while limiting
the scalability per bit and the whole memory array. The self-rectified memory and good
performance selection device are in pressing need of development [6–8].

Recently, self-rectified memory applications without the integration of the selection
devices were published. However, the filamentary-based memory has an intrinsic high
off-current (~10−6) after electroforming, which leads to the bottleneck of energy efficiency
as well as noise immunity in the current self-rectified memory [9–12]. To mitigate the de-
velopment gap between 1T-1R and self-rectified memory, the novel two-terminal selection
device is proposed and demonstrated with simplified fabrication, low operation energy,
and scalability. To investigate the system level’s latency and writing energy, SPICE mod-
eling on 1T-1R, dynamic random-access memory (DRAM), and resistive random-access
memory (RRAM) (~1 Gb) have been reported [13]. The 2T-1R and 3T-1R configurations
are also published to mitigate the SPC-induced operation errors while reducing the energy
consumption [14–17]. Despite there are breakthroughs in circuit- and system-level studies,
the device-level RRAM characteristics still lack investigation. To overcome the limitations
on device-level memory development, the power consumption and SPC-induced errors in
the array operation need an urgent solution. In this study, the direct-grown two-terminal
selection device that uses the nano helical structures is presented with reconfigurable
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selectivity. The results present the reconfigurable volatile switching (VS) behaviors of
WOx helical-shaped films, which is suggested as the solution for the SPC issue without
compromising the structure simplicity, which enables the low power, high density, CMOS
compatible technology towards the crossbar memory array applications.

2. Results and Discussion

The fabrication process is shown in Figure 1a. After the wafer cleaning process, 100 nm
of gold (Au) was deposited as the bottom electrode (BE) using a physical vapor deposition
(PVD) method while keeping the substrate at an angle of 0 degree. The WOx helices were
grown using the glancing angle deposition (GLAD) method (Figure 1b) [18]. Briefly, the
WOx source material (WOx pellet, Kurt J. Lesker) was kept in a Mo crucible, and e-beam
deposition method was used to deposit the material on the substrate, while the substrate
was rotated. Furthermore, the substrate was kept at an angle of 86 degrees with respect
to the vapor plume, to achieve the shadow effect needed by GLAD to create helices. The
helical-shaped thin film, i.e., insulator layers has been deposited by the e-beam evaporation
including helical WOx (h-WOx). The total helical wire length was designed to be modified
from 50 nm, 100 nm, 200 nm (approximately 1 full turn, and 4 turns of helix). The height of
the helical structure is examined to be approximately 60 to 80% of the total wire length [19].
The growth of the helices occurred at a rate of around 0.7 Å/s. This was monitored using
an in-vacuo quartz-crystal microbalance (Inficon, Bad Ragaz, Switzerland). Then, 5 nm of
SiOx has been deposited by atomic layer deposition (ALD) for isolating the top electrode
from the bottom electrode and preventing the shortened circuit. The devices without the
SiOx capping layer are fabricated as references. The Keysight B1500 with EPS probe station
is utilized for electrical characterization and analysis.
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Figure 1. (a) Fabrication process for helical-shaped nanostructure, (b) cross-section image of the
helical structure by SEM image (inset: top view of as-deposited helical structures), (c) helical structure
deposited and fill in the via opening by shadow masks.

The uniformity of the helical structure deposition is investigated. Figure 1b inset
shows the top view by scanning electron microscopy (SEM) for 200 nm h-WOx thin film
deposition without 5 nm of SiOx thin film. To investigate the coverage of the helical shape
structure, the shadow mask in the sizes of 15, 50, 100 µm in diameter was used during the
depositing process. The cross-section of the via is shown with the helical structures, which
demonstrates the good coverage with the GLAD method (Figure 1c). Noted the A-B is the
cross-section of the via size with a diameter of 15 µm designed shadow mask.

Figure 2a shows the current–voltage (I–V) characteristics in h-WOx-based devices
of 50 nm, 100 nm, and 200 nm. The 100 DC cycles are tested with the SET compliance
current limit (CCL) operation. The volatile switching behaviors are shown in helical-shaped
WOx-based devices. The on-current reaches SET CCL of 1 mA in the devices with a helical
layer of 50 and 100 nm (blue and green curves), while the self-compliance is observed
in the device of 200 nm helical layer (red curve). The selectivity (S.L.) is defined as the
current at on-voltage (i.e., 1 V) divided by the current at off-voltage (i.e., 0.3 V). The device
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with a higher selectivity represents superior performance in reducing the SPC noise and
crosstalk. The results show the h-WOx selection devices with active layers of 50 nm and
100 nm require the external current clamping circuit, and the power consumption in which
is higher than those in devices of 200 nm h-WOx layer.
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Figure 2. (a) I–V characteristics of volatile switching in WOx-based helical devices, (b) selectivity of
WOx-based selection devices.

The off-current at the read voltage of 0.1 V is 8 × 10−8, 2 × 10−6, 1.4 × 10−9 A for
50 nm, 100 nm, 200 nm devices, respectively. That is, the standby power is reduced with
thicker h-WOx thin film, while the device is idle without operations of reading and writing.
Although the drive-on voltage of h-WOx device at 1.52 V which is around three times of the
transistor device in 1T-1R (e.g., 0.6 V), the power is reduced by two orders of magnitude.
The power consumption is reduced 14 nW with h-WOx selection devices, as compared
with 3 mW in 1T-1R configuration. Figure 2b shows the device-to-device (D2D) variation
for the selection devices with h-WOx of 200 nm. The selectivity is in the range from 10 to
103, and the median selectivity of 50 cycles for each device is above order of magnitude.
Noted the selectivity larger than an order of magnitude to maximum of 103 is sufficient for
rectifying the non-volatile memory cell in the crossbar array. Future research on improving
the selectivity [20,21] will continue by tailoring materials and device designs.

On the other hand, device reliability is the critical factor in evaluating the selection
of devices. Figure 3a shows the one-time non-volatile switching after 100 DC cycling
in four h-WOx (200 nm) selection devices at SET CCL of 1 mA, called the “pseudo SET
process”. The SET process with positive sweeping forms the conductive filament (i.e., low
resistance state, LRS), and the RESET process with negative sweeping ruptures the filament
(i.e., high resistance state, HRS) in a standard bipolar resistance random access memory
(RRAM) device [22]. Herein, volatile switching is normally performed in devices before
this pseudo SET process. That is, the starting current ranges from 10−8 to 10−10 A at 0.01 V.
Notably, there is no forming process required in this helical-shaped device for volatile
switching. That is, the volatile switching as shown in Figure 2a in the first cycle. The
CCL of the electroforming process does not affect the device performance when it is below
1 mA. The forming CCL effect resulting in potential conductance quantization [23] will be
discussed in our future work. In the memory crossbar array, the total due to leakage path
from neighboring cells is still of micro-ampere scale which is the bottleneck the researchers
tried to solve recently [24,25]. The volatile switching devices presented in this study show
low current operation (<1 µA) using helical-shaped microstructures for future low-power
memory applications.

With the DC cycling, the device is suggested under continuous bias stress and reaches
SET CCL of 1 mA at around 3 V. Despite the pseudo SET process occurring, the vs. of the
selection device is reconfigurable. Figure 3b shows the one-time refresh pseudo-RESET
process, which shows a two-step conductance drop in the negative polarity sweeping
process. The pseudo SET process occurs after the 100 cycles of vs. behaviors at positive
sweeping (Figure 2a), the deep RESET process is performed once in negative polarity
sweeps (i.e., dark red curve in negative polarity, Figure 3b). Then, the vs. behaviors have
been recovered as the dark red curve in positive polarity in Figure 3b for the next 100 cycles
as the selection device. The second “one-time refresh pseudo-RESET process brings the
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vs. behaviors in h-WOx selection devices (i.e., light orange curve, Figure 3b). Noted the
sweeping step of 10 mV was performed in the negative pseudo-RESET process from 0 to
−2 V. Figure 3c shows the reconfigured volatile switching after the pseudo-RESET process
in the identical four devices as in Figure 3a. In short, the volatile switching as the selection
device using a helical-shaped active layer is low-power, recoverable and reconfigurable with
an effortless pseudo RESET. This is thought to be suggested the confinement of the WOx
helices which mitigates the vertical electrical field stress as compared with the continuous
thin film devices. Future work will be performed to understand the physical mechanisms
in discontinuous helical-shaped active layer for two-terminal vertical selection devices.
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The schematic diagram shows the possible mechanism of filamentary structure evo-
lution during the volatile switching, cycling stressing, and the fresh RESET cycle on the
helical-shaped microstructure (Figure 4). The helical structure is a non-continuous structure
in 2-dimensional direction, and a continuous structure in 3-dimensional direction (i.e.,
spiral structure). The discontinuous oxygen vacancy distribution leads to the non-uniform
filamentary formation (left panel) during the positive polarity DC sweep, where the SiOx
thin film of 5 nm is as the oxygen reservoir. After a number of DC cycling which stresses the
device with the repeating operation, the filamentary structure is suggested to be connected,
i.e., LRS. Since the filamentary structure in the pitch between each helical-turn in cross
section, the filament is not as robust as in WOx continuous helical-wire structure (blue).
With refreshing RESET cycle, the filament ruptured at the pitch between each helical turn,
and recovered the volatile switching based on the discontinuous filament. An investigation
on materials and physical modeling will be the scope of future work.
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3. Conclusions

For the first time, a direct-grown helical-shaped h-WOx selection device with volatile
switching behaviors for emerging memory applications is presented. The selectivity of
volatile switching in the h-WOx selection devices is recoverable and reconfigurable with a
one-time pseudo-RESET process on the negative voltage sweeping operation. The helical-
shaped selection devices with the GLAD method are demonstrated with good compatibility,
simple fabrication, low power, good selectivity, and good reliability for future embedded
functional memory and security applications in the BEOL process.
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